Electronic Supplementary Information for

Efficient Bi³⁺ to Eu³⁺ energy transfer and color tunable emissions in

K₇CaY₂(B₅O₁₀)₃-based phosphors

Hua Chen, Yan Gao, Pengfei Jiang, Rihong Cong,* Tao Yang*

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing

401331, People's Republic of China.

*E-mails: congrihong@cqu.edu.cn, taoyang@cqu.edu.cn

Bond	nd Length (Å)		Length (Å)	
Ca1/Eu1-O4 (×4)	2.439(7)		2 420(7)	
Ca1/Eu1-O4 (×2)	2.440(7)		2.439(7)	
Ca2/Eu2-O1 (×3)	2.313(7)		2 25 4 (5)	
Ca2/Eu2-O4 (×3)	2.394(7)		2.354(7)	
K1-O1 (×2)	2.790(7)			
K1-O3 (×2)	2.897(1)	<k1-0></k1-0>	2.928(5)	
K1-O2 (×2)	3.098(8)			
K2-O5 (×2)	2.763(1)			
K2-O1 (×2)	2.840(9) <k2-o></k2-o>		2.827(6)	
K2-O3 (×2)	2.879(9)			
K3-O5 (×6)	2.726(9)	<k3-o></k3-o>	2.726(9)	
B1-O3	1.308(8)			
B1-O4	1.369(7)	<b1-0></b1-0>	1.354(5)	
B1-O2	1.385(1)			
B2-O2	1.276(8)			
B2-O1	1.303(2)	<b2-o></b2-o>	1.352(4)	
B2-O5	1.478(3)			
B3-O3 (×2)	1.461(6)		1 471 (0)	
B3-O5 (×2)	1.481(9)	— <b3-0></b3-0>	1.4/1(8)	

Table S1. Selected bond distances for $K_7CaEu_2(B_5O_{10})_3$ from Rietveld refinements

$K_7Ca(Y_{1-x}Bi_x)_2(B_5O_{10})_3$	a (Å)	c (Å)	V (Å ³)
x = 0.01	13.2565(3)	14.9923(4)	2281.7(1)
0.02	13.2568(4)	14.9929(5)	2290.9(2)
0.03	13.2549(3)	14.9989(5)	2282.1(1)
0.04	13.2596(3)	14.9950(4)	2283.1(1)
0.05	13.2608(4)	14.9925(4)	2283.2(1)
0.06	13.2595(3)	14.9922(3)	2284.3(1)
$K_7Ca(Y_{1-y}Eu_y)_2(B_5O_{10})_3$	a (Å)	c (Å)	V (Å ³)
y = 0.10	13.2538(3)	14.9996(4)	2281.9(1)
0.3	13.2766(6)	15.0061(8)	2290.7(2)
0.5	13.3048(7)	15.0232(2)	2303.1(3)
0.7	13.3248(8)	15.0535(1)	2314.7(7)
0.8	13.3338(7)	15.0521(8)	2315.9(2)
1	13.3382(6)	15.1081(9)	2327.8(3)
$K_7Ca(Y_{0.99-z}Bi_{0.01}Eu_z)_2(B_5O_{10})_3$	a (Å)	c (Å)	V (Å ³)
z = 0	13.2573(4)	14.9938(5)	2282.2(2)
0.05	13.2591(3)	14.9997(5)	2283.7(1)
0.15	13.2697(4)	15.0014(6)	2287.6(2)
0.2	13.2746(5)	15.0181(6)	2291.9(2)
0.3	13.2908(5)	15.0123(6)	2296.6(2)
0.5	13.3103(1)	15.0238(3)	2305.1(4)

Table S2. Refined cell lattice parameters from Le Bail fitting on PXRD data

0.7	13.3251(5)	15.0767(7)	2318.4(9)
0.9	13.3381(2)	15.0949(4)	2325.7(5)

Table S3. Quantum yields for $K_7Ca(Y_{1-x}Bi_x)_2(B_5O_{10})_3$ under the excitation of 281 nm

<i>x</i>	Quantum yield (%)
0.01	95.0
0.02	86.6
0.03	59.1
0.04	50.0
0.05	46.0
0.06	13.2

Table S4. CIE chromaticity coordinates for $K_7Ca(Y_{1-y}Eu_y)_2(B_5O_{10})_3$ under 229 or 392 nm

excitation

у	$\lambda_{\rm ex} = 229 \ {\rm nm}$	$\lambda_{\rm ex} = 392 \ \rm nm$
0.1	(0.640, 0.360)	(0.637, 0.363)
0.3	(0.641, 0.359)	(0.640, 0.360)
0.5	(0.641, 0.359)	(0.640, 0.359)
0.7	(0.641, 0.359)	(0.641, 0.359)
0.8	(0.637, 0.362)	(0.641, 0.359)
1	(0.642, 0.358)	(0.642, 0.358)

У	Quantum yield (%)
0.10	68.90
0.30	95.00
0.50	87.59
0.70	82.35
0.80	80.73
1	76.43

Table S5. Quantum yields for $K_7Ca(Y_{1-y}Eu_y)_2(B_5O_{10})_3$ under the excitation of 392 nm

Table	S6.	CIE	chromaticity	coordinates	for	$K_7Ca(Y_{0.99-z}Bi_{0.01}Eu_z)_2(B_5O_{10})_3$	under	281	nm
excitat	ion								

Z	CIE chromaticity coordinate
0	(0.168, 0.008)
0.05	(0.438, 0.204)
0.15	(0.542, 0.287)
0.2	(0.583, 0.318)
0.3	(0.605, 0.335)
0.5	(0.619, 0.348)
0.7	(0.623, 0.347)
0.9	(0.623, 0.349)

Table S7. Quantum yields for $K_7Ca(Y_{0.99-z}Bi_{0.01}Eu_z)_2(B_5O_{10})_3$ under the excitation of 281 nm

z Quantum yield (%)

0.05	95.14
0.15	99.79
0.20	98.02
0.30	98.24
0.50	98.71
0.70	91.71
0.90	80.80

Fig. S1. SEM images for representative samples (a) $K_7Ca(Y_{0.99}Bi_{0.01})_2(B_5O_{10})_3$, (b) $K_7CaEu_2(B_5O_{10})_3$, and (c) $K_7Ca(Y_{0.94}Bi_{0.01}Eu_{0.05})_2(B_5O_{10})_3$.

Fig. S2. Final convergences of Le Bail fitting for $K_7Ca(Y_{1-x}Bi_x)_2(B_5O_{10})_3$ (0.01 $\leq x \leq$ 0.06), $K_7Ca(Y_{1-y}Eu_y)_2(B_5O_{10})_3$ (0.10 $\leq y \leq$ 1) and $K_7Ca(Y_{0.99-z}Bi_{0.01}Eu_z)_2(B_5O_{10})_3$ (0.05 $\leq z \leq$ 0.90). Blue circles, red and gray lines represent the observed, simulated data and the difference between them,

respectively.

Fig. S3. Normalized emission spectra for $K_7Ca(Y_{0.99}Bi_{0.01})_2(B_5O_{10})_3$ under different excitation wavelengths.

Fig. S4. Estimated R/O ratios for $K_7Ca(Y_{1-y}Eu_y)_2(B_5O_{10})_3$ (0.10 $\leq y \leq 1$) under CT or the strongest *f-f* excitations.

Fig. S5. Photographs for $K_7Ca(Y_{1-y}Eu_y)_2(B_5O_{10})_3$ (0.10 $\le y \le 1$) under a 254 nm UV lamp.

Fig. S6. Corresponding intensity for Bi^{3+} (blue) and Eu^{3+} (red) emissions for K₇Ca(Y_{0.99}. _zBi_{0.01}Eu_z)₂(B₅O₁₀)₃ (0 ≤ z ≤ 0.9) under the excitation of 281 nm.

Fig. S7. Normalized Bi³⁺ emission intensity and the so-calculated energy transfer efficiency for

 $K_7Ca(Y_{0.99-z}Bi_{0.01}Eu_z)_2(B_5O_{10})_3 \ (0 \le z \le 0.9)$ under 281 nm excitation.