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1. Computational Methods 

1.1 Nonadiabatic Dynamics Methods 

Nonadiabatic dynamics simulations are carried out using the fewest-switches 

surface-hopping method based on time-domain density functional theory as conducted 

by Prezhdo and co-workers.[1-4] The time-dependent density functional theory in the 

Kohn-Sham framework maps an interacting many-body system onto a system of 

noninteracting particles where electron density of the latter equals to the former; as a 

result, the time-dependent charge density ρ(𝑟, 𝑡) of the interacting system is obtained 

from a set of time-dependent Kohn−Sham orbitals 𝜓𝑝(𝑟, 𝑡) [5-9] 

ρ(𝑟, 𝑡) = ∑|𝜓𝑝(𝑟, 𝑡)|
2

𝑁𝑒

𝑝=1

 

The electron density evolution finally leads to a set of single electron equations 

for the evolution of Kohn−Sham orbitals 𝜓𝑝(𝑟, 𝑡) [8,10-14] 

𝑖ℏ
𝜕𝜓𝑝(𝑟, 𝑡)

𝜕𝑡
= �̂�(𝑟; 𝑅)𝜓𝑝(𝑟, 𝑡)   𝑝 = 1,2, … , 𝑁𝑒 

If expanding a time-dependent Kohn-Sham orbital in terms of adiabatic 

Kohn−Sham orbitals 𝜙𝑝(𝑟, 𝑡)  calculated from time-independent density functional 

theory calculations along adiabatic molecular dynamics trajectories 

𝜓𝑝(𝑟, 𝑡) = ∑ 𝑐𝑘(𝑡)𝜙𝑘(𝑟; 𝑅)

𝑘

 

one can obtain a set of equations of motion for the expanding coefficients 𝑐𝑗(𝑡) 

𝑖ℏ
𝜕𝑐𝑗(𝑡)

𝜕𝑡
= ∑ 𝑐𝑘(𝑡)(휀𝑘𝛿𝑗𝑘 − 𝑖ℏ𝑑𝑗𝑘)

𝑘

 

where 휀𝑘 is the energy of the 𝑘th adiabatic state and 𝑑𝑗𝑘 is the nonadiabatic coupling 
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between adiabatic states 𝑗  and 𝑘 . The former is directly obtained from density 

functional theory calculations and the latter is calculated numerically, through a finite 

difference method, as overlaps of adiabatic states at times 𝑡 and +𝛥𝑡 : 

𝑑𝑗𝑘 = ⟨𝜙𝑗(𝑟; 𝑅)|
𝜕𝜙𝑘(𝑟; 𝑅)

𝜕𝑡
⟩ ≈

⟨𝜙𝑗(𝑡)|𝜙𝑘(𝑡 + ∆𝑡)⟩ − ⟨𝜙𝑗(𝑡 + ∆𝑡)|𝜙𝑘(𝑡)⟩

2∆𝑡
 

in which 𝜙𝑗(𝑡) and 𝜙𝑘(𝑡 + ∆𝑡) are electronic wave functions of adiabatic states 𝑗 

and 𝑘 at times 𝑡 and 𝑡 + 𝛥𝑡, respectively. It is noteworthy that previous algorithms 

are primarily implemented with plane wave basis sets; [4, 15, 16] instead, in this work 

we have implemented this nonadiabatic dynamics method with Gaussian basis sets. 

1.2 Electron Transfer Analysis 

To estimate electron transfer from one fragment to another one in nonadiabatic 

dynamics simulations, we have developed an efficient density-matrix based method. 

First, we can define a density matrix 𝐷 in terms of atomic orbitals 𝜒𝜇  

𝐷𝜇𝜈𝑖(𝑡) = 𝑝𝑖(𝑡)𝜒𝜇𝑖𝜒𝜈𝑖
∗  

in which 𝑝𝑖(𝑡) is the time-dependent occupation number of the 𝑖th adiabatic state 

calculated on the basis of the above expanding coefficients 𝑐𝑖(𝑡) and 𝜒𝜇𝑖 is the 𝜇th 

atomic orbital coefficient of the 𝑖th adiabatic state. Similarly to the Mulliken charge 

analysis, [17] we have then defined a population matrix 𝑃 using the density matrix 𝐷 

and atomic overlap matrix 𝑆 

𝑃𝜇𝜈𝑖 = 𝐷𝜇𝜈𝑖𝑆𝜇𝜈 

Finally, we can obtain the 𝑎th atomic charge through summing all basis functions 𝜇 

belonging to that atom and all involved adiabatic states 𝑖 
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𝑃𝑎 = ∑ ( ∑ 𝑃𝜇𝜈𝑖

𝜇∈𝑎,𝜈∈𝑎

+
1

2
( ∑ 𝑃𝜇𝜈𝑖

𝜇∈𝑎,𝜈∉𝑎

+ ∑ 𝑃𝜇𝜈𝑖

𝜇∉𝑎,𝜈∈𝑎

))

𝑖

 

It should be noted that if only an atomic orbital belongs to the 𝑎th atom, just half of 

𝑃𝜇𝜈𝑖 is used, as done by the Mulliken charge analysis method. [17] Accordingly, the 

total electron on a fragment A is the sum of all atomic charges belonging to that 

fragment 

𝑃𝐴 = ∑ 𝑝𝑖(𝑡)𝑃𝐴𝑖

𝑖

 

in which  

𝑃𝐴𝑖 = ∑ ( ∑ 𝜒𝜇𝑖𝜒𝜈𝑖
∗ 𝑆𝜇𝜈

𝜇∈𝑎,𝜈∈𝑎

+
1

2
( ∑ 𝜒𝜇𝑖𝜒𝜈𝑖

∗ 𝑆𝜇𝜈

𝜇∈𝑎,𝜈∉𝑎

+ ∑ 𝜒𝜇𝑖𝜒𝜈𝑖
∗ 𝑆𝜇𝜈

𝜇∉𝑎,𝜈∈𝑎

))

𝑎∈𝐴

 

In such a case, the differentiation of 𝑃𝐴 is then derived as 

d𝑃𝐴 = 𝑑 (∑ 𝑐𝑖
∗𝑐𝑖𝑃𝐴𝑖

𝑖

) = ∑(𝑑(𝑐𝑖
∗𝑐𝑖)𝑃𝐴 + 𝑐𝑖

∗𝑐𝑖𝑑𝑃𝐴𝑖)

𝑖

 

in which the first term has variational occupations for adiabatic states 𝑖 and the second 

term has constant adiabatic state occupations but changeable electron population. These 

two contributions actually correspond to nonadiabatic and adiabatic electron transfers, 

respectively. The former is mainly caused by state hoppings between different adiabatic 

states and the latter is primarily originated from changes of adiabatic states induced by 

atomic motions. Finally, it should be noted that Gaussian basis sets are used in our 

simulations, so molecular coefficients 𝜒𝜇𝑖  are real numbers. Adiabatic states’ 

expanding coefficients 𝑐𝑖(𝑡) are complex numbers, but they are not directly used; 

instead, their 𝑐𝑖(𝑡)𝑐𝑖
∗(𝑡)  products are used for calculating the time-dependent 
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occupation number 𝑝𝑖(𝑡) of the 𝑖th adiabatic state, which is a real number. 

2. Additional Figures 

 

Figure S1: HSE06+D3 calculated molecular fractions of constructed TMD@Fullerene 

heterostructures. (a) WSe2@C60; (b) WSe2@C70; (c) MoTe2@C60; (d) MoTe2@C70. 

 

Figure S2: PBE+D3 calculated projected density of states (PDOS) of constructed TMD@Fullerene 

heterostructures. (a) WSe2@C60; (b) WSe2@C70; (c) MoTe2@C60; (d) MoTe2@C70. 
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