Journal Name

Supplementary materials

Table S1 Atomic coordinates of $Tb_4Co_2C_3$ refined from NPD (λ = 1.28 Å) at100(1) K and PXRD at 293(2) K (λ = 1.54185 Å)

Atom	Site	x	у	Z		
100 K, <i>B</i> _{ov} = 0.19(5) Å ²						
Tb1	2 <i>n</i>	0.2790(6)	1/2	0.9019(12)		
Tb2	2 <i>n</i>	0.7106(6)	1/2	0.6134(12)		
Tb3	2 <i>n</i>	0.0001(8)	1/2	0.7495(13)		
Tb4	2 <i>m</i>	0.4916(5)	0	0.2569(12)		
Co1	2 <i>m</i>	0.8437(13)	0	0.423(4)		
Co2	2 <i>m</i>	0.8564(14)	0	0.929(4)		
C1	2 <i>n</i>	0.1480(5)	1/2	0.5781(14)		
C2	2 <i>m</i>	0.3010(4)	0	0.1459(13)		
C3	1 <i>h</i>	1/2	1/2	1/2		
C4	1 <i>a</i>	0	0	0		
293 K, B _{ov} = 0.8(2) Å ²						
Tb1	2 <i>n</i>	0.278(1)	1/2	0.901(2)		
Tb2	2 <i>n</i>	0.710(1)	1/2	0.613(2)		
Tb3	2 <i>n</i>	0.000(1)	1/2	0.750(2)		
Tb4	2 <i>m</i>	0.493(5)	0	0.258(2)		
Col	2 <i>m</i>	0.843(2)	0	0.424(4)		
Co2	2 <i>m</i>	0.856(2)	0	0.927(4)		
C1	2 <i>n</i>	0.148(1)	1/2	0.577(2)		
C2	2 <i>m</i>	0.301(1)	0	0.147(2)		
C3	1 <i>h</i>	1/2	1/2	1/2		
C4	1 <i>a</i>	0	0	0		

Tb3 (cont.)	– Tb2	3.41(1)		
	– Tb4	3.44(1)		
	– Tb3 (×2)	3.6425(1)		
	– Tb1 (×2)	3.66(1)		
	– Tb2	3.70(1)		
	– Tb1 (×2)	3.876(9)		
Tb4	– C2	2.51(1)	18	
	– C4 (×2)	2.546(6)		
	– C2	2.57(1)		
	– Co2 (×2)	3.10(2)		
	– Co2 (×2)	3.11(2)		
	– Co1 (×2)	3.19(2)		
	– Co1 (×2)	3.19(2)		
	– Tb3	3.44(1)		
	– Tb4	3.54(1)		
	– Tb4	3.56(1)		
	– Tb2	3.57(1)		
	– Tb4 (×2)	3.6425(1)		
Co1	– C2 (×2)	1.824(1)	10	
	– Tb3 (×2)	3.03(2)		
	– Tb2 (×2)	3.05(2)		
	– Tb4 (×2)	3.19(2)		
	– Tb4 (×2)	3.19(2)		
Co2	– C4	1.77(2)	10	
	– C1	1.94(2)		
	– Tb3 (×2)	2.98(2)		
	– Tb2 (×2)	3.09(2)		
	– Tb4 (×2)	3.10(2)		
	– Tb4 (×2)	3.11(2)		
C1	– Co2	1.94(2)	6	
	– Tb1	2.355(9)		
	– Tb3 (×2)	2.477(8)		
	– Tb2 (×2)	2.530(8)		
C2	– Co1 (×2)	1.824(1)	6	
	– Tb3	2.45(1)		
	– Tb4	2.51(1)		
	– Tb2	2.54(1)		
	– Tb4	2.57(1)		
C3	– Tb1 (×4)	2.492(6)	6	
	– Tb2 (×2)	2.600(8)		
C4	– Co2 (×2)	1.77(2)	6	
	– Tb4 (×4)	2.546(6)		

ARTICLE

Table S2 Interatomic distances (in Å) and coordination numbers (CN) for different atom sites in $Tb_4Co_2C_3$ (at 293 K)

Atom	Neighbor	Distance	CN
Tb1	- C1	2.355(9)	15
	– C3 (×2)	2.492(6)	
	– Tb1	3.40(1)	
	– Tb2 (×2)	3.488(9)	
	— Tb1 (×2)	3.6425(1)	
	– Tb3 (×2)	3.66(1)	
	– Tb2 (×2)	3.70(1)	
	— Tb1	3.71(1)	
	– Tb3 (×2)	3.876(9)	
Tb2	– C1 (×2)	2.530(8)	17
	– C2	2.54(1)	
	– C3	2.600(8)	
	– Co1 (×2)	3.05(2)	
	– Co2 (×2)	3.09(2)	
	– Tb3	3.41(1)	
	– Tb1 (×2)	3.488(9)	
	– Tb4	3.57(1)	
	– Tb2 (×2)	3.6425(1)	
	– Tb3	3.70(1)	
	– Tb1 (×2)	3.70(1)	
Tb3	– C2	2.45(1)	16
	– C1 (×2)	2.477(8)	
	– Co2 (×2)	2.98(2)	
	– Co1 (×2)	3.03(2)	

Fig. S1 Full neutron powder diffraction pattern of $Tb_4Co_2C_3$ collected at 100 K and λ = 1.28 Å. Black ticks indicate the positions of Bragg reflections for the $Tb_4Co_2C_3$ phase, magenta ticks – θ -Tb₂C [structure type (ST) NaCl] phase.

Fig. S2 X-ray powder diffraction pattern for $Y_4Co_2C_3$ measured at 293(2) K and $\lambda = 1.54185$ Å. Black ticks indicate the positions of Bragg reflections for the YCoC phase, magenta ticks – $Y_4Co_2C_3$, green ticks – β - Y_2C (ST NaCl) phase.

Fig. S3 X-ray powder diffraction pattern for Gd₄Co₂C₃ measured at 293(2) K and $\lambda = 1.54185$ Å. Black ticks indicate the positions of Bragg reflections for the Gd₄Co₂C₃ phase, magenta ticks – θ -Gd₂C (ST NaCl) impurity phase. The green asterisk points out an impurity peak corresponding to the (311) reflection of GdCo₂ (ST MgCu₂).

Fig. S4 X-ray powder diffraction pattern for $Tb_4Co_2C_3$ measured at 293(2) K and $\lambda = 1.54185$ Å. Black ticks indicate the positions of Bragg reflections for the $Tb_4Co_2C_3$ phase, magenta ticks – θ -Tb₂C (ST NaCl) impurity phase. The green asterisk points out an impurity peak corresponding to the (311) reflection of TbCo₂ (ST MgCu₂).

Fig. S5 Isothermal magnetization curves of Gd₄Co₂C₃.

Fig. S6 Arrott-Belov plots for $\mathsf{Tb}_4\mathsf{Co}_2\mathsf{C}_3.$ The dashed lines are linear extrapolations.

Journal Name