Supplementary information

Adsorption and Diffusion of Alkali Metals (Li, Na, and K) on Heteroatom-Doped Monolayer Titanium Disulfide

Ruixue Tian, Aimin Wu, Guifeng Zhang, Jia Liu, Ramon Alberto Paredes Camacho, Wenhua Yu, Shuyu Zhou, Man Yao, Hao Huang*

Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China

Corresponding author: Hao Huang

E-mail: huanghao@dlut.edu.cn

Fig. S1 The total density of state (TDOS) of monolayer TiS₂ doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f)

P. The Fermi energies in each case are set to 0 eV.

Fig. S2 The total density of state (TDOS) of monolayer TiS₂ doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f) P. The Fermi energies in each case are set to 0 eV.

Fig. S3 The projected density of state (PDOS) of Na adsorbed on monolayer TiS₂ doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f) P. The Fermi energies in each case are set to 0 eV.

Fig. S4 The PDOS of K adsorbed on monolayer TiS_2 doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f) P. The Fermi energies in each case are set to 0 eV.

Fig. S5 The TDOS of (a) Li, (b) Na, and (c) K adsorbed on pristine monolayer TiS₂. The Fermi energies in each case are set to 0 eV.

Fig. S6 The TDOS of Li adsorbed on monolayer TiS₂ doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f) P. The Fermi energies in each case are set to 0 eV.

Fig. S7 The TDOS of Na adsorbed on monolayer TiS₂ doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f) P. The Fermi energies in each case are set to 0 eV.

Fig. S8 The TDOS of K adsorbed on monolayer TiS₂ doped with heteroatoms (a) B, (b) C, (c) N, (d) O, (e) F, and (f) P. The Fermi energies in each case are set to 0 eV.

Fig. S9 The binding energy as a function of Li adsorption concentration.

Madala	Dopants	Sites							
Metals		H_1	H ₂	H ₃	H4	T_1	T ₂	T3	T4
Li	None	-3.58	-3.58	-3.58	-3.58	-3.57	-3.57	-3.57	-3.57
	В	-3.77	-3.61	-3.64	-3.64	-3.59	-3.61	-3.61	-3.61
	С	-4.48	-4.11	-4.15	-4.15	-4.31	-4.13	-4.13	-4.13
	Ν	-4.15	-3.91	-3.94	-3.94	-4.02	-3.92	-3.93	-3.92
	0	-3.64	-3.50	-3.53	-3.53	-3.58	-3.49	-3.51	-3.49
	F	-3.49	-3.41	-3.44	-3.44	-3.44	-3.40	-3.41	-3.40
	Р	-3.81	-3.75	-3.75	-3.75	-3.78	-3.75	-3.74	-3.75
Na	None	-2.96	-2.96	-2.96	-2.96	-2.95	-2.95	-2.95	-2.95
	В	-3.06	-2.99	-3.02	-3.02	-3.01	-2.99	-3.00	-2.99
	С	-3.83	-3.52	-3.55	-3.55	-3.78	-3.53	-3.53	-3.53
	Ν	-3.54	-3.30	-3.33	-3.33	-3.50	-3.31	-3.32	-3.31
	Ο	-3.05	-2.89	-2.91	-2.91	-3.03	-2.88	-2.90	-2.88
	F	-2.94	-2.79	-2.82	-2.82	-2.92	-2.78	-2.80	-2.78
	Р	-3.19	-3.15	-3.15	-3.15	-3.17	-3.14	-3.14	-3.14
K	None	-3.22	-3.22	-3.22	-3.22	-3.21	-3.21	-3.21	-3.21
	В	-3.32	-3.24	-3.28	-3.27	-3.28	-3.23	-3.25	-3.24
	С	-4.10	-3.78	-3.80	-3.80	-4.08	-3.78	-3.78	-3.78
	Ν	-3.83	-3.56	-3.59	-3.58	-3.82	-3.56	-3.56	-3.57

Table S1 Calculated adsorption energies of Li, Na, and K adsorbed on different sites of the pristine and heteroatom-doped monolayer TiS₂.

 O
 -3.38
 -3.14
 -3.16
 -3.37
 -3.13
 -3.14
 -3.13

 F
 -3.26
 -3.04
 -3.07
 -3.08
 -3.25
 -3.03
 -3.05
 -3.03

 P
 -3.43
 -3.41
 -3.40
 -3.40
 -3.41
 -3.40
 -3.40
 -3.40

Table S2 Calculated adsorption energies of Li, Na, and K adsorbed on different sites of the pristine and heteroatom-doped monolayer TiS_2 . Note that the adsorption energy values are obtained by equation (2) expressing E_M with the energy of per atom in the bulk of crystal M (M = Li, Na, and K).

M-4-1-	Demente		Sites								
IVICIAIS	Dopants	H_1	H_2	H ₃	H4	T_1	T ₂	T ₃	T4		
Li	None	-1.88	-1.88	-1.88	-1.88	-1.87	-1.87	-1.87	-1.87		
	В	-2.07	-1.91	-1.94	-1.94	-1.89	-1.91	-1.91	-1.91		
	С	-2.78	-2.41	-2.45	-2.45	-2.61	-2.43	-2.43	-2.43		
	Ν	-2.45	-2.21	-2.24	-2.24	-2.32	-2.22	-2.23	-2.22		
	0	-1.94	-1.80	-1.83	-1.83	-1.88	-1.79	-1.81	-1.79		
	F	-1.79	-1.71	-1.74	-1.74	-1.74	-1.70	-1.71	-1.70		
	Р	-2.11	-2.05	-2.05	-2.05	-2.08	-2.05	-2.04	-2.05		
Na	None	-1.74	-1.74	-1.74	-1.74	-1.73	-1.73	-1.73	-1.73		
	В	-1.84	-1.77	-1.80	-1.80	-1.79	-1.77	-1.78	-1.77		
	С	-2.61	-2.30	-2.33	-2.33	-2.56	-2.31	-2.31	-2.31		
	Ν	-2.32	-2.08	-2.11	-2.11	-2.28	-2.09	-2.10	-2.09		
	0	-1.83	-1.67	-1.69	-1.69	-1.81	-1.66	-1.68	-1.66		
	F	-1.72	-1.57	-1.60	-1.60	-1.70	-1.56	-1.58	-1.56		
	Р	-1.97	-1.93	-1.93	-1.93	-1.95	-1.92	-1.92	-1.92		
K	None	-2.29	-2.29	-2.29	-2.29	-2.28	-2.28	-2.28	-2.28		
	В	-2.39	-2.31	-2.35	-2.34	-2.35	-2.30	-2.32	-2.31		

С	-3.17	-2.85	-2.87	-2.87	-3.15	-2.85	-2.85	-2.85
Ν	-2.90	-2.63	-2.66	-2.65	-2.89	-2.63	-2.63	-2.64
0	-2.45	-2.21	-2.23	-2.23	-2.44	-2.20	-2.21	-2.20
F	-2.33	-2.11	-2.14	-2.15	-2.32	-2.10	-2.12	-2.10
Р	-2.50	-2.48	-2.47	-2.47	-2.48	-2.47	-2.46	-2.47

Table S3 The calculated formation energies (E_f) for the heteroatom-doped monolayer TiS₂ with and without the dipole correction, and their differences (ΔE) with and without the dipole correction.

	Dipole	correction	No dipole	correction	Differences		
Dopants	$E_{\rm f}$ (S-rich)	$E_{\rm f}$ (Ti-rich)	$E_{\rm f}$ (S-rich)	$E_{\rm f}$ (Ti-rich)	ΔE (S-rich)	ΔE (Ti-rich)	
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	
В	4.83	2.89	4.82	2.87	0.01	0.02	
С	4.59	2.65	4.58	2.63	0.01	0.02	
Ν	1.04	-0.90	1.03	-0.92	0.00	0.02	
0	-2.34	-4.29	-2.36	-4.30	0.02	0.01	
F	-2.72	-4.66	-2.73	-4.67	0.01	0.01	
Р	2.07	0.12	2.05	0.11	0.02	0.01	

Table S4 The adsorption energies (E_d) of the most favorable configurations for Li, Na, and K adsorbed on the pristine and heteroatom-doped monolayer TiS₂ with and without the dipole correction, and their differences (ΔE) with and without the dipole correction.

Dopants -	<i>E</i> _d (Dip	$E_{\rm d}$ (Dipole correction) (eV) $E_{\rm d}$ (No dipo			pole correction) (eV) ΔE (eV)				
	Li	Na	K	Li	Na	K	Li	Na	K
None	-3.56	-2.90	-3.12	-3.58	-2.96	-3.22	0.02	0.06	0.10
В	-3.76	-3.03	-3.24	-3.77	-3.06	-3.32	0.01	0.03	0.08
С	-4.47	-3.80	-4.03	-4.48	-3.83	-4.10	0.01	0.03	0.07
Ν	-4.14	-3.50	-3.77	-4.15	-3.54	-3.83	0.01	0.04	0.06
Ο	-3.62	-3.02	-3.32	-3.64	-3.05	-3.38	0.02	0.03	0.06
F	-3.48	-2.89	-3.20	-3.49	-2.94	-3.26	0.01	0.05	0.06
Р	-3.80	-3.14	-3.34	-3.81	-3.19	-3.43	0.01	0.05	0.09

	Diffusi	D.C		
2D materials -	Li	Na	K	- Reference
Blue phosphorene	0.16	0.11	0.09	1,2
Boron-Graphdiyne	0.36	0.28	0.12	3
Boron phosphide	0.36	0.22	0.16	4
Borophene	0.011	0.003	0.008	5
GeS	0.24	0.09	0.05	6
MoN ₂	0.78	0.56	0.49	7
MoS_2	0.25	0.28		8,9
ReN ₂		0.03	0.13	10
ReS_2	0.33	0.16		11
Si ₂ BN	0.48	0.32		12
Si ₃ C	0.47	0.34	0.18	13
Silicene	0.24	0.14		14,15
Ti ₃ C ₂	0.07	0.10	0.10	16
Ti ₂ CP ₂	0.32	0.29	0.19	17
Ti ₂ CSi ₂	0.29	0.22	0.08	17
VS_2	0.22	0.09	0.06	18,19

Table S5 Comparison of Li/Na/K diffusion energy barriers of various 2D anodematerials.

References

- 1 Q. F. Li, C. G.; Duan, X. G. Wan and J. L. Kuo, *J. Phys. Chem. C*, 2015, **119**, 8662–8670.
- 2 S. Mukherjee, L. Kavalsky and C. V. Singh, ACS Appl. Mater. Interfaces, 2018, 10, 8630–8639.
- 3 I. Muhammad, S. Wang, J. Liu, H. Xie and Q. Sun, *J. Renew. Sustain. Ener.*, 2019, **11**, 014106.
- 4 H. R. Jiang, W. Shyy, M. Liu, L. Wei, M. C. Wu and T. S. Zhao, *J. Mater. Chem. A*, 2017, **5**, 672–679.
- 5 D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu and R. Lu, *J. Mater. Chem. A*, 2017, 5, 2328–2338.
- 6 F. Li, Y. Qu and M. Zhao, J. Mater. Chem. A, 2016, 4, 8905-8912.
- 7 X. Zhang, Z. Yu, S. S. Wang, S. Guan, H. Y. Yang, Y. Yao and S. A. Yang, J.
 Mater. Chem. A, 2016, 4, 15224–15231.
- 8 Y. Jing, Z. Zhou, C. R. Cabrera and Z. Chen, J. Phys. Chem. C, 2013, 117, 25409–25413.
- 9 M. Mortazavi, C. Wang, J. Deng, V. B. Shenoy and N. V. Medhekar, *J. Power Sources*, 2014, **268**, 279–286.
- 10 S. H. Zhang and B. G. Liu, Nanotechnology, 2018, 29, 325401.
- 11 S. Mukherjee, A. Banwait, S. Grixti, N. Koratkar and C. V. Singh, ACS Appl.
 Mater. Interfaces, 2018, 10, 5373–5384.
- 12 V. Shukla, R. B. Araujo, N. K. Jena and R. Ahuja, Nano Energy, 2017, 41,

251-260.

- 13 Y. Wang and Y. Li, J. Mater. Chem. A, 2020, 8, 4274–4282.
- 14 G. A. Tritsaris, E. Kaxiras, S. Meng and E. Wang, *Nano Lett.*, 2013, **13**, 2258–2263.
- 15 S. Xu, X. Fan, J. Liu, Q. Jiang, W. Zheng and D. J. Singh, *Electrochim. Acta*, 2019, **297**, 497–503.
- 16 D. Er, J. Li, M. Naguib, Y. Gogotsi and V. B. Shenoy, ACS Appl. Mater. Interfaces, 2014, 6, 11173–11179.
- 17 J. Zhu and U. Schwingenschlögl, 2D Mater., 2017, 4, 025073.
- 18 D. B. Putungan, S. H. Lin and J. L. Kuo, ACS Appl. Mater. Interfaces, 2016,
 8, 18754–18762.
- 19 D. Wang, Y. Liu, X. Meng, Y. Wei, Y. Zhao, Q. Pang and G. Chen, J. Mater. Chem. A, 2017, 5, 21370–21377.