Supporting Information

Synthesis and characterization of the promising insensitive energetic salts based on 3-amino-5-hydrazinopyrazole

Zhenli Yang, ^a Yuemei Wu, ^b Piao He, ^c Wenli Cao, ^a Saira Manzoor ^a and Jianguo Zhang*^a

^a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.

^b China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, P. R. China.
 ^c College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.

Table of contents

Section 1. Materials and instrumentations	S2
Section 2. X-ray crystallography	
Section 3. Non-isothermal kinetics and hygroscopic property analysis	
Section 4. Measurement of energy of constant volume combustion	S10
Section 5. Computational structural considerations	<i>S</i> 11

Section 1. Materials and instrumentations

All the chemical reagents and solvents were purchased from the reagents company of Aladdin and were used as received without further treatment. Elemental analysis was performed with a Flash EA 1112 fully automatic trace element analyzer. Fourier Transform Infrared Spectroscopy (FT-IR) spectra was recorded on an IRPrestige-21 spectrometer using KBr pellets from 400 to 4000 cm⁻¹ with a resolution of 4 cm⁻¹.

3-amino-5-hydrazinopyrazole dihydrochloride (1) IR (KBr, cm⁻¹) : v=3419, 3105, 1633, 1528, 1435, 1269, 1089, 920, 796, 705; **MS** (ESI⁺): m/z = 114.09 [C₃H₈N₅⁺]; **MS** (ESI⁻): m/z =35.00 [Cl⁻]. C₃H₉Cl₂N₅ (186.0): calcd C 19.37, H 4.88, N 37.64; found C 19.33, H 4.91, N 37.68.

3-amino-5-hydrazinopyrazole dinitrate (2) Yield: 0.39 g, 82%; **IR** (KBr, cm⁻¹) : v=3428, 1624, 1498, 1384, 1083, 956, 825, 553; MS (ESI⁺): m/z = 114.09 [C₃H₈N₅⁺]; MS (ESI⁻): m/z =61.99 [NO₃⁻]. C₃H₉Cl₂N₅ (239.1): calcd C 15.07, H 3.79, N 41.00; found C 15.06, H 3.83, N 41.03.

3-amino-5-hydrazinopyrazole dipicrate (3) Yield: 0.835 g, 73%; **IR** (KBr, cm⁻¹) : v=3463, 3326, 3140, 2928, 2691, 1605, 1539, 1332, 1168, 1084, 917; MS (ESI⁺): m/z = 114.09 [C₃H₈N₅⁺]; MS (ESI⁻): m/z =227.99 [C₆H₂N₃O₇⁻]. **C**₁₅H₁₃N₁₁O₁₄ (571.3): calcd C 31.53, H 2.29, N 26.97; found C 31.58, H 2.30, N 26.93.

3-amino-5-hydrazinopyrazole ditrinitroresorcinate (4) Yield: 0.908 g, 75%; **IR** (KBr, cm⁻¹) : v=3581, 3483, 3384, 3185, 1645, 1541, 1377, 1085, 928, 780, 693; **MS** (ESI⁺): m/z = 114.07 [C₃H₈N₅⁺]; MS (ESI⁻): m/z =243.98 [C₆H₂N₃O₈⁻]. C₁₅H₁₃N₁₁O₁₆ (603.3): calcd C 29.86, H 2.17, N 25.54; found C 29.82, H 2.19, N 25.50.

3-amino-5-hydrazinopyrazole di(5-nitramino-tetrazole) (**5**) Yield: 0.582 g, 78%; **IR** (KBr, cm⁻¹) : v=3438, 3151, 2953, 2732, 1672, 1616, 1533, 1433, 1335, 989, 744; **MS** (ESI⁺): m/z = 114.07 [C₃H₈N₅⁺]; **MS** (ESI⁻): m/z =129.01 [CHN₆O₂⁻] **C₅H₁₁N₁₇O₄** (373.3): calcd C 16.09, H 2.97, N 63.79; found C 16.09, H 2.93, N 63.84.

Figure S1. IR (top), ¹³C NMR, and MS (bottom) Spectrum of 2.

Figure S2. IR (top), ¹³C NMR, and MS (bottom) Spectrum of 3.

Figure S3. IR (top), ¹³C NMR, and MS (bottom) Spectrum of 4.

Figure S4. IR (top), ¹³C NMR, and MS (bottom) Spectrum of 5

Section 2. X-ray crystallography

The obtained signal crystal of five 3-amino-5-hydrazinopyrazole derivatives were used in the X-ray diffraction study. Crystallographic data and experimental details for structure analyses are outlined in **Table S1** to **Table S11**.

	1	2		3			4		5
Formula	C ₃ H ₉ Cl ₂ N ₅	C ₃ H ₉ N ₇ O ₆	С	$_{15}H_{15}N_{11}O_{15}$		($C_{15}H_{23}N_{11}$	D ₂₁	$C_5H_{15}N_{17}O_6$
FW(g·mol ⁻¹)	186.05	239.17		589.38			693.44		409.34
Crystal system	Triclinic	Monoclinic		Triclinic			Triclinic	;	Orthorhombic
Space group	P-1	$P2_{1}/c$		P-1			P-1		Pbca
Crystalsize(mm)	$0.13 \times 0.12 \times 0.08$	$0.23 \times 0.21 \times 0.21$	0.1	$3 \times 0.12 \times 0.12$	l	0.1	3×0.12	× 0.1	$0.15 \times 0.12 \times 0$
a(Å)	5.1549(10)	6.6631(13)	,	7.8469(16)			9.4180(19	9)	9.5665(19)
b (Å)	6.9133(14)	9.3281(19)		12.050(2)			10.361(2	.)	6.7226(13)
c (Å)	11.867(2)	14.077(3)		12.748(3)			13.935(3)	50.601(10)
α (°)	74.96(3)	90.00		73.00(3)			100.85(3)	90.00
β (°)	80.75(3)	93.39(3)		83.11(3)			90.30(3))	90.00
γ (°)	88.14(3)	90.00		76.27(3)			92.25(3))	90.00
$V(Å^3)$	403.10(15)	873.4(3)		1118.1(5)			1334.3(5)	3254.2(11)
Ζ	2	4		2			2		8
$\rho (g \cdot cm^{-3})$	1.533	1.819		1.751			1.726		1.671
μ (mm ⁻¹)	0.741	0.171		0.158			0.163		0.146
F(000)	192.0	496.0		604.0			716.0		1696.0
Refl. coll.	3564	1498		15502			12404		11169
Indep. reflns.	1803	1498		5127			6042		3556
Params.	91	146		370			428		261
S	1.105	1.161		1.117			1.105		1.212
$R_I(I \geq 2\sigma(I))^a$	0.0344	0.0544		0.0477			0.0758		0.0924
R_1 (all data)	(all data) 0.0371 0.0573			0.0516		0.0974		0.1103	
$\mathrm{w}R_2(I \geq 2\sigma(I))^a$	0.0841	0.1338		0.1104		0.1717		0.1753	
w R_2 (all data)	R_2 (all data) 0.0874 0.1355			0.1131			0.1903		0.1848
CCDC No.	2005504	2005505		2005506 2005507		2005508			
		Table	S2. Selected b	ond lengths f	or salt 1	l			
			Bond le	ngth (Å)					
	N1-N2	1.399(2)	N2-H2	0.8500	N-C	21 1	.353(3)	N3-H3	0.8500
	N2-C3	1.358(3)	N4-H4A	0.8500	N3-1	N4 1	.432(2)	N4-H4B	0.8500
	N3-C3	1.371(3)	N4-H4C	0.8500	N5-0	C1 1	.332(3)	N5-H5A	0.8500
	C1-C2	1.404(3)	N5-H5B	0.8500	C2-H	2A	0.9500	C2-C3	1.381(3)
		Table S	3. Selected dil	hedral angles	for salt	1			
			Dihedral	angle (°)					
C1-N1-N2-C	3 9.0(2)	N2-N1-C1-N5	172.92(17)	N2-N1-C1	-C2	-7.3(2)	N	1-N2-C3-N3	167.99(16)
N1-N2-C3-C2	2 -7.5(2)	N4-N3-C3-N2	166.24(16)	N4-N3-C3-	-C2	-19.4(3)) N	1-C1-C2-C3	2.7(2)
N5-C1-C2-C3	3 -177.5(2)	C1-C2-C3-N2	3.1(2)	C1-C2-C3-	N3	-171.6(2	2)		
		Table	S4. Selected b	ond lengths f	for salt 2	2			
			Bond le	ngth (Å)					
N1-C1	1.362(4)	N2-H2A	0.8500	N2-N	N3	1.368	(4)	O3-N6	1.276(3)
N2-C1	1.332(4)	N3-C3	1.338(4)	N4-N	15	1.423	(4)	N4-C3	1.380(4)
C1-C2	1.394(4)	O1-N6	1.238(4)	C2-H	ł2	0.950	00	O4-N7	1.269(4)

Table S1. Crystallographic data for compounds 1–5

			Dihedral	angle (°)			
C1-N2-N3-C3	5.1(3)	N3-N2-C1-N1	179.8(3)	N3-N2-C1-C2	-3.5(4)	N2-N3-C3-N4	-179.8(3)
N2-N3-C3-C2	-4.8(4)	N5-N4-C3-N3	-167.5(3)	N5-N4-C3-C2	18.8(5)	N1-C1-C2-C3	176.9(3)
N2-C1-C2-C3	0.5(4)	C1-C2-C3-N3	2.7(4)	C1-C2-C3-N4	177.0(3)		
		Tab	le S6. Selected b	ond lengths for sal	t 3		
			Bond le	ngth (Å)			
O1-N6	1.233(2)	C10-C11	1.441(2)	C10-C15	1.380(2)	O3-N7	1.225(2)
C11-C12	1.443(2)	O4-N7	1.234(2)	C12-C13	1.369(2)	N6-C4	1.452(2)
N2-C1	1.376(2)	N7-C6	1.442(2)	N3-N4	1.376(2)	N8-C8	1.460(2)
N3-C1	1.337(2)	C4-C5	1.376(2)	N4-C3	1.343(2)	N5-C3	1.342(2)
O8-N9	1.214(2)	N1-H1A	0.8500	O9-N9	1.213(2)	O10-C11	1.260(2)
O11-N10	1.228(2)	O12-N10	1.228(2)	N3-H3	0.8500	O13-N11	1.229(2)
С5-Н5	0.9500	N9-C10	1.457(2)	N10-C12	1.456(2)		
		Table	e S7. Selected dil	nedral angles for sa	alt 3		
			Dihedral	angle (°)			
O1-N6-C4-C5	-153.24(16)	O1-N6-C4-C9	29.4(2)	O3-N7-C6-C7	174.18(17)	O4-N7-C6-C5	172.63(16
O4-N7-C6-C7	-7.3(2)	O5-N8-C8-C9	-148.81(16)	O6-N8-C8-C7	-148.07(16)	N6-C4-C5-C6	-177.12(15
C9-C4-C5-C6	0.1(3)	N6-C4-C9-O7	-10.0(3)	C5-C4-C9-C8	-6.4(2)	C4-C5-C6-C7	4.4(3)
N7-C6-C7-C8	178.15(16)	C5-C6-C7-C8	-1.8(3)	C6-C7-C8-N8	175.74(15)	C6-C7-C8-C9	-5.6(3)
		Tab	le S8. Selected b	ond lengths for sal	t 4		
			Bond le	ngth (Å)			
O1-N6	1.228(2)	N10-C12	1.433(2)	O2-N6	1.223(2)	N11-C14	1.468(3)
O4-N7	1.253(2)	C10-C15	1.445(3)	O5-N7	1.231(2)	C10-C11	1.377(3)
O6-N8	1.226(2)	C11-C12	1.381(3)	O7-N8	1.216(2)	C12-C13	1.419(3)
O8-C9	1.259(2)	C13-C14	1.371(3)	O3-H3	0.8400	C14-C15	1.438(3)
N6-C4	1.464(3)	N1-N2	1.441(2)	N7-C6	1.426(2)	N2-C1	1.380(3)
N8-C8	1.446(3)	N3-N4	1.373(2)	C4-C9	1.436(3)	N3-C1	1.333(2)
N4-C3	1.345(3)	N5-C3	1.362(3)	O9-N9	1.232(2)	O10-N9	1.229(2)
O11-N10	1.229(2)	C2-C3	1.390(3)	O12-N10	1.246(2)	O14-N11	1.203(3)
015-N11	1.213(2)	O16-C15	1.255(2)	N9-C10	1.447(2)		
		Table	e S9. Selected dil	nedral angles for sa	alt 4		
			Dihedral	angle (°)			
O1-N6-C4-C5	-121.83(19)	O1-N6-C4-C9	58.2(2)	O2-N6-C4-C9	-121.32(19)	O4-N7-C6-C5	6.2(3)
O4-N7-C6-C7	-172.16(18)	O5-N7-C6-C5	-174.84(18)	O5-N7-C6-C7	6.8(3)	O6-N8-C8-C9	172.59(18
N6-C4-C5-O3	1.7(3)	N6-C4-C5-C6	-179.17(17)	C9-C4-C5-O3	-178.39(18)	C9-C4-C5-C6	0.8(3)
N6-C4-C9-O8	0.2(3)	N6-C4-C9-C8	178.23(16)	C5-C4-C9-O8	-179.76(19)	C5-C4-C9-C8	-1.7(3)
O3-C5-C6-N7	2.0(3)	O3-C5-C6-C7	-179.68(18)	C4-C5-C6-N7	-177.14(18)	C4-C5-C6-C7	1.2(3)
N7-C6-C7-C8	176.34(18)	C5-C6-C7-C8	-2.0(3)	C6-C7-C8-N8	-178.19(18)	C6-C7-C8-C9	1.0(3)
		Tabl	e S10. Selected b	oond lengths for sa	lt 5		
			Bond le	ngth (Å)			

Table S5. Selected dihedral angles for salt 2

N1-N16	1.307(4	4) N13-C5	1.351(5)	N1-C1	1.396(5)	N14-N15	1.437(4)		
N2-N3	1.363(4	4) N14-C5	1.399(5)	N2-C1	1.353(5)	C3-C4	1.411(5)		
N3-N4	1.307(4	4) C4-C5	1.387(5)	N4-N5	1.356(4)	N5-C1	1.347(5)		
O3-N17	1.283(4	4) O4-N17	1.254(4)	N6-N17	1.322(4)	N6-C2	1.381(5)		
N7-N8	1.362(4	4) N7-C2	1.345(5)	N8-N9	1.307(4)	N9-N10	1.357(4)		
N10-C2	1.357(5) N11-C3	1.343(5)						
	Table S11. Selected dihedral angles for salt 5								
			Dihedra	l angle (°)					
C1-N1-N16-O1	-179.4(3)	C1-N1-N16-O2	0.1(5)	N16-N1-C1-N5	179.6(3)	C1-N2-N3-N4	-0.1(4)		
N3-N2-C1-N1	-178.6(4)	N3-N2-C1-N5	-0.2(4)	N2-N3-N4-N5	0.3(4)	N3-N4-N5-C1	-0.5(4)		
N4-N5-C1-N1	179.1(3)	N4-N5-C1-N2	0.4(4)	C2-N6-N17-O3	176.3(3)	N17-N6-C2-N7	-175.9(3)		
N17-N6-C2-N10	1.4(6)	C2-N7-N8-N9	-0.6(4)	N8-N7-C2-N6	178.3(3)	N8-N7-C2-N10	0.3(4)		
N7-N8-N9-N10	0.6(4)	N8-N9-N10-C2	-0.4(4)	N9-N10-C2-N6	-177.5(4)	N9-N10-C2-N7	0.0(4)		
C2 X12 X12 C5	~~	N13-N12-C3-	170 7(2)		0.2(4)		1.0(4)		
C3-IN12-IN13-C5	13-C5 0.8(4) N11		1/9./(3)	M13-M12-C3-C4	-0.3(4)	IN12-IN13-C5-C4	-1.0(4)		

Section 3. Non-isothermal kinetics and hygroscopic property analysis

The kinetic parameters of the energetic salts 2-5, including the pre-exponential factor (A_k) , apparent activation energy (E_a) and the linear coefficient (R) have been calculated using various heating modes of Kissinger's method and Ozawa-Doyle's method. The non-isothermal kinetic parameters of the salts were listed in Table S13.

1		6		5	
β (°C·min ⁻¹)	5	10	15	20	
2	171.5	178.4	183.7	187.4	
3	149.8	156.4	161.8	166.1	
4	158.5	164.8	170.4	174.0	

192.4

197.5

201.8

Table S12. Peak temperatures of the first exothermic stage determined by DSC curves at different heating rates of salts 2-5.

	Table S13. The Non-Isothermal kinetic parameters of salts 2-5.								
	$E_{k}(kJ \cdot mol^{-1})$	$\ln[A_k(\mathbf{s}^{1-})]$	$R_{ m k}$	$E_{o}(kJ \cdot mol^{-1})$	Ro				
2	140.3	14.35	-0.9978	140.6	-0.9981				
3	124.0	13.18	-0.9948	124.7	-0.9953				
4	134.5	14.15	-0.9952	134.8	-0.9957				
5	154.4	15.45	-0.9930	154.2	-0.9936				

The Arrhenius equations of salts 2-5 were expressed as follows:

186.3

 $\ln k = 14.35 - 140.5 \times 10^{3}/(RT)$ (2)

5

 $\ln k = 13.18 \cdot 124.4 \times 10^{3} / (RT)$ (3)

 $\ln k = 14.15 \cdot 134.7 \times 10^{3} / (RT)$ (4)

 $\ln k = 15.45 \cdot 154.3 \times 10^{3} / (RT)$ (5)

The hygroscopic property of salt 2 was tested and the test process was given in the supporting information. The salt 2 sample was put in the drying oven and dried at 60 $^{\circ}$ C for 2 hours to make the sample dry thoroughly. The testing sample (about 3g) was put into the weighing bottle and the

bottle was put into drying vessel with saturated solution of potassium nitrate at the bottom. The temperature of the test environment is 25 °C and the relative humidity is 50%. The weighing bottle was weighed every 24 hours until the weight difference between the two the weighing bottle is no more than 0.0002g. The hygroscopic property for salt 2 was calculated according to following equation. The curve of hygroscopicity with time is given in Figure S5. The hygroscopicity for salt 2 is 0.1018%, which is acceptable.

$$\omega = \frac{W_t - W_0}{W_0} \times 100\%$$

In which, ω is the mass change fraction,%; W_t is the weight of sample after hygroscopic test, g; W_0 is the weight of the dried sample, g.

Figure S5 Change curve of hygroscopicity

Section 4. Measurement of energy of constant volume combustion

The combustion heat was measured by a Parr-6200 bomb calorimeter (static jacket) with a 6510 water handling system. The calorimeter was calibrated by the combustion of certified benzoic acid in an oxygen atmosphere at a pressure of 3.05 MPa. The constant-volume heat of combustion $(Q_v = -2456.75 \text{ kJ} \cdot \text{mol}^{-1})$ of salt **2** was averaged after three independent experiments. The constant-pressure heat of combustion $(Q_p = -2450.56 \text{ kJ} \cdot \text{mol}^{-1})$ was calculated by the formula $Q_p = Q_v + \Delta n \text{RT}$. The heat of formation $(\Delta_f H = -16.2 \text{ kJ} \cdot \text{mol}^{-1})$ for salt **2** were calculated according to the Hess thermochemical cycle and the combustion reactions (**6**), which was given in the supporting information.

$$C_{3}H_{9}N_{7}O_{6}(s) + 2.25O_{2}(g) \rightarrow 3CO_{2}(g) + 4.5H_{2}O(l) + 3.5N_{2}(g)$$
 (6)

Section 5. Computational structural considerations

Electrostatic potential (ESP) and natural bond orbitals (NBO) and of HAP were calculated using the density functional theory with B3LYP/6-311++G** method. The optimized geometry of HAP is given in Figure S6. The calculated NBO charges for HAP are displayed in Table S14.

Figure S6 Optimized geometry of HAP

Table S14. Natural Population Analysis for HAP

Charge(a.u.)								
C1	0.358	Н9	0.366	C2	-0.420	H10	0.377	
C3	0.341	N11	-0.466	N4	-0.375	H12	0.354	
Н5	0.412	N13	-0.662	Н6	0.216	H14	0.341	
N7	-0.393	H15	0.359	N8	-0.808			