S1

Supporting Information

Low valent lead and tin hydrides in reaction with heteroallenes

Sebastian Weiß, Max Widemann, Klaus Eichele, Hartmut Schubert and Lars Wesemann*a

Content

2
5
5
11
27
30
30
- - -

Data of crystallography

Table S1. Data of crystal structure determination.

	1	2	3	4	5	6
Emp. formula	C ₄₉ H ₇₂ N ₂ Sn	$C_{43}H_{62}N_2Pb$	C47H65NOSn	C47H65NOPb	C ₇₉ H ₁₁₄ O ₂ Sn ₂	$C_{73}H_{100}S_2Sn_2$
<i>M</i> [g/mol]	807.77	816.16	778.69	867.19	1333.08	1279.08
λ [Å]	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Т [К]	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
crystal system	monoclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	P 21/c	P-1	P 21/c	<i>P</i> 2 ₁ /c	C 2/c	P21
Ζ	4	2	4	4	4	4
a [Å]	13.0631(8)	10.6529(3)	19.0046(14)	19.0155(7)	22.3552(4)	15.3777(3)
<i>b</i> [Å]	20.0701(12)	14.1442(4)	18.4257(12)	18.4067(7)	16.2894(3)	24.2581(4)
<i>c</i> [Å]	17.0055(11)	15.6309(4)	12.0392(8)	12.1142(4)	19.6949(4)	18.4918(3)
α [°]	90	108.6230(10)	90	90	90	90
β[°]	97.061(3)	94.426(2)	99.420(5)	99.691(2)	96.3620(10)	91.9830(10)
γ [°]	90	112.0080(10)	90	90	90	90
V [Å ³]	4424.6(5)	2016.66(10)	4159.0(5)	4179.6(3)	7127.8(2)	6893.9(2)
D_c [g/cm ³]	1.213	1.344	1.244	1.378	1.242	1.232
μ [mm ⁻¹]	0.611	4.212	0.649	4.071	0.744	0.823
F(000)	1720	836	1648	1776	2816	2680
crystal size [mm]	0.22x0.20x0.18	0.17x0.15x0.14	0.17x0.15x0.13	0.19x0.14x0.12	0.18x0.16x0.14	0.16x0.14x0.11
θ range [°]	1.571 – 27.866	3.027 - 30.229	2.040 - 27.547	2.465 - 28.336	1.809 - 28.050	1.385 - 29.193
limiting indices	–17≤h≤17	–14≤h≤15	–24≤h≤24	–23≤h≤25	–29≤h≤29	–21≤h≤20
-	–25≤k≤26	–19≤k≤20	–23≤k≤23	–24≤k≤24	–21≤k≤21	–32≤k≤33
	–22≤l≤22	–22≤l≤21	–15≤l≤15	–16≤l≤16	–26≤l≤26	–25≤l≤25
refl. coll.	153507	49601	36732	52598	58989	74582
ind. refl.	10496	11602	9533	10393	8614	33865
R _{int}	0.0323	0.0255	0.0827	0.0582	0.0602	0.0479
completeness	99.5	99.6	99.3	99.8	99.6	99.4
abs. correction	multi-scan	numerical	multi-scan	multi-scan	multi-scan	multi-scan
max., min. trans.	0.75, 0.65	0.75, 0.67	0.75, 0.61	0.75, 0.58	0.75, 0.69	0.6974, 0.7458
Para./restr.	481/0	450/2	497/18	500/1	401/1	1514 / 18
$R1, wR2 [I > 2\sigma(I)]$	0.0239, 0.0585	0.0291, 0.0644	0.0669, 0.1145	0.0693, 0.1587	0.0546, 0.1334	0.0373, 0.0718
R1, w $R2$ (all data)	0.0278, 0.0608	0.0390, 0.0673	0.1157, 0.1287	0.0829, 0.1628	0.0795, 0.1436	0.0518, 0.0759
Goof on F^2	1.019	1.087	1.258	1.295	1.029	0.979
peak / hole [$e \cdot Å^{-3}$]	1.199 <i>, -</i> 0.538	2.065, -3.753	1.121, -1.042	1.804, -3.410	1.920, -0.696	0.813, -0.479
CCDC	2063449	2063447	2063446	2063451	2063448	2063450

Figure S1. ORTEP (50% thermal ellipsoids) with selected atom labeling of **1**. Selected bond distances [Å] and angles [deg] for **1**: Sn–N1 2.2193(12), Sn–N2 2.2333(12), Sn–C1 2.2332(14), N1–C2 1.3214(19), N2–C2 1.3154(19), N1–Sn–N2 59.77(4), N2–C2–N1 114.58(13), C2–N1–Sn 91.66(9), C2–N2–Sn 91.21(9), N1–Sn–C1 101.84(5), C1–Sn–N2 107.87(5).

Figure S2. ORTEP (50% thermal ellipsoids) with selected atom labeling of **3**. Selected bond distances [Å] and angles [deg] for **3**: Sn–O 2.211(4), Sn–N 2.294(5), Sn–C1 2.258(3), O–C2 1.295(7), N–C2 1.296(8), O–Sn–C1 95.18(15), O–Sn–N 59.11(17), C1–Sn–N 106.28(16), O–C2–N 118.2(5), C2–N–Sn 88.7(4), C2–O–Sn 92.4(4).

NMR spectroscopy

NMR Data of compound 1

¹H-NMR of Ar*SnN(Cy)C(H)N(Cy) in C_6D_6 at RT

Figure S3. ¹H NMR spectrum of **1**

$^{\scriptscriptstyle 13}\text{C}\{^1\text{H}\}\text{-}\text{NMR}$ of Ar*SnN(Cy)C(H)N(Cy) in C_6D_6 at RT

Figure S4. ¹³C{¹H} NMR spectrum of **1**

Figure S5. ¹¹⁹Sn{¹H} NMR spectrum of **1**

S7

NMR Data of compound **2** 1 H-NMR of Ar *PbN(Dip)C(H)N(Dip) in C₆D₆ at RT

S8

 $^{207}\text{Pb-NMR}$ of Ar*PbN(Dip)C(H)N(Dip) in C₆D₆ at RT

NMR Data of compound **3**

Figure S9. ¹H NMR spectrum of **3**

 $^{\scriptscriptstyle 13}\text{C}\{^1\text{H}\}\text{-}\text{NMR}$ of Ar*SnN(Ad)C(H)O in C_6D_6 at RT

Figure S10. ¹³C{¹H} NMR spectrum of **3**

Figure S11. ¹¹⁹Sn NMR spectrum of **3**

Figure S12. ¹H NMR spectrum of **4**

ppm

 207 Pb-NMR of Ar^{*}PbN(Ad)C(H)O in C₆D₆ at RT

Figure S14. ²⁰⁷Pb NMR spectrum of 4

NMR Data of compound 5

¹H-NMR of Ar*Sn(H)OC(H)OSnAr* in C_6D_6 at RT

Figure S15. ¹H NMR spectrum of **5**

Figure S16. ¹³C{¹H} NMR spectrum of **5**

¹¹⁹Sn-NMR of Ar*Sn(H)OC(H)OSnAr* in C_6D_6 at RT

Figure S17. ¹¹⁹Sn NMR spectrum of **5**

¹¹⁹Sn{¹H}-NMR of Ar*Sn(H)OC(H)OSnAr* in C_6D_6 at RT

Figure S18. ¹¹⁹Sn{¹H} NMR spectrum of **5**

Figure S19. 111.9 MHz ¹¹⁹Sn CP/MAS NMR spectrum of **5** obtained at a spinning rate of 8 kHz. The isotropic peaks are indicated by asterisks. Sn-H: $\delta_{iso} = 112$, $\delta_{11} = 658(8)$, $\delta_{22} = -62(6)$, $\delta_{33} = -261(6)$, span $\Omega = 919(5)$, skew $\kappa = -0.57(2)$; Sn H-free: $\delta_{iso} = 146$, $\delta_{11} = 885(29)$, $\delta_{22} = 218(20)$, $\delta_{33} = -665(21)$, span $\Omega = 1550(11)$, skew $\kappa = 0.14(4)$. The splittings in the spinning sidebands of the broader, H-free species visible in the region 0 to -200 ppm are ascribed to overlap with satellites due to ${}^{1}J_{\text{Sn-119,Sn-117,119}}$ coupling (ca. 9200 Hz) associated with the strongest spinning sidebands of the Sn-H species, resulting in greater errors in the spinning sideband analysis.

Figure S20. 111.9 MHz variable contact time ¹¹⁹Sn CP/MAS NMR spectra of **5** obtained at a spinning rate of 8 kHz. The isotropic peaks are indicated by asterisks. The upper spectrum was obtained after a contact time of 6 ms, the lower spectrum used a very short contact time of 0.05 ms to basically eliminate the contribution of the proton free Sn atom. NQS (non-quaternary suppression) experiments¹ turned out inconclusive.

NMR Data of compound 6

Figure S21. ¹H NMR spectrum of **6**

Figure S22. ¹³C{¹H} NMR spectrum of **6**

Figure S23. ¹¹⁹Sn NMR spectrum of **6**

 $^{\rm 119}{\rm Sn}{\rm -NMR}$ of Ar*Sn(H) $_2{\rm C(S)}_2{\rm SnAr}{\rm *}$ in C $_6{\rm D}_6$ at RT

Figure S24. ¹¹⁹Sn NMR spectrum of **6**

ppm

NMR Data of compound **7**

Figure S25. ¹H NMR spectrum of **7**

S29

Quantum chemical calculations

On the basis of the molecular structure of **5** determined in the solid state the structure was optimized using the programme Orca4.2^{2, 3} with BP86,^{4, 5} Grimme's dispersion correction and Becke-Johnson damping (D3BJ)⁶ making use of the resolution of identity (RI) approximation. The basis set chosen was def2-SVP on all light elements and def2-TZVP/ECP on Sn as implemented in ORCA4.2.⁷⁻¹⁰ Absence of imaginary frequencies on this level of theory confirmed local minima on the PES. For all calculations *tight* convergence criteria for optimisations and *verytight* for SCF convergence were applied with *grid6* and *finalgrid7* gridsizes. On the basis of this optimized structure NMR chemical shifts were computed at SO-ZORA level with ADF,^{11, 12, 13} including the crucial exchange correlation kernel (PBE density functional, basis sets: TZ2P for Sn, TZP for O, C, H).¹⁴ The obtained ¹¹⁹Sn NMR shieldings were converted to chemical shifts (δ , in ppm) relative to the shieldings of tetramethyltin (σ [¹¹⁹Sn]=2901.613) calculated at identical computational level.

Table S2. Comparison of structural data of **5**, calculated structure, data of crystal structure analysis.

	X-ay data (Å)	calc. structure (Å)
Sn1–Sn2	2.8796(7)	2.924
Sn1–01	2.226(2)	2.183
Sn2–01′	2.097(3)	2.284
Sn2–C1′	2.267(2)	2.261
Sn1–C1	2.145(2)	2.195
01–C2	1.241(3)	1.270, 1.262
Sn1–H1	1.79(2)	1.730
01–C2–O1′	129.1(5)	128.1

Table S3. Principal components of the ¹¹⁹Sn chemical shift tensor

	Sn–H (exp.) ^a	Sn (exp.) ^a	Sn–H (theor.) ^a	Sn (theor.) ^a	
δ _{iso}	112	146	78.1	197.7	
δ11	658(8)	885(29)	642	937	
δ ₂₂	-62(6)	218(20	-86	453	
δ ₃₃	-261(6)	-665(21)	-322	-797	

^a in ppm

References

- 1. M. Alla and E. Lippmaa, *Chem. Phys. Lett.*, 1976, **37**, 260-264.
- 2. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8, e1327.
- 3. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78.
- 4. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- 5. J. P. Perdew and W. Yue, *Phys. Rev. B*, 1986, **33**, 8800-8802.
- 6. S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 7. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 8. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
- 9. B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563-2569.
- 10. D. Andrae, U. Häussermann, M. Dolg, H. Stoll and H. Preuß, *Theoret. Chim. Acta*, 1990, **77**, 123-141.
- 11. ADF 2019.3, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- 12. S. K. Wolff, T. Ziegler, E. van Lenthe and E. J. Baerends, J. Chem. Phys., 1999, **110**, 7689-7698.

- 13. S. K. Wolff and T. Ziegler, J. Chem. Phys., 1998, **109**, 895-905.
- 14. J. Autschbach, *Mol. Phys.*, 2013, **111**, 2544-2554.

Optimized geometry of 5

177

Sn2C73H100O2

н	8.844126000	4.922378000	2.830070000
0	10.451883000	6.883624000	3.966584000
с	13.377912000	6.273765000	2.800725000
с	8.900650000	2.824037000	0.919431000
с	12.819412000	5.421331000	1.705625000
с	13.029019000	4.465731000	-0.527101000
н	13.545697000	4.423071000	-1.487031000
с	13.166922000	7.667677000	2.808383000
с	14.290878000	7.826218000	4.975607000
с	14.490146000	4.182633000	3.791262000
н	13.589812000	3.628590000	3.479487000
с	13.463229000	5.351843000	0.458188000
н	14.333688000	5.983872000	0.275467000
с	9.620338000	0.668947000	2.550026000
н	9.896713000	-0.172731000	3.189058000
С	14.110630000	5.659595000	3.853515000
с	11.687356000	4.615913000	1.930978000
с	14.538310000	6.450655000	4.923038000
н	15.073504000	5.978354000	5.746382000
с	11.296643000	3.665811000	0.963030000
с	13.631378000	8.417276000	3.897840000
н	13.451416000	9.494619000	3.922490000
с	12.056576000	1.336619000	2.560608000
н	12.624666000	2.242854000	2.310096000
с	10.607619000	1.579446000	2.161319000
с	7.951620000	1.880360000	1.329472000
н	6.915105000	2.012133000	1.021008000
с	14.970212000	3.586382000	5.117383000
н	15.923510000	4.031770000	5.439862000
н	15.143809000	2.509090000	4.992878000
н	14.235182000	3.713154000	5.923526000
С	11.967333000	3.597978000	-0.263920000
н	11.669963000	2.849574000	-1.000392000
С	12.461836000	8.362387000	1.652415000
н	11.904733000	7.590720000	1.099759000
с	8.288980000	0.795949000	2.144017000
с	14.732619000	8.652167000	6.169008000
н	14.295152000	9.657344000	6.043210000
с	10.243381000	2.669022000	1.330200000
с	13.500616000	8.974868000	0.694847000
н	13.006215000	9.435992000	-0.173209000
н	14.205378000	8.217629000	0.326654000

Н	14.085341000	9.752818000	1.208984000
с	8.487306000	3.999545000	0.048309000
н	9.238432000	4.790905000	0.201062000
С	10.861223000	7.378222000	5.062469000
н	10.865612000	8.481136000	5.110043000
с	12.236861000	1.080770000	4.060089000
н	11.728336000	0.163858000	4.388407000
н	11.842453000	1.910409000	4.664543000
н	13.302381000	0.972441000	4.304983000
с	7.280402000	-0.259177000	2.567980000
н	7.499694000	-0.497812000	3.623679000
С	12.647529000	0.188204000	1.725535000
н	13.709883000	0.038946000	1.969133000
н	12.567292000	0.403594000	0.650896000
н	12.114794000	-0.754506000	1.922054000
С	7.118706000	4.576942000	0.431314000
н	7.072380000	4.793875000	1.507771000
н	6.298273000	3.886557000	0.185559000
н	6.935194000	5.512087000	-0.116375000
С	8.511342000	3.608078000	-1.439635000
н	8.239508000	4.466436000	-2.071884000
Н	7.793791000	2.796870000	-1.635518000
н	9.506568000	3.259670000	-1.745500000
С	16.262710000	8.804261000	6.200365000
н	16.746438000	7.822984000	6.319201000
н	16.576403000	9.439976000	7.041876000
Н	16.636734000	9.252026000	5.268912000
С	14.208480000	8.069566000	7.490798000
Н	14.453413000	8.734752000	8.331868000
Н	14.665001000	7.090622000	7.697891000
Н	13.120526000	7.925744000	7.458427000
С	11.454085000	9.432544000	2.092522000
Н	10.700187000	9.009160000	2.766899000
н	10.933981000	9.841869000	1.214345000
Н	11.946448000	10.275095000	2.600471000
С	15.576884000	3.946070000	2.724657000
Н	15.253032000	4.266054000	1.728394000
Н	15.832007000	2.877049000	2.672979000
Н	16.489081000	4.503084000	2.986612000
С	5.821161000	0.197011000	2.483248000
н	5.655106000	1.135337000	3.029661000
н	5.159166000	-0.569848000	2.909736000
н	5.509451000	0.352313000	1.439275000
С	7.491101000	-1.547167000	1.749306000
Н	6.810727000	-2.342766000	2.087833000
н	8.522847000	-1.913844000	1.838951000
н	7.294204000	-1.357146000	0.683342000

0	11.256997000	6.767334000	6.093029000
Sn	11.486909000	4.509745000	6.349094000
с	8.212772000	6.146131000	6.950590000
с	12.495060000	2.579015000	8.976064000
с	8.723974000	5.289270000	8.061843000
с	8.408497000	4.413938000	10.317625000
н	7.870302000	4.430933000	11.266555000
с	8.364583000	7.547517000	6.982338000
с	7.304836000	7.711225000	4.782375000
с	7.202724000	4.038954000	5.899998000
н	8.106719000	3.517573000	6.251916000
с	8.046977000	5.288615000	9.294134000
н	7.206056000	5.969892000	9.435413000
с	11.694956000	0.313138000	7.543202000
н	11.390142000	-0.576066000	6.985533000
с	7.534997000	5.528775000	5.863544000
с	9.813185000	4.412877000	7.866191000
с	7.102118000	6.326391000	4.801740000
н	6.598402000	5.854225000	3.958263000
с	10.121803000	3.480468000	8.887597000
с	7.912853000	8.301498000	5.889425000
н	8.047459000	9.386290000	5.895201000
с	9.278488000	1.057556000	7.492009000
н	8.724834000	1.967613000	7.760897000
с	10.734423000	1.276934000	7.875659000
с	13.415215000	1.588065000	8.623985000
н	14.461764000	1.714353000	8.907271000
С	6.806031000	3.428880000	4.553279000
н	5.846283000	3.830491000	4.193189000
н	6.680361000	2.344046000	4.670789000
н	7.555551000	3.589763000	3.769537000
С	9.428533000	3.486128000	10.103543000
н	9.679059000	2.749894000	10.869883000
с	8.954483000	8.258372000	8.193721000
н	9.418201000	7.492180000	8.831847000
С	13.035673000	0.447410000	7.906322000
С	6.876608000	8.543531000	3.588785000
н	7.187165000	9.582448000	3.793423000
С	11.139267000	2.419896000	8.600922000
С	7.826148000	8.927512000	9.000596000
н	8.221154000	9.380046000	9.922436000
н	7.046371000	8.205077000	9.277782000
н	7.345619000	9.721588000	8.409071000
С	12.942167000	3.804605000	9.758331000
н	12.159583000	4.570158000	9.634814000
С	9.098491000	0.838567000	5.986284000
н	9.621680000	-0.065897000	5.643835000

Н	9.485666000	1.686123000	5.403545000
н	8.033823000	0.720875000	5.738463000
с	14.043293000	-0.632738000	7.557441000
н	13.516210000	-1.372183000	6.930912000
С	8.674418000	-0.101768000	8.301031000
н	7.608296000	-0.227083000	8.060349000
н	8.763988000	0.084599000	9.380350000
н	9.187372000	-1.049814000	8.079053000
с	14.257720000	4.399944000	9.240069000
н	14.195515000	4.609135000	8.162265000
н	15.108879000	3.723437000	9.406376000
н	14.478920000	5.342780000	9.760220000
с	13.033970000	3.478884000	11.258736000
н	13.319741000	4.371450000	11.834894000
н	13.787363000	2.697298000	11.439752000
н	12.071521000	3.114997000	11.643673000
С	5.349395000	8.533156000	3.413579000
н	4.988309000	7.515135000	3.203754000
н	5.047875000	9.176052000	2.573108000
н	4.842447000	8.888701000	4.321685000
С	7.583184000	8.081131000	2.304850000
н	7.331571000	8.741697000	1.461757000
н	7.276266000	7.060557000	2.035530000
н	8.672839000	8.070648000	2.433599000
С	10.041890000	9.287073000	7.853023000
н	10.902268000	8.804752000	7.374192000
н	10.396593000	9.776349000	8.772097000
н	9.664426000	10.077921000	7.187606000
С	6.078723000	3.761678000	6.916998000
н	6.346431000	4.094645000	7.926131000
н	5.862867000	2.683360000	6.959965000
н	5.157689000	4.282783000	6.614675000
С	15.223713000	-0.084537000	6.743007000
н	14.874692000	0.396754000	5.819644000
н	15.917617000	-0.893003000	6.469908000
н	15.789857000	0.664475000	7.315810000
С	14.534507000	-1.353751000	8.824209000
н	15.220109000	-2.174684000	8.566639000
н	13.692307000	-1.770783000	9.393775000
н	15.073627000	-0.657815000	9.484315000
Sn	10.346487000	4.724059000	3.665370000