Supporting Information

Hydrothermal Synthesis, Crystal Structures, and X-ray Photoelectron Spectroscopy of Lead Tellurium(IV) and Tellurium(VI) Oxycompounds: Ba₃PbTe₆O₁₆ and Na₂Pb₉(μ₆-O)₂(Te₂O₁₀)₂

Han-Yin Li^a and Kwang-Hwa Lii*,a,b

^{*a*}Department of Chemistry, National Central University, Zhongli, Taiwan 320, R.O.C. ^{*b*}Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115, R.O.C.

Figure S1. Energy dispersive X-ray spectroscopy analysis on a crystal of Ba₃PbTe₆O₁₆.

Figure S2. Pawley fit of the powder diffraction data to the structure of Ba₃PbTe₆O₁₆.

Figure S3. Energy dispersive X-ray spectroscopy analysis on a crystal of $Na_2Pb_9(\mu_6-O)_2(Te_2O_{10})_2$.

Figure S4. Pawley fit of the powder diffraction data to the structure of $Na_2Pb_9(\mu_6-O)_2(Te_2O_{10})_2$.

Figure S5. The infrared spectrum of Ba₃PbTe₆O₁₆ (KBr method).

Figure S6. The infrared spectrum of $Na_2Pb_9(\mu_6-O)_2(Te_2O_{10})_2$ (KBr method).

٩						Specir	
	•	19 (1)					
0 1 Full Scale 82	2 28 cts	P P P P P	4 5	6 7	8	9	10 keV
0 1 Full Scale 82	2 28 cts	P TP 3	4 5	6 7	8	9	10 keV
0 1 Full Scale 82 EDS Spectrum	2 28 cts	р р 3 Ва	4 5 Te	6 7 Рb	8	9 9	10 keV
0 1 Full Scale 82 EDS Spectrum Spectrum 1	2 28 cts 0 70.96	ре те З Ва 8.56	4 5 Te 17.38	ер 6 7 Рb 3.1	8	9	10 keV
0 1 Full Scale 82 Spectrum Spectrum 1 Spectrum 2	2 28 cts 0 70.96 69.76	Ba 8.56 8.86	Te Te 17.38 18.23	бо 6 7 Рb 3.1 3.14	8	9	10 keV

Figure S1. Energy dispersive X-ray spectroscopy analysis on a crystal of Ba₃PbTe₆O₁₆.

Figure S2. Pawley fit of the powder diffraction data to the structure of Ba₃PbTe₆O₁₆. The small peaks marked with an arrow correspond to the impurity Ba₃Te₄O₁₁.

Figure S3. Energy dispersive X-ray spectroscopy analysis on a crystal of $Na_2Pb_9(\mu_6-O)_2(Te_2O_{10})_2$

Figure S4. Pawley fit of the powder diffraction data to the structure of $Na_2Pb_9(\mu_6-O)_2(Te_2O_{10})_2$.

Figure S5. The infrared spectrum of Ba₃PbTe₆O₁₆ (KBr method).

Figure S6. The infrared spectrum of $Na_2Pb_9(\mu_6-O)_2(Te_2O_{10})_2$ (KBr method).