Supporting Information

Water-Stable Lanthanide-Organic Macrocycles from 1,2,4-Triazolebased Chelate for Enantiomeric Excess Detection and Pesticide

Sensing

Kai Cheng, ^{a,b} Qi-Xia Bai, ^c Shao-Jun Hu, ^{a,b} Xiao-Qing Guo, ^{a,b} Li-Peng Zhou, ^a Ting-Zheng Xie, ^c and Qing-Fu Sun*^{a, b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.

^b University of Chinese Academy of Sciences, Beijing 100049, PR China.

^c Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials; Guangzhou University, Guangzhou 510006, China.

Contents

- 1. General
- 2. Synthesis and characterization
 - 2.1 Synthetic procedures
 - 2.2 NMR spectra
 - 2.3 ¹H DOSY spectra
- 3. Photophysical properties
 - 3.1 UV-Vis absorption and Luminescence Spectra
 - 3.2 Quantum yields
 - 3.3 Lifetime measurements
 - 3.4 Number of coordinated solvent molecules
- 4. Chiral Sensing by PSM
 - 4.1 Chiral optical measurements
 - 4.2 UV-Vis absorption and Luminescence Spectra
 - 4.3 Quantum yields
 - 4.4 Lifetime measurements
- 5. Pesticide Detection by disassembly
 - 5.1 UV-Vis absorption and Luminescence Spectra
 - 5.2 Quantum yields
- 6. Mass spectra
- 7. Single crystal X-ray diffraction studies
- 8. References

1 General

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies and used without further purification. Anhydrous solvents were distilled according to standard procedures. Deuterated solvents were purchased from Adamas, J&K scientific and Sigma-Aldrich. 1D and 2D NMR spectra were measured on a Bruker Biospin Avance III (400 MHz) spectrometer and JEOL ECZ600S (600 MHz) spectrometer. ¹H-NMR chemical shifts were determined with respect to residual signals of the deuterated solvents used. Mass spectral data were collected by three different instruments. Electro-spray-ionization time-of-flight mass-spectroscopy (ESI-TOF-MS) were recorded on an Impact II UHR-TOF mass spectrometry from Bruker, with tuning mix as the internal standard. Data analysis was conducted with the Bruker Data Analysis software (Version 4.3) and simulations were performed with the Bruker Isotope Pattern software. ESI mass spectrometry (MS) experiments were performed on a Waters Synapt HDMS G2-Si quadrupole/time-of-flight (Q/TOF) tandem mass spectrometer. This instrument contains a triwave device between the Q and TOF analyzers, consisting of three collision cells in the order trap cell, ion mobility cell, and transfer cell. Trap and transfer cells are pressurized with Ar, and the ion mobility cell is pressurized with N₂ flowing in a direction opposite to that of the entering ions. Some MS spectra were recorded on LC-QTOF-MS from Agilent. Excitation and emission spectra were recorded on the FS5 spectrofluorometer from Edinburg Photonics. Spectra were corrected for the experimental functions. The emission quantum yields in solution were measured on FS5 with an SC-30 Integrating Sphere. For liquid samples the reference would be a cuvette containing the solvent only. UV-Vis spectra are recorded on UV-2700 spectrophotometer from SHIMADZU.

2 Synthesis and characterization

2.1 Synthetic procedures

Scheme S1. The synthetic route of ligands H_2L' and H_4L .

The preparation of compound 1, 5 followed the literature procedure.^[1,2] Ligand H_2L' was synthesized by optimizing the original method reported in the literature.^[3]

Synthesis of 2

To a solution of dimethyl 4-bromopyridine-2, 6-dicarboxylate (6.2 g, 22.62 mmol, 1.0 eq.) in MeOH (80 ml), DCM (20 ml) and ammonia solution (33 wt.%, 20 ml) were added and the reaction was stirred at room temperature overnight. The precipitation was filtered, washed with minimum amount of DCM and MeOH, and then dried in vacuum to give **2** as white solid. (4.3 g, 78% yield). ¹H NMR (400 MHz, *d*₆-DMSO) δ 8.92 (s, 2H), 8.30 (s, 2H), 7.88 (s, 2H).¹³C NMR (101 MHz, *d*₆-DMSO) δ 164.52, 150.92, 135.38, 127.46. HR-MS (ESI) calcd. for C₇H₆BrN₃O₂ [M+Na]⁺:265.9536, found 265.9523.

Synthesis of 3

To a solution of **2** (1.92 g, 7.87 mmol, 1.0 eq.) and anhydrous triethylamine (2.5 ml, 17.33 mmol, 2.2 eq.) in anhydrous THF (25 ml), trifluoroacetic anhydride (2.5 ml, 17.33 mmol, 2.2 eq.) was added slowly at 0°C. The reaction was stirred at room temperature for 12 h and then it was quenched by adding saturated sodium bicarbonate solution. The precipitation was filtered, washed with water, and then dried in vacuum to give **3** as white solid. (1.47 g, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 135.24, 134.30, 114.42. HR-MS (ESI) calcd. for C₇H₂BrN₃ [M+NH₄]⁺:224.9770, found 224.9468.

Synthesis of 4

A mixture of **3** (0.8 g, 5.4 mmol, 1.0 eq.) and hydrazine hydrate (5.2 ml, 108 mmol, 20 eq.) in ethanol (55.0 mL), was stirred at 75 °C for 12 h. The precipitation was filtered, washed with anhydrous ethanol, and then dried in vacuum to give **4** as pale yellow solid. (1.40g, 95% yield). ¹H NMR (400 MHz, d_6 -DMSO) δ 7.91 (s, 2H), 6.10 (s, 4H), 5.41 (s, 4H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 152.49, 142.63, 131.75, 120.65. HR-MS (ESI) calcd. for C₇H₁₀BrN₇ [M+Na]⁺:294.0073, found 294.0012.

Synthesis of H₂L'

To **4** (0.68 g, 2.5 mmol, 1.0 eq.) in trifluoroacetic acid (20.0 mL), the reaction was stirred at 75°C for 12 h. The solvent was removed under reduced pressure, then ethylene glycol (10 mL) was added, the reaction was stirred at 130 °C for 4 h, cooled to room temperature. Excess of H₂O (50 mL) was added and a precipitate was formed, filtered off and dried, the crude product was purified by flash chromatography (SiO₂, DCM: EA=5:1) to afford **H**₂L' as a white powder. (0.83 mg, 78% yield). ¹H NMR (400 MHz, CD₃CN) δ 8.41 (s, 2H).¹⁹F NMR (376 MHz, CD₃CN) δ -65.92 (s, 6F).¹³C NMR (101 MHz, CD₃CN) δ 154.82, 146.54, 136.27, 126.65, 121.34, 118.67. HR-MS (ESI) calcd. for C₁₁H₄BrF₆N₇ [M-H]⁻: 425.9543, found 425.9508.

Synthesis of H₄L

A mixture of H_2L' (1.00 g, 2.33 mmol, 2.2 eq.), 5 (216 mg, 1 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (70 mg, 0.10 mmol, 0.1 eq.), CuI (38 mg, 0.20 mmol, 0.2 eq.) and PPh₃ (53 mg, 0.20 mmol, 0.2 eq.) in tetrahydrofuran (35 mL) and triethylamine (35 mL), was stirred at 66°C for 1 day under nitrogen atmosphere. After cooling to room temperature, the solvent was removed under reduced pressure, and the crude product was purified by flash chromatography on silica gel treated with triethylamine (DCM/CH₃OH, 10:1) to afford H₄L (500mg, 55% yield) as white solid. ¹H NMR (400 MHz, *d*₆-DMSO) δ 8.65 (s, 2H), 8.00 (s, 4H), 7.97 – 7.90 (dd, 4H).¹⁹F NMR (376 MHz, *d*₆-DMSO) δ -61.36 (s, 12F).¹³C NMR (101 MHz, *d*₆-DMSO) δ 162.04, 156.81, 154.32, 153.98, 150.63, 126.35, 124.00, 123.55, 120.87, 119.66, 117.02, 113.29, 86.87. HR-MS (ESI) calcd. for C₃₈H₁₄F₁₂N₁₄O [M-H]⁻:909.1211, found 909.1037.

Synthesis of La₂L₂

H₄**L** (10 mg, 10.1 μmol, 1.00 eq.) was treated with La(OTf)₃ (5.9 mg, 10.1 μmol, 1.00 eq.) in DMSO, then triethylamine (5.8 μL, 42.4 μmol, 4.2 eq.) was added at 50°C and stirred for 10 minutes, a homogeneous colorless solution was obtained. ¹H NMR (400MHz, d_6 -DMSO, 298K) δ 8.66 (s, 4H), 8.09 (s, 8H), 7.95 (br, 8H). ¹⁹F NMR (376 MHz, d_6 -DMSO) δ -61.71 (s, 24F). ¹³C NMR was not measured due to the poor solubility of such complexes. HR-MS (ESI) calcd. for [La₂L₂]²⁻ 1044.9373, found 1045.0034.

Synthesis of Eu₂L₂

H₄**L** (10 mg, 10.1 μmol, 1.00 eq.) was treated with Eu(OTf)₃ (6.0 mg, 10.1 μmol, 1.00 eq.) in DMSO, then triethylamine (5.8 μL, 42.4 μmol, 4.2 eq.) was added at 50°C and stirred for 10 minutes, a homogeneous colorless solution was obtained. ¹H NMR (400MHz, d_6 -DMSO, 298K) δ 8.36 (s, 4H), 7.81 (br, 4H), 7.72 (br, 4H), 5.17 (s, 8H).

¹⁹F NMR (376 MHz, d_6 -DMSO) δ -63.21(s, 24F). ¹³C NMR was not measured due to the poor solubility of such complexes. HR-MS (ESI) calcd. for $[Eu_2L_2]^{2-}$ 1115.0280, found 1115.0360.

Figure S5. ¹H NMR spectrum of **4** (400 MHz, DMSO-*d*₆, 298 K).

Figure S7. ¹H NMR spectrum of 5 (400 MHz, CD₃CN, 298 K).

1601501401301201101009080706050403020100-10ppmFigure S9. 13 C NMR spectrum of H_2L' (101 MHz, CD₃CN, 298 K).

Figure S13. ¹H NMR (400 MHz, 298 K) titration spectra of titrating H_2L' and triethylamine with Eu(OTf)₃ in CD₃CN.

Figure S14. ¹⁹F NMR (376 MHz, 298 K) titration spectra of titrating H_2L' and triethylamine with Eu(OTf)₃ in CD₃CN.

Figure S15. ¹H NMR spectrum of La₂L₂ (400 MHz, DMSO-*d*₆, 298 K).

i7 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 ppm Figure S16. ¹⁹F NMR spectrum of La_2L_2 (376 MHz, DMSO- d_6 , 298 K).

ppm

Figure S17. Comparison of ¹⁹F NMR spectra of H_4L , H_4L with Et_3N and La_2L_2 (376 MHz, DMSO- d_6 , 298 K).

2.3 ¹H DOSY spectra

Figure S20. ¹H DOSY spectrum of La₂L₂ (600 MHz, DMSO-*d*₆, 298 K, D=6.08×10⁻¹¹ m²·s⁻¹)

3 Photophysical properties

3.1 UV-Vis absorption and Luminescence Spectra

Figure S21. UV/Vis absorption spectra of L' with equivalent $Et_3N(c = 6.0 \times 10^{-5} \text{ M})$, $EuL'_3(c = 2.0 \times 10^{-5} \text{ M})$ in CH₃CN.

Figure S22. UV/Vis absorption spectra of H₄L with equivalent $Et_3N(c = 2.0 \times 10^{-5} \text{ M})$ and $Eu_2L_2(c = 1.0 \times 10^{-5} \text{ M})$ in DMSO.

Figure S23. Emission spectrum of EuL'₃ ($c = 2 \times 10^{-5}$ M, $\lambda_{ex} = 264$ nm, slits = 1.2 - 0.8).

Figure S24. Excitation spectrum (black lines) and emission spectrum (blue lines) of L with equivalent Et₃N in DMSO ($c = 2 \times 10^{-5}$ M, $\lambda_{em} = 406$ nm, $\lambda_{ex} = 334$ nm, slits = 4-1.8).

Figure S25. Excitation spectrum (blue lines) and emission spectrum (red lines) of Eu₂L₂ in DMSO ($c = 1 \times 10^{-5}$ M, $\lambda_{em} = 616$ nm, $\lambda_{ex} = 333$ nm, slits = 1.2-0.8).

Figure S26. Excitation spectrum (black lines) and emission spectrum (blue lines) of L with equivalent Et₃N in H₂O ($c = 2 \times 10^{-5}$ M, $\lambda_{em} = 438$ nm, $\lambda_{ex} = 324$ nm, slits = 2.5-1.3).

Figure S27. Excitation spectrum (blue lines) and emission spectrum (red lines) of Eu₂L₂ in H₂O ($c=1\times10^{-5}$ M, $\lambda_{em}=615$ nm, $\lambda_{ex}=336$ nm, slits = 1.7-1.3).

3.2 Quantum yields

Figure S28. The superposition of emission spectra of reference and L with equivalent Et₃N ($\Phi_{overall} = 7.47\%$) ($c = 2.00 \times 10^{-5}$ M in DMSO; $\lambda_{ex} = 334$ nm, slits = 6.0-0.7).

Figure S29. The superposition of emission spectra of reference and Eu₂L₂ ($\Phi_{overall} = 69.31\%$) ($c = 1.00 \times 10^{-5}$ M in DMSO; $\lambda_{ex} = 333$ nm, slits = 6.0-0.65).

Figure S30. The superposition of emission spectra of reference and L with equivalent Et₃N ($\Phi_{overall} = 6.05\%$) ($c = 2.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 324$ nm, slits = 7.5-0.7).

Figure S31. The superposition of emission spectra of reference and Eu₂L₂ ($\Phi_{overall} = 4.21\%$) ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.6).

3.3 Lifetime measurements

Figure S32. Excitated state decay curve (black line) with mono exponential fit (red line) of Eu₂L₂ ($c=1\times10^{-5}$ M in DMSO, $\lambda_{ex} = 333$ nm, $\lambda_{em} = 616$ nm).

Figure S33. Excitated state decay curve (black line), IR1(red line) and tri-exponential fit (blue line) of L with equivalent Et₃N ($c=2\times10^{-5}$ M in H₂O, $\lambda_{ex} = 324$ nm, $\lambda_{em} = 438$ nm).

Figure S34. Excitated state decay curve (black line) with mono exponential fit (red line) of Eu₂L₂ ($c=1\times10^{-5}$ M in H₂O, $\lambda_{ex} = 336$ nm, $\lambda_{em} = 615$ nm).

3.4 Number of coordinated solvent molecules

Here, empirical equation is used to determine the number of solvent molecules q coordinated to Eu^{III} centers in compounds.

 $q=A (\tau_{water}^{-1} - \tau_{deutero-water}^{-1} - B)$ (1) Where, empirically coefficients A = 1.05 and B = 0 were determined in H₂O and D₂O condition.^[4] The calculated q values is 2.87 for **Eu₂L₂** in water.

Figure S35. Excitated state decay curve (black line) with bi-exponential fit (red line) of Eu₂L₂ ($c=1\times10^{-5}$ M in D₂O, $\lambda_{ex} = 336$ nm, $\lambda_{em} = 615$ nm).

4 Chiral Sensing by PAM

4.1 Chiral optical measurements

Figure S36. CD spectra of A^R and A^S (c = 1×10⁻⁵ M, CH₃CN).

4.2 UV-Vis absorption and Luminescence Spectra

Figure S37. UV/Vis absorption spectra of L with equivalent $\text{Et}_3\text{N}(c = 2.0 \times 10^{-5} \text{ M})$, $\text{Eu}_2\text{L}_2(c = 1.0 \times 10^{-5} \text{ M})$, $\text{Eu}_2\text{L}_2\text{A}^R_2(c = 1.0 \times 10^{-5} \text{ M})$ and $\text{Eu}_2\text{L}_2\text{A}^S_2(c = 1.0 \times 10^{-5} \text{ M})$ in CH₃CN.

Figure S38. Excitation spectrum (black lines) and emission spectrum (blue lines) of L with equivalent Et₃N in CH₃CN ($c = 2 \times 10^{-5}$ M, $\lambda_{em} = 406$ nm, $\lambda_{ex} = 333$ nm, slits = 2.7-2).

Figure S39. Excitation spectrum (blue lines) and emission spectrum (red lines) of Eu₂L₂ in CH₃CN ($c = 1 \times 10^{-5}$ M, $\lambda_{em} = 612$ nm, $\lambda_{ex} = 335$ nm, slits = 1.2-0.5).

Figure S40. Excitation spectrum (blue lines) and emission spectrum (red lines) of $Eu_2L_2A_2^R$ in CH₃CN (c = 1×10⁻⁵ M, λ_{em} = 615nm, λ_{ex} = 335 nm, slits = 1.2-0.5).

Figure S41. Excitation spectrum (blue lines) and emission spectrum (red lines) of $Eu_2L_2A_2^S$ in CH₃CN ($c = 1 \times 10^{-5}$ M, $\lambda_{em} = 615$ nm, $\lambda_{ex} = 335$ nm, slits = 1.2-0.5).

4.3 Quantum yields

Figure S42. The superposition of emission spectra of reference and L with equivalent Et₃N ($\Phi_{overall} = 12.38\%$) ($c = 2.00 \times 10^{-5}$ M in CH₃CN; $\lambda_{ex} = 333$ nm, slits = 6.0-0.65).

Figure S43. The superposition of emission spectra of reference and Eu₂L₂ ($\Phi_{overall} = 55.66\%$) ($c = 1.00 \times 10^{-5}$ M in CH₃CN; $\lambda_{ex} = 335$ nm, slits = 6.0-0.7).

Figure S44. The superposition of emission spectra of reference and Eu₂L₂A^{*R*}₂ ($\Phi_{overall}$ = 75.05 %) (*c* = 1.00×10⁻⁵ M in CH₃CN; λ_{ex} = 335 nm, slits = 6.0-0.7).

Figure S45. The superposition of emission spectra of reference and Eu₂L₂A^S₂ ($\Phi_{overall}$ = 74.57%) (c = 1.00×10⁻⁵ M in CH₃CN; λ_{ex} = 335 nm, slits = 6.0-0.7).

4.4 Lifetime measurements

Figure S46. Excitated state decay curve (black line) with mono exponential fit (red line) of Eu_2L_2 ($c = 1 \times 10^{-5}$ M in CH₃CN, $\lambda_{ex} = 335$ nm, $\lambda_{em} = 612$ nm).

Figure S47. Excitated state decay curve (black line) with mono exponential fit (red line) of $Eu_2L_2A_2^{S}$ ($c = 1 \times 10^{-5}$ M in CH₃CN, $\lambda_{ex} = 335$ nm, $\lambda_{em} = 615$ nm).

Figure S48. Excitated state decay curve (black line) with mono exponential fit (red line) of $Eu_2L_2A_2^R$ ($c = 1 \times 10^{-5}$ M in CH₃CN, $\lambda_{ex} = 335$ nm, $\lambda_{em} = 615$ nm).

5 Pesticide Detection by disassembly

5.1 UV-Vis absorption and Luminescence Spectra

Figure S49. UV/Vis absorption spectra of L with equivalent $Et_3N(c = 2.0 \times 10^{-5} \text{ M})$, $Eu_2L_2(c = 1.0 \times 10^{-5} \text{ M})$, $OMA(c = 1.0 \times 10^{-4} \text{ M})$, $MSP-Na(c = 1.0 \times 10^{-4} \text{ M})$, $MOL(c = 1.0 \times 10^{-4} \text{ M})$, $MAL(c = 1.0 \times 10^{-4} \text{ M})$, $MET(c = 1.0 \times 10^{-4} \text{ M})$, $IPC(c = 1.0 \times 10^{-4} \text{ M})$ and $EMF(c = 1.0 \times 10^{-4} \text{ M})$ in H_2O .

Figure S50. UV titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MAL.

Figure S51. UV titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MOL.

Figure S52. UV titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MSP-Na.

Figure S53. UV titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of OMA.

Figure S54. UV titration spectra of Eu₂L₂ in H₂O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MET.

Figure S55. UV titration spectra of Eu_2L_2 in H_2O (c=1×10⁻⁵ M) upon addition of different equiv of IPC.

Figure S56. UV titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of EMF.

Figure S57. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MAL.

Figure S58. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MOL.

Figure S59. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MSP-Na.

Figure S60. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of OMA.

Figure S61. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of MET.

Figure S62. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of IPC.

Figure S63. Fluorescent titration spectra of Eu_2L_2 in H_2O ($c = 1 \times 10^{-5}$ M) upon addition of different equiv of EMF.

Figure S64. Fluorescence emission changes of Eu_2L_2 at 615nm when different pesticides were added.

Figure S65. Fluorescence emission changes of Eu_2L_2 at 615nm when different equivalents of OMA are added.

5.2 Quantum yields

Figure S66. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv MAL ($\Phi_{overall} = 3.86\%$) ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.6).

Figure S67. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv MOL ($\Phi_{overall} = 3.15\%$) ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.7).

Figure S68. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv MSP-Na ($\Phi_{overall} = 1.97\%$) ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.6).

Figure S69. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv OMA ($\Phi_{overall} = 0.96\%$) ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 7.0-0.6).

Figure S70. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv MET $(\Phi_{overall} = 2.21\%)$ ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.65).

Figure S71. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv IPC ($\Phi_{overall} = 2.22\%$) ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.65).

Figure S72. The superposition of emission spectra of reference and Eu₂L₂ with 10 equiv EMF $(\Phi_{overall} = 1.52\%)$ ($c = 1.00 \times 10^{-5}$ M in H₂O; $\lambda_{ex} = 336$ nm, slits = 8.0-0.6).

6 Mass spectra

Figure S73. ESI-TOF-MS spectra for EuL'₃ and EuL'₂ in CH₃CN with insets showing the observed and calculated isotopic patterns of the peaks.

Figure S74. ESI-MS spectrum for La_2L_2 in DMSO with insets showing the observed and calculated isotopic patterns of the peaks.

Figure S75. ESI-TOF-MS spectrum for Eu_2L_2 in DMSO with insets showing the observed and calculated isotopic patterns of the peak.

Table S1.	Comparison	of the	observed	and	simulated	signals	in the	ESI-TOF-MS	spectrum	of
Eu_2L_2 .										

Valence	Molecular formula	Observed	Simulated
-2	$(C_{38}H_{10}F_{12}N_{14}O)_2Eu_2(H_2O)_2(C_2H_6OS)_1$	1115.0279	1115.0360
-2	$(C_{38}H_{10}F_{12}N_{14}O)_2Eu_2(H_2O)_3(C_2H_6OS)_1$	1124.0324	1124.0412
-2	$(C_{38}H_{10}F_{12}N_{14}O)_2Eu_2(H_2O)_2(C_2H_6OS)_2$	1154.0344	1154.0429
-2	$\begin{array}{c} (C_{38}H_{10}F_{12}N_{14}O)_2Eu_2(H_2O)_4(C_2H_6OS)_2\\ (CH_3CN)_2 \end{array}$	1213.0439	1213.0800
-2	$\begin{array}{c} (C_{38}H_{10}F_{12}N_{14}O)_{2}Eu_{2}(H_{2}O)_{5}(C_{2}H_{6}OS)_{2} \\ (CH_{3}CN)_{2} \end{array}$	1222.0486	1222.0853
-2	$(C_{38}H_{10}F_{12}N_{14}O)_{2}Eu_{2}(H_{2}O)_{6}(C_{2}H_{6}OS)_{2}$ (CH ₃ CN) ₂	1231.0538	1231.0906
-2	$(C_{38}H_{10}F_{12}N_{14}O)_{2}Eu_{2}(H_{2}O)_{4}(C_{2}H_{6}OS)_{3}$ (CH ₃ CN) ₂	1253.0522	1253.0880
-2	$(C_{38}H_{10}F_{12}N_{14}O)_2Eu_2(H_2O)_5(C_2H_6OS)_3$ (CH ₃ CN) ₂	1262.0565	1262.0933

Figure S76. ESI-TOF-MS spectrum for Eu_2L_2 in H_2O with insets showing the observed and calculated isotopic patterns of the peaks.

Figure S77. ESI-TOF-MS spectrum for $Eu_2L_2A_2^S$ in CH₃CN with insets showing the observed and calculated isotopic patterns of the peaks.

Figure S78. LC-QTOF-MS spectrum for Eu_2L_2 with 10 equiv OMA in $H_2O(MS-neg)$ with insets showing the observed and calculated isotopic patterns of the peak.

Figure S79. ESI-TOF-MS spectrum for Eu_2L_2 with 10 equiv OMA in H_2O (MS-pos) with insets showing the observed and calculated isotopic patterns of the peaks.

7 Single crystal X-ray diffraction studies

Single crystal of Europium mononuclear complex EuL'₂ was obtained by slow diffusion of chloroform into the acetonitrile solution of the complexes over several weeks. The X-ray diffraction studies for macrocycles were carried out on Bruker D8 VENTURE photon II diffractometer with Iµs 3.0 microfocus X-ray source using APEX III program.^[5] Data reduction was performed with the SAINT and SADABS package. Both structures were solved by direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement using the SHELX software package.^[6] Solvent molecules were highly disordered and could not be reasonably located. These residual intensities were removed by PLATON/SQUEEZE routine.^[7]

CCDC- 2065023 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Identification code	EuL'2			
Empirical formula	C22 H10 Br2 Eu F12 N14 O3[+ solvent]			
Formula weight	1058.21			
Temperature	150(2) K			
Wavelength	0.71073 Å			
Crystal system	Tetragonal			
Space group	P4 ₃ 2 ₁ 2			
Unit cell dimensions	a = 17.598(2) Å	α= 90°.		
	b = 17.598(2) Å	β= 90°.		
	c = 15.093(2) Å	$\gamma = 90^{\circ}$.		
Volume	4673.9(13) Å ³			
Z	4			
Density (calculated)	1.504 Mg/m ³			
Absorption coefficient	3.136 mm ⁻¹			
F(000)	2020			
Crystal size	0.10 x 0.10 x 0.05 mm ³			
Theta range for data collection	2.315 to 21.724°.			
Index ranges	-18<=h<=18, -17<=k<=18, -15<=l<=15			
Reflections collected	16297			
Independent reflections	2763 [R(int) = 0.0911]			
Completeness to theta = 21.724°	99.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7447 and 0.4808			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2763 / 249 / 234			
Goodness-of-fit on F ²	1.094			
Final R indices [I>2sigma(I)]	R1 = 0.0853, wR2 = 0.2123			
R indices (all data)	R1 = 0.1002, wR2 = 0.2236			
Absolute structure parameter	0.039(13)			
Extinction coefficient	0.0058(11)			
Largest diff. peak and hole	2.992 and -2.062 e.Å ⁻³			

Table S2. Crystal data and structure refinement for EuL'₂.

Figure S80. Ortep drawing of the asymmetric unit in the crystal structure of EuL'₂ at 30% probability level.

8 References

- Z. Wang, L.-P. Zhou, L.-X. Cai, C.-B. Tian and Q.-F. Sun, *Nano Research*, 2020, 14, 398-403.
- [2] Z. Tian, X. Yang, B. Liu, D. Zhong and G. Zhou, *Journal of Organometallic Chemistry*, 2019, 895, 28-36.
- J. Sanning, P. R. Ewen, L. Stegemann, J. Schmidt, C. G. Daniliuc, T. Koch, N. L. Doltsinis,
 D. Wegner and C. A. Strassert, *Angew Chem Int Ed Engl*, 2015, 54, 786-791.
- [4] Horrocks, W. D. Jr.; Sudnick, D. R., Acc. Chem. Res. 1981, 14, 384-392.
- [5] APEX III, Data collection software (version 2017.3)
- [6] G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
- [7] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.