Supporting Information

Sandwich-like SnS₂/graphene multilayers for efficient lithium/sodium storages

Jiande Liu,^{ab} Yingfan Chang,^a Chen Chen,^a Pengqian Guo,^a Kai Sun,^a Dianliang Cao,^{ab} Yaodong Ma,^a Dequan Liu,^a Qiming Liu,^a Jie Liu,^b and Deyan He,*^a

^aSchool of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of the

Ministry of Education, Lanzhou University, Lanzhou 730000, China

^bInstitute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

*Corresponding author.

Fig. S1 In-plane structures of (a) graphene nanosheet with a hexagonal unit cell, a = 0.2460 nm, and (b) SnS₂ nanosheet with a hexagonal unit cell, a = 0.3649 nm. To attain full hybridization via a solution-phase direct assembly method, the mixing mass ratio was calculated based on a hypothesized area-matching model. As an approximate, the ideal graphene structure was used to estimate the area matching between PDDA-graphene and SnS₂. The area weight density for graphene is $W(\text{graphene}) = 2M(\text{C}) / (a \times a \times \sin 120^{\circ} \times N_{\text{A}})$, and the one for SnS₂ is $W(\text{SnS}_2) =$ $2M(\text{SnS}_2) / (a \times c \times N_{\text{A}})$, where N_{A} is Avogadro's number, M(C) and $M(\text{SnS}_2)$ are the formula weights of carbon and SnS₂, respectively. Accordingly, the mass ratio between SnS₂ and PDDAgraphene under the area balance 1:1 is $m(\text{SnS}_2)/m(\text{graphene}) = W(\text{SnS}_2)/W(\text{graphene}) = ~3.45:1$.

Fig. S2 (a) SEM image of the Li_xSnS_2 . (b) Raman spectra of the pristine SnS_2 , Li_xSnS_2 and exfoliated SnS_2 nanosheets. (c) TEM image and (d) corresponding SAED pattern of the exfoliated SnS_2 nanosheets.

Fig. S3 (a) SEM image and (c) the corresponding EDS image of PDDA-graphene nanosheets. (b) Raman spectra of GO and PDDA-graphene nanosheets.

Fig. S4 Zeta-potentials of suspensions for the graphene oxide, PDDA-graphene and the exfoliated SnS_2 nanosheets.

Fig. S5 (a) CV curves of the SnS_2 /graphene multilayers anode under different scan rates for sodium storage. (b) Normalized contribution ratio of the capacitive to diffusion currents for the SnS_2 /graphene multilayers at a scan rate of 1 mV s⁻¹. (c) Contribution of the capacitive and

diffusion-controlled charge transport processes at different scan rates. (d) Linear relationship between anode peak current (i_p) and square root of scan rate ($v^{1/2}$) for two kinds of batteries.

The Randles-Sevcik equation is utilized to calculate the diffusion coefficients $(D, \text{cm}^2\text{s}^{-1})$ of lithium and sodium ions during discharge and charge processes.

$$i_{\rm p} = 2.69 \times 10^5 n^{3/2} A D_{1/2} v^{1/2} C_{\rm Li^+/Na^-}$$

where i_p is the anodic peak current (A), *n* is the transferring electron number per molecule oxidized, *A* is the surface area of electrode (cm²), *v* is the scan rate (V s⁻¹), and $C_{\text{Li}^+/\text{Na}^+}$ is the concentration of Li⁺ or Na⁺ in electrolyte (1 mol L⁻¹). According to the above equation, we can know that there is a linear relationship between i_p and $v^{1/2}$. Based on the varied anodic i_p at different scan rates, the fitting lines are presented in Fig. S5d. The slopes of the SnS₂/graphene multilayers anodes are 1.39 and 0.19 for LIB and SIB, respectively. Then, we can calculate the lithium and sodium diffusion coefficients in the SnS₂/graphene multilayers based on the charge number of the oxidation reaction and the specific area of the electrode, which are 1.04×10^{-8} and 1.86×10^{-10} cm²/s, respectively.

Materials		Initial discharge capacity (mAh g ⁻¹), Initial coulombic efficiency, (Current density, (mA g ⁻¹))	Cycling stability capacity (mAh g ⁻¹), (Cycle number, Current density (mA g ⁻¹))	Rate capabili	Ref.				
SnS ₂ /graphene multilayers	Li	1016,61%(200)	160(2000,2000)	502(0.1)	330(0.5)	273(1)	206(2)	171(3)	This work
	Na	1001,41.6%(200)	142(1000,1000)	415(0.1)	282(0.2)	225(0.3)	185(0.5)	141(1)	I NIS WORK
SnS ₂ /graphene AS	Li	4030, 37% (50)	656(50, 30)	642(0.05)	525(0.1)	419(0.25)	325(0.5)	240(1)	s1
SnS₂@graphene SnS₂-RGO	Li Li	1740, (330) 1505,71.6%	504(200,330) 657(40,660)						s2 s3
graphene/SnS ₂ /CC	Li	1987.4, 52.5% (500)	638.1(150,500)	725.9(0.3)	723.8(0.6)	641.2(1)	540(1.5)	419(2)	s4
MC-SnS2 NSs SnS ₂ -rGO SnS ₂ -graphene	Li Li Li	1552.9(100) 1032,73.4% (100) 967.6,79.2 % (0.2C)	428.8(50,100) 534(100,100) 570.0(30,0.2C)						s5 s6 s7
rGO-SnS ₂ Hybrid	Li	1600, (100)	525(50,100)	600(0.1)				400(1.2)	so s9
SnS ₂ /3DG hybrid LEGr@SnS ₂ SnS ₂ @G SnS ₂ /GNS-RS NC/SnS/G	Li Li Li Li	1559,53.1%(200) 1061,75%(300) 1339,54.1%(20) 1724, (58.4) 2070 3 62%(100)	451(50,1000) 664 (200,300) 670(60,20) 577(50,58.4) 500(25 100)	771(0.2) 1022(0.1) 632(0.04) 1000(0.006) 740 (0.1)	570(0.5) 983(0.2) 607(0.08) 1000(0.03) 555 (0.2)	529 (0.8) 682(0.5) 572(0.16) 900(0.06) 370 (0 5)	433(1) 557(0.8) 519(0.32) 700(0.29) 230 (1)	174(2) 467(1) 463(0.64) 300(0.58) 120 (2)	s10 s11 s12 s13 s14
tin sulfides/NRGO	Li	1240,47%(200)	562(200,200)	597(0.2)	555 (012)	0,0 (0.0)	200 (2)	402(2)	s15
SnS ₂ NP/GNs TC-RGO-CNT C-SnS ₂ @rGO SnS ₂ /Graphene/SnS ₂	Li Li Li Li	1830,49%(100) 1401,50%(50) 2349,58.1%(100) 1733.6,81%(100)	~600(150,100) 500(150,50) 704.0(1000,2000) 1357(200,100)	731(0.1) 600(0.05) 1298(0.05) 1342 (1)	674(0.5) 500(0.1) 1203 (0.1) 1244 (2)	621(1) 340(0.2) 1021 (0.5) 1067 (5)	525(5) 300(0.4) 930 (1) 844 (10)	200(10) 100(0.8) 749 (2)	s16 s17 s18
SnS2-NGS	Na Li Na	1860,66.8%(100) 922.5,66%(200)	1133(100,100) 914(150,800) 450(100,200) 480(1000,1000)	1295 (0.1) 1183(0.2) 630(0.2) 760(0.18)	1020(0.5) 500(0.5) 630(0.46)	950 (5) 880(1) 430(1) 560(0 93)	765 (10) 750(2) 342(2) 510(1 86)	200(8) 180(8) 315(7/43)	s19 s20 s21

Table s1 Comparison of the cycling stability and rate capability of the SnS₂-based composites electrodes.

SnS ₂ /G	Na	1250.1,69% (200)	200(100,200)	650(0.2)				326(4)	s22
SnS ₂ -RGONRP	Na	660,74.7% (200)		508(0.1)	426 (0.5)	398 (1)	307 (5)	244 (10)	s23

References

- s1. X. Jiang, X. Yang, Y. Zhu, J. Shen, K. Fan and C. Li, *J. Power Sources* 2013, **237**, 178.
- s2. Z. Jiang, C. Wang, G. Du, Y. J. Zhong and J. Z. Jiang, J. Mater. Chem. 2012, 22, 9494.
- s3. P. Chen, Y. Su, H. Liu and Y. Wang, Acs App. I Mater. Inter. 2013, 5, 12073.
- s4. M. Wang, Y. Huang, Y. Zhu, X. Wu, N. Zhang and H. Zhang, J. Alloys Compd. 2019, **774**, 601.
- s5. J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou and T. Lu, *Electrochim. Acta* 2013, **111**, 862.
- s6. J. Yin, H. Cao, Z. Zhou, J. Zhang and M. Qu, J. Mater. Chem. 2012, 22, 23963.
- s7. Q. Wang, Y.-X. Nie, B. He, L.-L. Xing and X.-Y. Xue, Solid State Sci. 2014, **31**, 81.
- s8. D. Luo, F. Lin, W. Xiao, Z. Li, C. Luo and X. Li, J. Chin. Chem. Soc-TAIP. 2016, 63, 902.
- s9. M. H. Modarres, H. W. Lim, C. George and M. D. Volder, J. Phys. Chem. C 2017, **121**, 13018.
- s10. Z. X. Huang, Y. Wang, J. I. Wong and H. Y. Yang, *2D Materials* 2015, **2**, 024010.
- s11. J. Li, S. Han, C. Zhang, W. Wei, M. Gu and L. Meng, Acs Appl. Mater. Inter. 2019, 11, 22314.
- s12. X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, P. Wang, #X and Guoxiu, CHEM-ASIAN J. 2014, 9, 1611.
- s13. Marappan, Sathish, Satoshi, Mitani, Takaaki, Tomai, Itaru and Honma, *J. Phys. Chem. C* 2012, **116**, 12475.
- s14. T. Ma, L. Sun, Q. Niu, Y. Xu, K. Zhu, X. Liu, X. Guo and J. Zhang, *Electrochim. Acta* 2019, **300**, 131.
- s15. D. H. Youn, S. K. Stauffer, P. Xiao, H. Park, Y. Nam, A. Dolocan, G. Henkelman, A. Heller and C. B. Mullins, *Acs Nano* 2016, **10**, 10778.
- s16. Wei, Wei, Fang-Fang, Jia, Ke-Feng, Wang, Peng and Qu, *Chinese Chem. Lett.* 2017, 28,324.
- s17. A. Abbasnezhad, H. Asgharzadeh, A. A. Hamedani and S. H. Soytas, *Dalton T* 2020, **49**, 5890.
- s18. Y. F. Li, S. G. Wang, Y. H. Shi, C. Y. Fan and H. M. Xie, *Dalton T*, 2020, **49**, 15874.
- s19. Y. Jiang, D. Song, J. Wu, Z. Wang, S. Huang, Y. Xu, Z. Chen, B. Zhao and J. Zhang, *Acs Nano* 2019, **13**, 9100.
- s20. Y. Jiang, Y. Feng, B. Xi, S. Kai, K. Mi, J. Feng, J. Zhang and S. Xiong, J. Mater. Chem. A 2016, 4,10719.
- s21. Xiong, Shenglin, Jiang, Yong, Wei, Min, Feng, Jinkui, Ma and Yuchen, *Energy Environ. Sci.* 2016, **9**, 1430.
- s22. Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang and H. Yuan, *Nanoscale* 2015, 7, 1325.
- s23. Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao and J. Qiu, ACS Appl. Mater. Inter. 2017, **9(18)**, 15484.