Sterically Hindered Ortho-Substituted Phosphatriptycenes as Configurationally Stable P-Chirogenic Triarylphosphines

Lei Hu,^{a,b} Damien Mahaut,^a Nikolay Tumanov,^a Johan Wouters,^a Laurent Collard,^b

Raphaël Robiette,*,b Guillaume Berionni*,a

a University of Namur, Department of Chemistry, Namur Institute of Structured Matter. Rue de Bruxelles 61, 5000 Namur, Belgium

b Université catholique de Louvain, Institute of Condensed Matter and Nanosciences. Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium

Table of Contents

1. General Experimental procedures	S2
2. Determination of Tolman electronic parameter.	S23
3. Copies of all NMR spectra	S24
4. Computational studies	S80
5. Chiral HPLC analysis	S105
6. Crystallographic data	S106
7. References	S112

1. General Experimental procedures

1.1 General information

Commercial reagents were used as received from Sigma Aldrich, ABCR, TCI, FluoroChem (> 97% purity), and used without further purification. Unless otherwise noted, all reactions were carried out using purified and dried solvents in a Schlenk flask or in a high-performance glovebox under an inert atmosphere (Argon or Nitrogen). Dichloromethane (DCM), diethyl ether (Et₂O), tetrahydrofuran (THF), and toluene were dried over a Pure Solv[™] solvent purification system. Thin layer chromatography was performed using Merck aluminum roll silica gel 60-F254 monitored by UV light at 254 nm. Flash chromatography was performed using silica gel Silica Flash® 40-63 micron (230-400 mesh). TLC detection was accomplished by irradiation with a UV lamp at 265 or 313 nm. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were obtained on a JEOL ECX 400 MHz or 500 MHz in CDCl₃ or CD_2CI_2 or CD_3CN . The chemical shifts (δ) reported are given in parts per million (ppm). The signal splitting patterns were described as s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, dt = doublet of triplet, td = triplet of doublet, tt = triplet of triplet, ddd = doublet of doublet of doublet, bs= broad, and m = multiplet, with coupling constants (J) in hertz (Hz). Chemical shifts (δ) are reported in ppm and referenced indirectly to residual solvent signals. Infrared (IR): The IR spectra were acquired on a Perkin-Elmer Spectrum II FT-IR System UATR mounted with a diamond crystal on neat compounds. Selected absorption bands are reported by wavenumber (cm⁻¹). The spectra were measured between wavenumbers of 4000-450 cm⁻¹. High resolution mass spectra (HRMS) were recorded on a *Thermo Orbitrap* Exactive device and performed by the Molecular Structural Analysis (ASM) technological platform of the Université catholique de Louvain (UCLouvain). 2-Br-3-CF₃-benzaldehyde,¹ diarylmethanol compound **21**,² and 9-phosphatriptycene³ were prepared according to literature procedures.

1.2 General procedure and characterization data for bis-(2-bromo-6-chlorophenyl)-(2-bromo-3chlorophenyl)-phosphine 13a

Under an argon atmosphere, a 2.5 M solution of *n*-BuLi (17.0 mL, 42.56 mmol, 1.0 equiv) in hexane was added dropwise to a solution of diisopropylamine (6.0 mL, 42.56 mmol, 1.0 equiv.) in THF-ether (1:1, 40 mL) at -110 °C. After stirring for 30 min, a solution of 1-bromo-3-chloro-benzene (5.0 mL, 42.56 mmol, 1.0 equiv) in THF-ether (1:1, 15 mL) was added dropwise and stirred for 2 additional hours at the same temperature. Then, a solution of PCl₃ (1.1 mL, 12.8 mmol, 0.3 equiv) in 10 mL of THF-ether (1:1) was added dropwise to the reaction mixture. After maintaining the temperature at -110 °C for 2 hours, the resulting solution was allowed to warm up to room temperature overnight. The reaction mixture was quenched with a saturated solution of NH₄Cl (80 mL) and the subsequent aqueous layer was extracted three times with EtOAc (80 mL). The gathered organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (cyclohexane: AcOEt = 20:1) to provide **13a** as a colourless solid (3.1 g, 5.2 mmol, 41%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated solution of the phosphine **13a** in AcOEt.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (ddd, *J* = 8.0, 3.2, 1.2 Hz, 1H), 7.53 (ddd, *J* = 7.9, 3.1, 1.2 Hz, 1H), 7.46 (dt, *J* = 7.9, 1.5 Hz, 1H), 7.37 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.32 (dt, *J* = 8.0, 1.3 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.16 – 7.09 (m, 2H), 6.98 – 6.95 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.26 (d, J = 9.0 Hz), 141.07 (d, J = 8.5 Hz), 139.28, 139.13, 135.32 (d, J = 3.2 Hz), 134.42 (d, J = 6.7 Hz), 134.16 (d, J = 10.3 Hz), 132.86 (d, J = 2.4 Hz), 132.74 (d, J = 2.0 Hz), 132.49 (s), 132.12 (d, J = 2.8 Hz), 131.58 (s), 131.39 (d, J = 2.4 Hz), 131.07 (s), 130.97 (s), 130.62 (s), 130.51 (d, J = 1.1 Hz), 128.02 (d, J = 0.7 Hz).

³¹P NMR (161 MHz, CDCl₃): δ 13.85.

HRMS (ESI⁺): Calcd. for C₁₈H₁₀Br₃Cl₃P [M + H]⁺: 602.70845, found: 602.70836.

m.p.: 196-197 °C

TLC: $R_f = 0.59$ (cyclohexane: AcOEt = 5:1)

1.3 General procedure and characterization data for hexa-ortho-substituted phosphine 13b

Under an argon atmosphere, a 2.5 M solution of *n*BuLi (7.4 mL, 18.37 mmol, 1.1 equiv.) in hexane was added dropwise to a solution of 2,2,6,6-tetramethylpiperidine (3.1 mL, 18.37 mmol, 1.1 eq) in THF-ether (1:1, 15 mL) at -110 °C over 10 min. This freshly prepared solution of TMPLi was slowly added to a THF-ether (1:1, 60 mL) solution of 1,3-dibromobenzene (2.0 mL, 16.7 mmol, 1.0 equiv.) at -110 °C, and the reaction mixture was stirred for 3 h at this temperature. Then, neat PCl₃ (0.28 mL, 5.0 mmol, 0.3 eq.) was added dropwise to the reaction mixture and the reaction mixture was stirred for 3 additional hours at this temperature and then allowed to warm up to room temperature overnight. The reaction mixture was quenched with a saturated solution of NH₄Cl (2 mL) and the solvents were removed under reduced pressure. The resulting crude product was purified by flash chromatography

on silica gel (cyclohexane: DCM = 10:1) to provide **13b** as a white solid (1.5 g, 2.1 mmol, 42%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated solution of the corresponding phosphine **13b** in AcOEt.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (ddd, *J* = 6.6, 2.8, 1.5 Hz, 1H), 7.58 (dd, *J* = 7.9, 2.2 Hz, 4H), 7.09 – 7.03 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 139.37 (d, J = 15.5 Hz), 136.00 (d, J = 26.1 Hz), 134.55, 134.24, 134.00, 133.83, 133.51, 131.43, 131.38, 131.15, 128.34, 126.07.

³¹P NMR (161 MHz, CDCl₃) δ 27.30.

TLC: $R_f = 0.43$ (cyclohexane: DCM = 20:1)

1.4 General procedure and characterization data for 9-phenyl-9-phosphafluorene derivative 15a

A 1.9 M solution of *t*BuLi (3.5 mL, 6.6 mmol, 4.0 equiv.) in hexane was added dropwise to a solution of the selected phosphine **13a** (1.00 g, 1.65 mmol, 1.0 equiv.) in THF/ Et₂O (15 mL/15 mL) at –110 °C and the reaction mixture was stirred for 3 h at this temperature. A solution of phenyl chloroformate (0.2 mL in 3 mL of THF, 1.73 mmol, 1.05 equiv.) was added dropwise to the reaction mixture at –110 °C and the reaction mixture was stirred for 4 additional hours at this temperature and then allowed to warm up to room temperature overnight. The reaction mixture was quenched with a saturated solution of NH₄Cl (2 mL) and the solvents were removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (cyclohexane: AcOEt = 15:1 to 7:1) to provide **15a** as a colourless solid (0.44 g, 0.78 mmol, 47%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated solution of the 9-phenyl-9-phosphafluorene compound **15a** in AcOEt.

¹H NMR (400 MHz, CD_2Cl_2) δ 8.21 (d, J = 8.0 Hz, 1H), 8.04 (ddd, J = 7.4, 5.3, 1.0 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.87 (ddd, J = 7.7, 3.4, 1.1 Hz, 1H), 7.58 – 7.40 (m, 9H), 7.35 (m, 6H).

¹³C NMR (100 MHz, CD_2CI_2) δ 167.93, 167.56 (d, J = 3.8 Hz), 151.50 (d, J = 10.7 Hz), 144.73, 144.65 (d, J = 1.3 Hz), 144.26, 143.23, 142.67, 141.51, 141.28 (d, J = 5.0 Hz), 140.78 (d, J = 5.5 Hz), 137.15, 136.42 (d, J = 18.3 Hz), 133.90, 133.63, 133.42, 132.46 (d, J = 2.1 Hz), 131.01 (d, J = 1.9 Hz), 130.71, 130.22 (d, J = 5.2 Hz), 129.20, 127.99 (d, J = 1.7 Hz), 127.77 (d, J = 15.6 Hz), 127.68 (d, J = 14.5 Hz), 126.91 (d, J = 11.6 Hz), 124.79, 122.30 (d, J = 1.7 Hz), 122.17.

³¹P NMR (161 MHz, CD₂Cl₂) δ -13.93.

HRMS (ESI⁺): Calcd. for C₃₂H₂₀O₄Cl₂P [M + H]⁺: 569.04708 found: 569.04694.

m.p.: 199-200 °C

TLC: $\mathbf{R}_f = 0.59$ (cyclohexane: AcOEt = 5:1)

1.5 General procedure and characterization data for 1,8,11-tris-chloro-9-phospha-10hydroxytriptycene 16a and 9-phenyl-9-phosphorfluorene derivative 15b

A 1.9 M solution of *t*BuLi (8.2 mL, 15.62 mmol, 5.5 equiv.) in hexane was added dropwise to a solution of the selected phosphine **13a** (1.70 g, 2.84 mmol, 1.00 equiv.) in THF/ Et₂O (25 mL/25 mL) at –130 °C and the reaction mixture was stirred for 4 h at this temperature. A solution of phenyl chloroformate (0.4 mL in 10 mL of THF, 3.1 mmol, 1.1 equiv.) was added dropwise to the reaction mixture over 10 min at –130 °C and the reaction mixture was stirred for 4 additional hours at this temperature and then allowed to warm up to room temperature overnight (**Note**: If the reaction temperature and the stiring speed are not well controlled, 9-phenyl-9-phosphorfluorene derivative **15b** is obtained as a side product in variable yields as a white powder. The reaction mixture was quenched with a saturated solution of NH₄Cl (5 mL) and the solvents were removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (cyclohexane: AcOEt = 15:1) to provide **16a** as a white solid (0.50 g, 1.28 mmol, 45%).

¹H NMR (400 MHz, CD₂Cl₂) δ 7.88 (dd, *J* = 7.6, 1.2 Hz, 2H), 7.79 (ddd, *J* = 11.5, 7.1, 1.3 Hz, 1H), 7.27 (t, *J* = 7.8 Hz, 2H), 7.24 – 7.18 (m, 3H), 7.10 (ddd, *J* = 8.1, 7.2, 2.0 Hz, 1H), 5.39 (s, 1H)

¹³C NMR (100 MHz, CD₂Cl₂) δ 153.17 (d, *J* = 2.2 Hz), 133.42, 133.33, 133.31, 132.98, 130.41 (d, *J* = 1.4 Hz), 129.31, 128.18, 128.03, 127.27, 127.23, 122.13, 69.10.

³¹P NMR (161 MHz, CD₂Cl₂) δ -88.92.

HRMS (ESI⁺): Calcd. for C₁₉H₁₁OCl₃P [M + H]⁺: 390.96076 found: 390.96058.

TLC: $R_f = 0.22$ (cyclohexane: AcOEt = 5:1)

¹H NMR (500 MHz, CDCl₃) δ 7.92 (ddd, *J* = 7.5, 5.3, 1.0 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.36 – 7.22 (m, 5H), 7.19 – 7.11 (m, 2H), 1.45 (s, 9H), 1.25 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 216.09, 214.82 (d, *J* = 3.9 Hz), 153.63 (d, *J* = 44.3 Hz), 144.49 (d, *J* = 7.3 Hz), 140.79 (d, *J* = 4.5 Hz), 140.69 (s), 140.57 (d, *J* = 1.6 Hz), 137.95 (d, *J* = 4.9 Hz), 137.18 (s), 136.48 (d, *J* = 18.2 Hz), 130.95, 130.93, 130.55 (d, *J* = 20.7 Hz), 130.28 (d, *J* = 1.8 Hz), 127.60 (d, *J* = 33.9 Hz), 127.13, 127.06 (d, *J* = 2.7 Hz), 125.64, 123.18 (d, *J* = 11.8 Hz), 122.85, 46.10, 45.20, 28.17 (d, *J* = 3.3 Hz), 27.24.

³¹P NMR (202 MHz, CDCl₃) δ -11.51.

HRMS (ESI⁺): Calcd. for C₂₈H₂₈O₂Cl₂P [M + H]⁺: 497.11985 found: 497.11976.

m.p.: 178-180 °C

TLC: $\mathbf{R}_f = 0.46$ (cyclohexane: AcOEt = 5:1)

1.6 General procedure and characterization for bis-(halogenated-phenyl)-methanol precursors

Representative synthesis of **21**: In a pre-dried 500 mL Schlenk flask under argon atmosphere is added 1,2-diiodobenzene (13.0 mL, 100.00 mmol). Then, 150 mL of anhydrous THF are added and the mixture is cooled at -40°C (acetonitrile/N₂ cooling bath). A solution of *i*-PrMgCl (50.0 mL, 2.0 M, 100 mmol, 1.00 equiv) in THF is added dropwise to the resulting solution, which is stirred at the same temperature for 3h. 2-Bromobenzaldehyde is then added dropwise (9.8 mL, 84.00 mmol, 0.85 equiv) and the resulting solution is stirred for 1h at -40°C before being allowed to warm up to room temperature overnight. A milky white solution is obtained. The reaction is finally quenched with aqueous NH₄Cl (150 mL). The two phases are separated. The aqueous phase is extracted with AcOEt (3 x 100 mL) and combined organic phases are dried over MgSO₄. Solvents are then removed under reduced pressure. The crude product was purified by silica gel column chromatography (eluant: cyclohexane:AcOEt = 4:1) affording the product as a white solid **21** (23.54 g, 60.69 mmol,72%). The same method can be used to obtain compounds **17a-c** and **27**.

¹H NMR (400.0 MHz, CDCl₃): δ 7.87 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.24 – 7.16 (m, 1H), 7.02 (td, *J* = 7.6, 1.9 Hz, 1H), 6.24 (s, 1H, C_{sp}³-H), 2.55 (s, 1H, OH). The ¹H NMR is consistent with the reported data from the literature.²

¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.2 Hz, 1H), 7.33 (td, J = 7.5, 1.1 Hz, 1H), 7.29 (td, J = 8.0, 5.4 Hz, 1H), 7.23 (dd, J = 7.8, 1.7 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.10 (td, J = 8.2, 1.5 Hz, 1H), 7.01 (td, J = 1.7 Hz, 1H, C_{sp}³-H), 6.23 (s, 1H, C_{sp}³-H), 2.70 (s, 1H, OH).

¹⁹F NMR (376 MHz, CDCl₃) δ -104.98 (t, *J* = 8.0 Hz).

NMR is consistent with the reported data from the literature.²

¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.30 (td, *J* = 7.5, 1.2 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.17 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.01 (td, *J* = 7.6, 1.7 Hz, 1H), 6.20 (d, *J* = 4.3 Hz, 1H, C_{sp}³-H), 2.85 (d, *J* = 4.3 Hz, 1H, OH).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.68 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.60 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.37 – 7.30 (m, 1H), 7.16 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.03 (td, *J* = 7.7, 1.7 Hz, 1H), 6.32 (s, 1H, C_{sp}^{3} -H), 2.82 (s, 1H, OH). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.92.

¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.42 (dd, *J* = 7.3, 2.2 Hz, 1H), 7.28 (m, 2H), 7.25 – 7.20 (m, 2H), 7.17 (td, *J* = 1.8 Hz, 1.7 Hz, 1H), 6.40 (d, *J* = 4.2 Hz, 1H, C_{sp}³-H), 2.67 (d, *J* = 4.2 Hz, 1H, OH).

1.7 General procedure and characterization data for trityl precursors

Representative synthesis with **18b**: In a 500 mL flask equipped with a magnetic stirrer is added (2bromo-3-chloro-phenyl)(2-iodophenyl)methanol **17b** (35.0 g, 83.0 mmol, 1.0 equiv.), HFIP (150 mL), and benzene (37.0 mL, 414.8 mmol, 5.0 equiv.). Trifluoromethanesulfonic acid (0.73 mL, 8.3 mmol, 10 mol%) is then quickly added (in one shot) by means of a glass syringe (<u>Warning</u>: use a glass syringe, the triflic acid is very corrosive and will rapidly destroy a plastic syringe). The reaction flask is sealed with a glass stopper with a metallic clip and is stirred at 95 °C for 16 h. The reaction mixture is then allowed to cool down to room temperature before opening and evaporation under reduced pressure to dryness.⁴ The crude solid residue was triturated in MeOH and a white solid precipitated and **18b** (28.5 g, 59.14 mmol, 71%) was obtained by filtration and by washing the solid with MeOH. The product **18b** was nearly pure and was used in the next step without further purification. Compound **18a**, **18c**, **22** and **29** were prepared with a similar procedure to that described for the synthesis of compound **18b**.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.37 – 7.23 (m, 4H), 7.18 (td, *J* = 8.0, 5.6 Hz, 1H), 7.08 – 7.00 (m, 3H), 6.96 (td, *J* = 7.6, 1.7 Hz, 1H), 6.79 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.59 (d, *J* = 7.8 Hz, 1H), 6.03 (s, 1H, C_{sp}³-H).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.76.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.3 Hz, 1H), 7.39 (dd, J = 8.0, 1.6 Hz, 1H), 7.35 – 7.26 (m, 3H), 7.26 – 7.22 (m, 1H), 7.15 (t, J = 7.9 Hz, 1H), 7.04 – 7.00 (m, 2H), 6.96 (td, J = 7.6, 1.7 Hz, 1H), 6.77 (dd, J = 7.8, 1.7 Hz, 1H), 6.69 (ddd, J = 7.8, 1.6, 0.4 Hz, 1H), 6.06 (s, 1H, C_{sp}³-H).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.33 - 7.25 (m, 4H), 7.25 - 7.21 (m, 1H), 7.05 - 6.89 (m, 4H), 6.74 (d, *J* = 7.7 Hz, 1H), 6.13 (s, 1H, C_{sp}³-H).

¹⁹F NMR (376 MHz, CDCl₃) δ -61.99.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.30 – 7.17 (m, 2H), 7.17 – 7.07 (m, 2H), 7.04 – 6.91 (m, 2H), 6.77 (d, *J* = 7.7 Hz, 2H), 6.43 (s, 1H), 5.97 (s, 1H, C_{sp}³-H), 2.21 (s, 3H), 2.15 (s, 3H).

¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.39 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.24 (td, *J* = 7.6, 1.5 Hz, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 7.08 (t, *J* = 6.1 Hz, 1H), 7.00 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.96 (td, *J* = 2.00, 1.85, 1.81 Hz, 1H), 6.75 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.66 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.40 (d, *J* = 2.0 Hz, 1H), 6.01 (s, 1H, C_{sp}³-H), 2.21 (s, 3H), 2.14 (s, 3H).

1.8 General procedure and characterization data for trityl precursors 20a-c

Representative synthesis for 20b: The triphenylmethane compound 18b was dissolved in dichloromethane (50 mL) and cooled to 0 °C. Meanwhile, 3-chloroperoxybenzoic acid (16.6 g, 70%-75%, 74 mmol, 1.25 equiv.) was added as a solid in portions over 10 mins. This mixture was stirred at 0 °C for 10 min and then trifluoromethanesulfonic acid (16 mL, 183.3 mmol, 3.1 eq.) was added via glass syringe over the course of 15 min. The reaction mixture turned dark brown. After an additional 30 min, the reaction mixture was allowed to warm to room temperature and stirred for 2 hours, and then the solvents (CH₂Cl₂ and TfOH) were removed under reduced pressure. The solid material was suspended in 200 mL of diethyl ether and 200 mL of water, and then solid potassium iodide (49 g, 295.7 mmol, 5.0 equiv.) was added and the mixture was shaken vigorously for 5 min, during which time a fine yellow precipitate developed. The precipitate was filtrated and washed with water and diethyl ether to afford the corresponding iodonium compound **19b** as a yellow solid (29.9 g, 49.19 mmol, 83%). Next, this iodonium compound 19b (26 g, 42.77 mmol) was sealed in a Schlenk tube under N₂ and heated to 200 °C for 15 min, and then cooled to room temperature. The resulting dark violet residue was extracted with dichloromethane (150 mL) and washed successively with saturated aqueous sodium thiosulfate (100 mL), water (100 mL) and saturated aqueous sodium chloride (100 mL). The organic phase was dried over magnesium sulfate, filtered, and concentrated to dryness under reduced pressure.⁵ The resulting crude product was recrystallized from methanol to give the desired product as an orange powder 20b (15.9 g, 26.9 mmol, 61%). Similarly, compounds 20a and 20c were prepared by the same procedure from the trityl precursor 18a and 18c, respectively.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.30 – 7.22 (m, 2H), 7.19 (td, *J* = 8.0, 5.5 Hz, 1H), 7.07 (td, *J* = 8.2, 1.5 Hz, 1H), 6.98 (td, *J* = 7.6, 1.6 Hz, 2H), 6.68 (dd, *J* = 7.7, 1.6 Hz, 2H), 6.49 (dd, *J* = 7.7, 0.6 Hz, 1H), 6.03 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 147.17, 143.89, 140.34, 134.65, 130.62, 128.78, 128.25, 128.16 (d, J = 8.2 Hz), 126.47 (d, J = 3.3 Hz), 115.03 (d, J = 23.1 Hz), 113.67 (d, J = 20.3 Hz), 100.00, 65.31 (d, J = 2.9 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.64.

HRMS (ESI⁺): Calcd. for $C_{19}H_{12}Br_1F_1I_2$ [M + H]⁺: 591.81959, found: 591.81903.

m.p.: 148-150 °C

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 2H), 7.42 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.20 – 7.12 (m, 1H), 6.99 (td, *J* = 7.7, 1.4 Hz, 2H), 6.75 – 6.64 (m, 2H), 6.60 (dd, *J* = 7.8, 1.3 Hz, 1H), 6.05 (s, 1H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 144.09, 143.90, 140.39, 136.13, 130.80, 129.29, 129.08, 128.83, 128.32, 127.82, 126.97, 100.04, 66.62.

HRMS (ESI⁺): Calcd. for $C_{19}H_{12}Br_1CI_1I_2$ [M + H]⁺: 609.78725, found: 609.79279.

m.p.: 188-190 °C

¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 2H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 2H), 7.00 (t, *J* = 7.2 Hz, 2H), 6.90 (d, *J* = 7.6 Hz, 1H), 6.66 (s, 2H), 6.14 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 144.17, 143.81, 140.52, 134.42, 131.64 (q, *J* = 30.5 Hz), 128.93, 128.40, 127.12, 126.67(q, *J* = 5.5 Hz), 124.75, 124.62, 121.90, 103.60, 65.90.

¹⁹F NMR (476 MHz, CDCl₃) δ -62.02.

HRMS (ESI⁺): Calcd. for C₂₀H₁₂Br₁F₃I₂ [M + H]⁺: 641.81640, found: 641.82411.

m.p.: 140 °C

1.9 General procedure and characterization data for the iodonium precursors 23 and 30

Trityl Compounds **23** and **30** were prepared with a similar procedure to that described for the synthesis of compound **19a-c**, and the crude products were repeated washings with Et_2O and water afforded the product **23** (88%) and **30** (83%) as a yellow fine powder, separately.

¹H NMR (400 MHz, $(CD_3)_2SO$) δ 8.23 (dd, J = 35.5, 7.6 Hz, 2H), 7.62 (t, J = 8.1 Hz, 2H), 7.41 (dd, J = 6.7, 4.6 Hz, 2H), 7.26 (m, 3H), 7.04 (d, J = 8.3 Hz, 1H), 6.30 (s, 1H), 2.58 (s, 3H), 2.52 (s, 3H).

 ^{13}C NMR (100MHz, (CD_3)_2SO) δ 139.07, 138.68, 138.38, 137.81, 135.25, 135.14, 134.73, 133.34, 133.33, 131.55, 130.98, 129.90, 129.60, 129.30, 127.51, 124.22, 123.70, 117.37, 55.41, 25.01, 20.30.

m.p.: The compound liquifies and decomposes (deep purple color) at 155°C

30

¹H NMR (500 MHz, $(CD_3)_2SO$) 8.30 (dd, J = 7.5, 0.9 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.63 (m, 2H), 7.43 (m, 2H), 7.33 (t, J = 8.0 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.35 (s, 1H), 2.61 (s, 3H), 2.54 (s, 3H).

 ^{13}C NMR (126 MHz, (CD_3)_2SO) δ 138.73, 138.69, 138.22, 137.84, 137.77, 135.91, 135.40, 135.21, 133.33, 130.89, 130.18, 130.07, 129.62, 129.31, 128.23, 124.73, 123.87, 117.68, 56.13, 25.06, 20.23.

m.p.: The compound liquifies and decomposes (deep purple color) at 156°C

1.10 General procedure and characterization data for the trityl precursor 28

The same prepared procedure of **17b** was adapted for the preparation of compound **27**. In a 50 mL flask equipped with a magnetic stirrer was added (2-bromo-3-chloro-phenyl)(2-bromo phenyl)methanol (1.00 g, 2.67 mmol, 1.0 equiv.), HFIP (4 mL), and 1-bromo-4-tert-butylbenzene (2.3 mL, 13.4 mmol, 5.0 equiv.). Trifluoromethanesulfonic acid (24 μ L, 0.27 mmol, 10 mol%) is then quickly added (in one shot) by means of a glass syringe. The reaction flask is sealed with a glass stopper and a metallic clip to prevent any popping and was stirred at 100°C for 24 h. The reaction mixture was then allowed to cool down to room temperature before opening and was evaporated under reduced pressure. Purification of the crude product by flash chromatography using cyclohexane as eluent afforded **28** (1.02 g, 1.79 mmol, 67%) as a colorless powder.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.41 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.23 (td, *J* = 7.5, 1.4 Hz, 1H), 7.19 – 7.11 (m, 3H), 6.72 (dd, *J* = 7.4, 1.9 Hz, 2H), 6.64 (ddd, *J* = 7.8, 1.5, 0.5 Hz, 1H), 6.41 (s, 1H), 1.15 (s, 9H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 150.65, 144.08, 140.85, 139.92, 136.05, 133.49, 132.84, 130.72, 129.00, 128.90, 128.69, 128.08, 127.70, 127.43, 126.41, 126.33, 125.76, 122.95, 57.57, 34.64, 31.22.

HRMS (ESI⁺): Calcd. for C₂₃H₂₀Br₃Cl [M + H]⁺: 571.87556, found: 571.87552.

m.p.: 159 °C

TLC: $R_f = 0.54$ (cyclohexane: AcOEt = 5:1)

1.11 General procedure and characterization data for the substituted-9-phosphatriptycenes

Representative procedure for **7b**: A solution of 1.9 M *t*BuLi in THF (52 mL, 98.7 mmol, 6.0 equiv.) at – 110 °C was added to a solution of the precursor **20b** (10.0 g, 16.45 mmol, 1.0 eq) in THF/Et₂O (1:1, 250 mL) over 5 min and the reaction mixture was stirred for 2 h at the same temperature. A solution of PCl₃ (1.7 mL in 10 mL of Et₂O solution, 19.74 mmol, 1.1 equiv.) was added at -110 °C and the reaction mixture was stirred for 3 hours and allowed to warm up to room temperature overnight. The solvents were removed under reduced pressure and the resulting crude was purified by flash chromatography (cyclohexane: AcOEt = 15:1 to 5:1) giving a white solid **7b** (3.0 g, 9.8 mmol, 60%). Compound **7a** and **7c** were prepared by the same procedure and obtained with yields of 48% and 42%, respectively. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated solution of **7a-b** in AcOEt.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (t, *J* = 8.5 Hz, 2H, H-5), 7.55 (d, *J* = 6.9 Hz, 2H, H-8), 7.34 (d, *J* = 7.3 Hz, 1H, H-4), 7.21 (t, *J* = 8.5 Hz, 2H, H-7), 7.18 – 7.07 (m, 3H, H-3, 6), 6.80 (tdd, *J* = 8.2, 4.1, 0.8 Hz, 1H, H-2), 5.64 (d, *J* = 1.8 Hz, 1H, C_{sp}³-H).

¹³C NMR (100 MHz, CDCl₃) δ 163.10, 152.64, 149.47, 139.83 (d, *J* = 8.9 Hz), 133.05, 132.67, 130.16 (d, *J* = 8.0 Hz), 128.82, 125.90, 125.66 (d, *J* = 12.7 Hz), 121.51 (d, *J* = 2.1 Hz), 112.81 (dd, *J* = 23.9, 2.9 Hz), 59.56.

³¹P NMR (202 MHz, CDCl₃) δ -83.38 (d, J = 36.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -107.87 (dd, *J* = 42.3, 6.0 Hz).

HRMS (ESI⁺): Calcd. for C₁₉H₁₃FP [M + H]⁺: 291.07334 found: 291.07357.

m.p.: 258-259 °C

TLC: $\mathbf{R}_f = 0.54$ (cyclohexane: AcOEt = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.84 (t, *J* = 8.0 Hz, 2H, H-5), 7.54 (d, *J* = 7.3 Hz, 2H, H-8), 7.42 (dd, *J* = 6.3, 1.8 Hz, 1H, H-4), 7.21 (t, *J* = 7.4 Hz, 2H, H-7), 7.08 – 7.12 (m, 4H, H-2, 3, 6), 5.61 (s, 1H, C_{sp}³-H).

¹³C NMR (100 MHz, CDCl₃) δ 151.96, 149.30 (d, J = 2.4 Hz), 140.25 (d, J = 9.5 Hz), 140.02 (d, J = 9.9 Hz), 138.33 (d, J = 26.6 Hz), 133.02 (d, J = 38.2 Hz), 129.47, 128.90, 126.24 (d, J = 3.2 Hz), 125.82, 125.67 (d, J = 12.7 Hz), 124.21, 60.33.

³¹P NMR (161 MHz, CDCl₃) δ -72.46.

HRMS (ESI⁺): Calcd. for C₁₉H₁₃CIP [M + H]⁺: 307.04379 found: 307.04402.

m.p.: 246-248 °C

TLC: $\mathbf{R}_f = 0.59$ (cyclohexane: AcOEt = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 12.0, 4.2 Hz, 2H, H-5), 7.68 (d, *J* = 7.4 Hz, 1H, H-4), 7.54 (d, *J* = 7.2 Hz, 2H, H-8), 7.39 (dd, *J* = 7.7, 3.3 Hz, 1H, H-2), 7.30 – 7.17 (m, 3H, H-3, 7), 7.11 (tdd, *J* = 7.5, 2.2, 1.2 Hz, 2H, H-6), 5.67 (s, 1H, C_{sp}³-H).

¹³C NMR (125 MHz, CDCl₃) δ 151.58 (d, J = 3.1 Hz), 149.22 (d, J = 2.3 Hz), 140.91 (d, J = 23.3 Hz), 139.31 (d, J = 10.2 Hz), 133.29, 132.98, 129.16, 129.05, 128.17, 125.87, 125.77, 124.34 (q, J = 274.8 Hz), 122.46 (t, J = 5.3 Hz), 59.91.

³¹P NMR (202 MHz, CDCl₃) δ -69.67 (q, J = 51.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -57.81 (d, *J* = 51.6 Hz).

HRMS (ESI⁺): Calcd. for $C_{20}H_{13}F_{3}P$ [M + H]⁺: 341.07015 found: 341.06993.

m.p.: 227-228 °C

TLC: $R_f = 0.45$ (cyclohexane: AcOEt = 5:1)

1.12 General procedure and characterization data for the substituted-9-phosphatriptycenes 8a and 10a

In a round-bottom flask equipped with a magnetic stirrer is added compound 23 (5.7 g, 9.4 mmol). It is then suspended in 25 mL of toluene. The flask is flushed with Ar and equipped with a condenser under Ar atmosphere. The yellow suspension is then stirred at 100°C for 2h. The reaction mixture turns deep purple after a few minutes at 100°C. The solvent is then evaporated under reduced pressure and the resulting purple solid is dissolved in dichloromethane, washed with sodium thiosulfate (100 mL), water (100 mL) and brine (100 mL). The organic phase is dried over MgSO₄ and the solvents are then removed under reduced pressure, yielding a dark brown oil. The crude product 24 is first purified by silica gel column chromatography using cyclohexane as eluent. A second purification by trituration in methanol, filtration and several washings with methanol afforded the product 24 as a white powder (2.9 g). Compound 24 was used as is for the next step. In a pre-dried 50 mL Schlenck flask under Ar and equipped with a magnetic stirrer is added compound 24 (0.6 g, 1.0 mmol). 20 mL of a 1:1 mixture of anhydrous THF and Et₂O are added, the resulting clear solution is cooled down to -110°C. t-BuLi (2.1 mL, 4.0 mmol, 4.0 equiv.) is then added dropwise at -110°C. Further stirring at this temperature for 4h afforded an orange solution. 0.50 mL of a 1.59 M solution of PCI₃ (0.8 mmol, 0.8 equiv.) in anhydrous THF/Et₂O is then added dropwise at -110°C. The resulting brown solution is stirred for one additional hour before being allowed to warm up to room temperature overnight. The reaction is guenched with aqueous NH₄CI (20 mL) and the organic phase is extracted with AcOEt (3 x 20 mL). The combined organic phases are dried over MgSO₄ before filtration and evaporation of the solvents under reduced pressure. The crude product is obtained as a brown oil and is purified by silica gel column chromatography (eluent= cyclohexane to cyclohexane/dichloromethane 7:3) to afford pure substituted-9-phosphatriptycenes 8a as an off-white powder (72 mg, 12% over two steps). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated solution of 8a in AcOEt. Substituted-9-phosphatriptycene 10a (12% over two steps) as a white solid was prepared similarly starting from compound 30.

¹H NMR (500 MHz, CDCl₃) δ 7.79 (t, *J* = 7.9 Hz, 2H, H-5), 7.53 (d, *J* = 7.3 Hz, 2H, H-8), 7.18 (t, *J* = 7.4 Hz, 2H, H-7), 7.08 (tdd, *J* = 7.3, 2.2, 1.1 Hz, 2H, H-6), 6.91 (d, *J* = 7.7 Hz, 1H, H-2), 6.82 (dd, *J* = 7.7, 4.6 Hz, 1H, H-3), 5.94 (s, 1H, C_{sp}³-H), 2.66 (s, 3H), 2.58 (s, 3H).

¹³C NMR (126 MHz, $CDCl_3$) δ 149.70 (d, J = 3.0 Hz), 147.38 (d, J = 4.2 Hz), 141.15 (d, J = 8.5 Hz), 139.81 (d, J = 9.1 Hz), 139.18 (d, J = 26.0 Hz), 132.67 (d, J = 36.8 Hz), 130.88, 129.71, 128.49, 126.32 (d, J = 6.0 Hz), 125.83, 125.38 (d, J = 12.7 Hz), 55.57, 21.50 (d, J = 20.5 Hz), 19.48.

³¹P NMR (202 MHz, CDCl₃): δ -74.9.

HRMS (ESI⁺): Calcd. for C₂₁H₁₈P [M + H]⁺: 301.114613 found: 301.11482.

m.p.: 172°C

¹H NMR (500 MHz, CDCl₃): 7.83 (t, J = 8.0 Hz, 1H, H-9), 7.52 (d, J = 7.3 Hz, 1H, H-12), 7.39 (d, J = 6.7 Hz, 1H, H-8), 7.21 (t, J = 7.4 Hz, 1H, H-11), 7.13 – 7.04 (m, 3H, H-6, 7, 10), 6.92 (d, J = 7.6 Hz, 1H, H-2), 6.86 – 6.81 (m, 1H, H-3), 5.93 (s, 1H, C_{sp}^{3} -H), 2.68 (s, 3H), 2.56 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 152.06 (d, *J* = 3.0 Hz), 149.49 (d, *J* = 2.7 Hz), 147.17 (d, *J* = 3.3 Hz), 140.37 (d, *J* = 9.8 Hz), 140.02 (d, *J* = 9.9 Hz), 139.50 (d, *J* = 27.5 Hz), 138.87 (d, *J* = 10.7 Hz), 138.17 (d, *J* = 27.3 Hz), 132.92 (d, *J* = 39.2 Hz), 130.86, 129.79, 129.18, 128.70, 126.40 (d, *J* = 6.6 Hz), 126.02 (d, *J* = 3.7 Hz), 125.69, 125.47 (d, *J* = 13.0 Hz), 124.09, 55.98 (d, *J* = 2.9 Hz), 21.39 (d, *J* = 21.5 Hz), 19.23.

³¹P NMR (202 MHz, CDCl₃): δ -82.70.

HRMS (ESI⁺): Calcd. for C₂₁H₁₈PCI [M + H]⁺: 335.075641found: 335.07548.

m.p.: 233-234°C

TLC: $R_f = 0.19$ in cyclohexane

1.13 General procedure and characterization data for 9-phosphatriptycene derivative 9a

The unsymmetrically 9-phosphatriptycene derivative **9a** was prepared with a similar procedure to that described for the synthesis of 9-phosphatriptycenes **7a-c**. The crude product was purified by column chromatography (cyclohexane: AcOEt = 10:1) to provide compound **9a** (0.48 g, 1.24 mmol) with a yield of 69% as a colourless powder. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated solution of **9a** in AcOEt

¹H NMR (500 MHz, CDCl₃) δ 7.87 (t, *J* = 8.0 Hz, 1H, H-9), 7.82 (t, *J* = 8.1 Hz, 1H, H-5), 7.64 (s, 1H, H-8), 7.60 (d, *J* = 7.3 Hz, 1H, H-12), 7.46 (d, *J* = 7.0 Hz, 1H, H-4), 7.23 (t, *J* = 7.7 Hz, 1H, H-11), 7.18 – 7.17 (m, 1H, H-6), 7.13 – 7.06 (m, 3H, H-2, 3,10), 5.66 (s, 1H, C_{sp}³-H), 1.33 (s, 9H, ^{*i*}Bu).

¹³C NMR (126 MHz, CDCl₃) δ 152.35 (d, J = 1.7 Hz), 152.16 (d, J = 3.2 Hz), 149.53 (d, J = 3.0 Hz), 149.17 (d, J = 3.0 Hz), 140.56 (d, J = 9.7 Hz), 140.34 (d, J = 9.9 Hz), 138.18 (d, J = 26.6 Hz), 136.39 (d, J = 8.9 Hz), 132.86 (d, J = 38.3 Hz), 132.59 (d, J = 37.9 Hz), 129.32 (d, J = 1.0 Hz), 128.73 (d, J = 1.9 Hz), 126.11 (d, J = 3.6 Hz), 125.79 (d, J = 1.6 Hz), 125.56 (d, J = 12.7 Hz), 124.18, 123.09 (d, J = 1.8 Hz), 122.60 (d, J = 12.7 Hz), 60.73 (d, J = 2.5 Hz), 34.93, 31.44.

³¹P NMR (202 MHz, CDCl₃) δ -73.50.

HRMS (ESI⁺): Calcd. for C₂₃H₂₁CIP [M + H]⁺: 363.10639, found: 363.10617.

m.p.: 177-178 °C

TLC: $\mathbf{R}_f = 0.63$ (cyclohexane: AcOEt = 5:1)

1.14 General procedure and characterization data for the Ar₃PAuCI complexes 25a-e

A NMR tube was charged with [AuCl(SMe₂)] (10.0 mg, 3.4×10^{-2} mmol), 9-phospatriptycenes (3.4×10^{-2} mmol), and 1 mL of CDCl₃ in an argon glove box.⁶ After measurements of the NMR spectra, the solvent was slowly evaporated under argon and the selected 9-phospatriptycene-Au complexes were obtained in quantitative yield as yellow crystals suitable for single-crystal X-ray diffraction analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, *J* = 14.3, 7.4 Hz, 3H), 7.68 – 7.42 (m, 3H), 7.31 – 7.21 (m, 3H), 7.19 (tdd, *J* = 7.7, 3.0, 1.1 Hz, 3H), 5.64 (s).

³¹P NMR (202 MHz, CDCl₃) δ -1.89.

¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, *J* = 14.7, 7.3 Hz, 2H), 7.62 (dd, *J* = 7.3, 3.0 Hz, 2H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.37 - 7.23 (m, 5H), 6.89 (td, *J* = 8.3, 5.4 Hz, 1H), 5.69 (s, 1H).

³¹P NMR (202 MHz, CDCl₃) δ -19.35 (d, J = 22.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -105.10 (dd, *J* = 17.3, 11.7 Hz).

¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 14.6, 7.2 Hz, 2H), 7.64 – 7.59 (m, 2H), 7.55 – 7.46 (m, 1H), 7.35 (tt, J = 7.5, 1.3 Hz, 2H), 7.28 (ddd, J = 7.4, 3.1, 1.1 Hz, 2H), 7.24 – 7.22 (m, 1H), 7.20 – 7.19 (m, 1H), 5.66 (s, 1H).

³¹P NMR (202 MHz, CDCl₃) δ -10.68.

¹H NMR (500 MHz, CDCl₃) δ 8.06 (ddd, *J* = 14.8, 7.3, 0.7 Hz, 2H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.63 (dd, *J* = 7.3, 2.7 Hz, 2H), 7.55 (dd, *J* = 7.7, 4.6 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 7.35 (tt, *J* = 7.6, 1.3 Hz, 2H), 7.29 - 7.23 (m, 2H), 5.75 (s, 1H).

³¹P NMR (202 MHz, CDCl₃) δ -5.60 (q, *J* = 17.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -53.58 (d, *J* = 19.4 Hz).

¹H NMR (500 MHz, $CDCl_3$) δ 7.98 (ddd, J = 8.5, 7.0, 0.9 Hz, 2H), 7.59 (dd, J = 7.2, 2.9 Hz, 2H), 7.31 (tt, J = 7.5, 1.3 Hz, 2H), 7.23 (tdd, J = 7.5, 3.1, 1.1 Hz, 2H), 7.04 (d, J = 7.7 Hz, 1H), 6.87 (dd, J = 7.6, 6.0 Hz, 1H), 5.98 (s, 1H), 3.01 (s, 3H), 2.59 (s, 3H)

³¹P NMR (202 MHz, CDCl₃) δ -13.44.

1.15 General procedure and characterization data for the Rh(acac)(CO)(PR₃) complexes 26a-e

A NMR tube was charged with Rh(acac)(CO)₂ (10.0 mg, 3.8×10^{-2} mmol), 9-phospatriptycenes (3.67×10^{-2} mmol), and 1 mL of CDCl₃ in an argon glove box. After measurements of the NMR spectra, the solvent was slowly evaporated under argon and the Rh(acac)(CO)(PR₃) complexes were obtained in quantitative yield as yellow crystals suitable for single-crystal X-ray diffraction analysis. In all cases the yields in P-Rh complexes were nearly quantitative or higher than 97%.

¹H NMR (500 MHz, CDCl₃) δ 8.44 (dd, *J* = 11.7, 7.4 Hz, 3H, H-1), 7.52 (d, *J* = 7.3 Hz, 3H, H-4), 7.19 (dddd, *J* = 10.1, 7.4, 5.1, 1.1 Hz, 6H, H-2 and H-3), 5.68 (s, 1H, C_{sp}³-H), 5.57 (s, 1H), 2.25 (s, 3H, CH₃), 2.02 (s, 3H, CH₃).

³¹P NMR (202 MHz, CDCl₃) δ 4.43 (d, *J* = 188.5 Hz).

¹H NMR (500 MHz, CDCl₃) δ 8.63 (dd, J = 11.6, 7.5 Hz, 2H, H-5), 7.58 – 7.50 (m, 2H, H-8), 7.33 (d, J = 7.4 Hz, 1H, H-4), 7.25 (t, J = 7.4 Hz, 2H, H-7), 7.22 – 7.15 (m, 3H, H-3, 6), 6.84 (td, J = 8.5, 4.8 Hz, 1H, H-2), 5.65 (s, 1H, C_{sp}³-H), 5.57 (s, 1H), 2.22 (s, 3H), 1.99 (s, 3H).

³¹P NMR (202 MHz, CDCl₃) δ -11.58 (dd, ¹J_{P-Rh} = 191.8 Hz and ³J_{P-F} = 11.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -102.99.

¹H NMR (500 MHz, CDCl₃) δ 8.56 – 8.43 (m, 2H, H-5), 7.52 (d, J = 7.3 Hz, 2H, H-8), 7.46 (dd, J = 5.2, 1.4 Hz, 1H, H-4), 7.24 – 7.23 (m, 2H, H-7), 7.19 – 7.15 (m, 4H, H-2, 3, 6), 5.63 (s, 1H, C_{sp}³-H), 5.55 (s, 1H), 2.22 (s, 3H), 1.94 (s, 3H).

³¹P NMR (202 MHz, CDCl₃) δ -0.51 (d, *J* = 195.5 Hz).

The association was not quantitative in this case and according to the ¹H NMR integrals, the Rh-P complex was formed only in 15% yield under these conditions.

¹H NMR (500 MHz, CDCl₃) δ 8.59 (dd, *J* = 11.5, 7.5 Hz, 2H, H-5), 7.72 (d, *J* = 7.5 Hz, 1H, H-4), 7.57 – 7.54 (m, 2H, H-8), 7.34 (t, *J* = 7.7 Hz, 1H, H-2), 7.20 – 7.19 (m, 3H, H-3, 7), 7.16 (tdd, *J* = 7.5, 3.1, 1.2 Hz, 2H, H-6), 5.63 (s, 1H, C_{sp}³-H), 5.60 (s, 1H), 2.22 (s, 3H), 1.96 (s, 3H).

³¹P NMR (202 MHz, CDCl₃) δ 0.47 (dq, ¹*J*_{*P-Rh*} = 199.5 Hz and ⁴*J*_{*P-F*} = 11.7 Hz)

¹⁹F NMR (376 MHz, CDCl₃) δ -50.80 (d, *J* = 13.4 Hz).

¹H NMR (500 MHz, CDCl₃) δ 8.40 (dd, *J* = 10.6, 6.7 Hz, 2H, H-5), 7.51 (d, *J* = 7.7 Hz, 2H, H-8), 7.22 (t, *J* = 7.4 Hz, 2H, H-7), 7.14 (tdd, *J* = 7.4, 3.0, 1.4 Hz, 2H, H-6), 7.00 (d, *J* = 7.7 Hz, 1H, H-2), 6.87 (dd, *J* = 7.7, 5.0 Hz, 1H, H-3), 5.91 (s, 1H, C_{sp}³-H), 5.64 (s, 1H), 3.36 (s, 3H), 2.61 (s, 3H), 2.23 (s, 3H), 1.93 (s, 3H).

³¹P NMR (202 MHz, CDCl₃) δ -2.95 (d, *J* = 187.8 Hz).

2. Determination of Tolman electronic parameter.

2.1 IR measurements of the v_{co} stretching frequency in the Rh(acac)CO(9-phosphatriptycenes) complexes.

Rh(acac)(CO)(PR₃) complexes were prepared by mixing a phosphine PR₃ and Rh(CO)₂acac under stoichiometric amounts in 0.5 mL of CH₂Cl₂ in a glove-box and the solution was placed in a IR quartz cell. A linear correlation between the v_{CO} stretching frequencies of Rh(acac)(CO)(PR₃) and the v_{CO} stretching frequencies of Rh(acac)(CO)(PR₃) and the v_{CO} stretching frequencies of Ni(CO)₃(PR₃) complexes used originally for determining the Tolman electronic parameter (**TEP**) has previously been reported by Carow,⁷ which allowed us to determine the **TEP** value for 9-phosphatriptycenes. We also checked that our IR measurements of the v_{CO} stretching frequency in several Rh(acac)(CO)(PR₃) complexes were in agreement with literature data and found that our results are within a ±5 cm⁻¹ range from reported values (Table S1).

Table	S1 :	Infrared	stretching	frequencies	(cm ⁻¹)	and	Tolman	electronic	parameter	(TEP)	for
represe	entati	ve phosp	hines.								

Phosphines in [Rh(acac)(CO)(R ₃ P)] complexes	TEP ^a / cm ⁻¹ (this work)	V(CO) Rh complex⁵ / cm⁻¹	<i>V</i> (CO) Rh complex / cm ⁻¹ (this work)			
F-P-triptycene (7a)	2075	not reported	1983			
CI-P-triptycene (7b)	2075	not reported	1983			
CF ₃ -P-triptycene (7c)	2073	not reported	1980			
1,4-di-Me-P-triptycene (8a)	2074	not reported	1982			
P-triptycene (1)	2076 ²	not reported	1985			
$P(p-CF_{3}C_{6}H_{5})_{3}$	2074 ^a	1986				
$P(p-CIC_6H_5)_3$	2073ª	1982	1980			
PPh ₃	2069 ^a	1978	1976			
^a The TEP values are ±5 cm ⁻¹ range from reported values; ^b from reference 7.						

3. Copies of all NMR spectra

3.1 Bis-(2-bromo-6-chlorophenyl)-(2-bromo-3-chlorophenyl)-phosphine 13a in CDCI₃: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz), ³¹P-NMR (161 MHz)

3.2 Bis-(2,6-dibromo-phenyl)-(2,3-dibromophenyl) phosphine 13b in CDCI₃: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz), ³¹P-NMR (161 MHz)

3.3 9-phenyl-9-phosphafluorene derivative 15a in CD_2CI_2 : ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz), ³¹P-NMR (161 MHz)

3.4 1,8,11-tris-chloro-9-phospha-10-hydroxytriptycene 16a in CD₂CI₂: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz), ³¹P-NMR (161 MHz)

3.6 Bis-(halogenated-phenyl)-methanol precursor 21 in CDCl₃: ¹H-NMR (400 MHz)

3.7 Bis-(halogenated-phenyl)-methanol precursor 17a in CDCI₃: ¹H-NMR (400 MHz), ¹⁹F-NMR (376 MHz)

3.8 Bis-(halogenated-phenyl)-methanol precursor 17b in CDCl₃: ¹H-NMR (400 MHz)

3.9 Bis-(halogenated-phenyl)-methanol precursor 27 in CDCl₃: ¹H-NMR (500 MHz)

3.10 Bis-(halogenated-phenyl)-methanol precursor 17c in CDCI₃: ¹H-NMR (400 MHz), ¹⁹F-NMR (376 MHz)

3.11 Trityl precursor 18a in CDCI₃: ¹H-NMR (400 MHz), ¹⁹F-NMR (376 MHz)

3.12 Trityl precursor 18b in CDCl₃: ¹H-NMR (400 MHz)

3.13 Trityl precursor 18c in CDCI₃: ¹H-NMR (400 MHz), ¹⁹F-NMR (376 MHz)

3.14 Trityl precursor 22 in CDCI₃: ¹H-NMR (400 MHz)

3.15 Trityl precursor 29 in CDCI₃: ¹H-NMR (500 MHz)

3.17 Trityl precursor 20b in CDCI₃: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz)

3.19 Triphenylmethane iodonium salt 23 in (CD₃)₂SO: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz)

3.20 Triphenylmethane iodonium salt 30 in (CD₃)₂SO: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz)

3.21 Trityl precursor 28 in CDCI₃: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz)

3.22 F-substituted-9-phosphatriptycene 7a in CDCI₃: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz), ³¹P-NMR (202 MHz), ¹⁹F-NMR (376 MHz)

3.24 CF₃-substituted-9-phosphatriptycene 7c in CDCI₃: ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz), ³¹P-NMR (202 MHz), ¹⁹F-NMR (376 MHz)

3.25 1,4-dimethyl-9-phosphatriptycene 8a in CDCI₃: ¹H-NMR (500 MHz), ¹³C-NMR (126 MHz), ³¹P-NMR (202 MHz)

3.26 Unsymmetrically 9-phosphatriptycene derivative 9a in CDCI₃: ¹H-NMR (500 MHz), ¹³C-NMR (126 MHz), ³¹P-NMR (202 MHz)

3.27 1-chloro-5,8-dimethyl-9-phosphatriptycene 10a in CDCI₃: ¹H-NMR (500 MHz), ¹³C-NMR (126 MHz), ³¹P-NMR (202 MHz)

3.28 Au-9-phosphatriptycene complex 25a in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz)

3.29 Au-F-9-phosphatriptycene complex 25b in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz), ¹⁹F-NMR (376 MHz)

3.30 Au-CI-9-phosphatriptycene complex 25c in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz)

3.32 Au-1,4-dimethyl-9-phosphatriptycene complex 25e in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz)

3.33 Rh-9-phosphatriptycene complex 26a in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz)

3.34 Rh-F-9-phosphatriptycene complex 26b in CDCl₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz), ¹⁹F-NMR (376 MHz). The IR measured in CH_2Cl_2

3.35 Rh-Cl-9-phosphatriptycene complex 26c in CDCl₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz). The IR measured in CH₂Cl₂

3.36 Rh-CF₃-9-phosphatriptycene complex 26d in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz), ¹⁹F-NMR (376 MHz). The IR measured in CH₂CI₂

3.37 Rh-1,4-dimethyl-9-phosphatriptycene complex 26e in CDCI₃: ¹H-NMR (500 MHz), ³¹P-NMR (202 MHz). The IR measured in CH₂Cl₂

4. Computational studies

4.1 Methods

Computations have been carried out using the Jaguar 8.5 pseudospectral program package.⁸ All species have been fully geometry optimized, and the Cartesian coordinates are supplied in section 4.3. Density Functional Theory (DFT) was applied by the means of the M06-2X functional. The standard split valence polarized 6-31+G(d) basis set was used for all atoms. Electronic energies were obtained after corresponding fully analytical single point calculations, at the M06-2X/6-311+G(d,p) level of theory. Solvation energies were obtained by single point calculations using the Poisson-Boltzmann polarisable continuum method as implemented in Jaguar, at the M06-2X/6-31+G(d) level, using the parameters appropriate for benzene. Zero point energy and thermal contributions to enthalpy were computed by performing frequency calculations at the M06-2X/6-31+G(d) level of theory.

PA and MCA values are calculated (at the M06-2X/6-31+G(d)(benzene) level) as the difference in enthalpy at 298 K between the neutral and the protonated and methylated phosphine, respectively.

The He₈_steric parameters were computed by optimizing the 9-phosphatriptycene geometries at the BP86/6-31+G(d) level, its tertiary phosphorus atom constrained to lie at 2.28 Å above the centroid, and perpendicular to the plane, of a helium ring which is constituted by eight helium atoms with a 2.5 Å radius (Figure S1).⁹

Figure S1. Geometric model used for computation of the He_8 _steric parameter (helium atoms in violet and phosphorus atom in dark purple).

4.2 Calculations of proton affinities (PA) of triarylphosphines and correlation with pK_a

The computed proton affinity (**PA**) of weak phosphines is reported in Table S2. The correlation between computed **PA** and experimental pK_a^{10} (Figure S2) was used to estimate the pK_a of 9-phosphatriptycene (1). Linear correlation of **PA** versus $pK_a(H_2O)$ indicate that $pK_a(H_2O)$ value ranges from -1.58 to 0.03 for 9-phosphatriptycenes (Table S2). For comparison, the $pK_a(H_2O)$ value of PPh₃, p-CF₃-PPh₃ and p-Cl-PPh₃ is 3.28, -1.39 and 0.87, respectively.

Table S2: Computed (M06-2X/6-31+G*(benzene)) proton affinities (**PA**) with their corresponding estimated pK_a values of selected triarylphosphines.

	PAc	
Lewis Dase	(kcal/mol)	μη _a (Π ₂ Ο)
CI-P-triptycene (7a)	233.5	-1.17ª
F-P-triptycene (7b)	233.3	-1.24ª
CF ₃ -P-triptycene (7c)	232.2	-1.58 ^a
di-Me-P-triptycene (8a)	237.3	0.03ª
P-triptycene (1)	235.9	-0.42ª
PPh ₃	247.5	3.28 ^b
$P(p-CI-C_6H_4)_3$	240.2	0.87 ^b
$P(p-CF_3-C_6H_4)_3$	232.7	-1.39 ^b

^a Estimated using the correlation between computed **PA** and experimental pKa (see Figure S2); ^b See reference 10; ^c **PA** stands for proton affinity.

Figure S2. Proton affinities of selected triarylphosphines and correlation with their pKa.

4.3 Structures and relative energies

CH_3^+

E(M06-2X/6-31+G*)(benzene) = -39.5328 E(M06-2X/6-311+G**) = -39.4627 H(M06-2X/6-31+G*)(benzene) = -39.4269

C1	3.0866238012	1.9106818130	7.6383553560
H2	3.5785105737	1.0806431251	8.1480060734
H3	3.0900339464	1.9611140453	6.5484598852
H4	2.5915698264	2.6901651085	8.2195519526

He-ring

E(BP86	6/6-31G*) = -23.1552		
He1	2.4999755124#	0.0000000000#	0.000000000#
He2	-2.4999755124#	0.0000000000#	0.0000000000#
He3	0.000000000#	2.4999755124#	0.000000000#
He4	0.000000000#	-2.4999755124#	0.0000000000#
He5	1.7677496376#	1.7677496376#	0.000000000#
He6	-1.7677496376#	-1.7677496376#	0.0000000000#
He7	-1.7677496376#	1.7677496376#	0.0000000000#
He8	1.7677496376#	-1.7677496376#	0.0000000000#
X9	-0.0000500000#	0.0000125000#	0.0000000000#

PPh₃

E(M06-2X/6-31+G*)(benzene) = -1035.9854 E(M06-2X/6-311+G**) = -1036.1637 H(M06-2X/6-31+G*)(benzene) = -1036.8757 E(BP86/6-31G*) = -1036.2968

C1	-0.9467945442	-0.2931628374	1.7960146778
C2	-1.8585686879	-1.2664111717	2.2174402567
C3	-0.4056808164	0.5837643163	2.7453823510
C4	-2.2258486277	-1.3535558021	3.5604083750
C5	-0.7828669324	0.5055292630	4.0834600654
C6	-1.6940815267	-0.4669172665	4.4941757719
C7	-1.1232271239	-1.5685767006	-0.7459289707
C8	-2.3649073037	-1.5988688866	-1.3892621555
C9	-0.3622105577	-2.7435210255	-0.6892875868
C10	-2.8364587918	-2.7828016139	-1.9568853882
C11	-0.8392768024	-3.9283293118	-1.2438389897
C12	-2.0789336623	-3.9495815983	-1.8821169041
C13	-1.5776075313	1.2323502063	-0.5219718696
C14	-2.6984633317	1.6523039086	0.2018444034
C15	-1.3177476335	1.8188015008	-1.7674075324
C16	-3.5453358931	2.6324440264	-0.3157531556
C17	-2.1706909351	2.7875699336	-2.2897801951
C18	-3.2872155917	3.1980923947	-1.5624404687
P19	-0.3997858208	-0.0682507918	0.0483409969
H20	-0.4407035831	1.5108342766	-2.3331137138
H21	-1.9590519185	3.2281048277	-3.2597811613
H22	-3.9494428431	3.9598234571	-1.9634688260
H23	-4.4116653276	2.9510074596	0.2571467755
H24	-2.9152588759	1.2134332811	1.1722771838
H25	0.3152604334	1.3359624571	2.4314291634
H26	-0.3593670872	1.1968807881	4.8062274291
H27	-1.9836155109	-0.5366587804	5.5386285896

H28	-2.9334115758	-2.1153660055	3.8754267683
H29	-2.2868556515	-1.9587675412	1.4972808276
H30	0.6119859750	-2.7288852678	-0.2046789585
H31	-0.2394665088	-4.8320415448	-1.1862979937
H32	-2.4492678751	-4.8698817121	-2.3242328070
H33	-3.8012942876	-2.7918433117	-2.4561255267
H34	-2.9690629416	-0.6973299140	-1.4488132304

PPh₃-H⁺

 $\begin{array}{l} \mathsf{E}(\mathsf{M06-2X/6-31+G^*})(\mathsf{benzene}) \ = \ -1036.3901 \\ \mathsf{E}(\mathsf{M06-2X/6-311+G^{**}}) \ = \ -1036.5358 \\ \mathsf{H}(\mathsf{M06-2X/6-31+G^*})(\mathsf{benzene}) \ = \ -1036.2702 \end{array}$

C1	-1.0714665870	-0.3132687414	1.8955367989
C2	-1.8898987132	-1.3360985316	2.3856880420
C3	-0.4760847845	0.6132175729	2.7625831450
C4	-2.1110950617	-1.4285538803	3.7579387108
C5	-0.7027816829	0.5075013860	4.1299481076
C6	-1.5193240021	-0.5116784518	4.6243089761
C7	-1.2384868539	-1.6336685830	-0.7519069081
C8	-2.3652946973	-1.6740830609	-1.5792627654
C9	-0.4387903027	-2.7698498180	-0.5654755540
C10	-2.6899829707	-2.8650756177	-2.2253623883
C11	-0.7726077898	-3.9503467685	-1.2184294132
C12	-1.8965647878	-3.9959255456	-2.0459900102
C13	-1.7167077390	1.2814577619	-0.5149389575
C14	-2.7890311648	1.8177867113	0.2054793084
C15	-1.3559396443	1.7995239699	-1.7660850992
C16	-3.5053508585	2.8821052439	-0.3370762914
C17	-2.0774925141	2.8637109954	-2.2942016305
C18	-3.1500102094	3.4016326443	-1.5801878945
P19	-0.8201757051	-0.1296099555	0.1304333589
H20	-0.5224199358	1.3788459872	-2.3243795427
H21	-1.8022281234	3.2753901718	-3.2595398971
H22	-3.7087822847	4.2342058420	-1.9957003199
H23	-4.3375891416	3.3067547490	0.2144591038
H24	-3.0597006891	1.4162004815	1.1785811915
H25	0.1566799741	1.4099127523	2.3775522162
H26	-0.2416484105	1.2164457640	4.8095268220
H27	-1.6915153974	-0.5920149825	5.6929345924
H28	-2.7427847618	-2.2196156444	4.1482743648
H29	-2.3455383701	-2.0543809030	1.7090393354
H30	0.4345112157	-2.7362929452	0.0823560566
H31	-0.1564689478	-4.8333306469	-1.0847236049
H32	-2.1518020716	-4.9196284763	-2.5556286974
H33	-3.5610667092	-2.9061386960	-2.8708635357
H34	-2.9801713260	-0.7896454831	-1.7231803419
H35	0.5442175455	0.1171034905	-0.0738990582

$PPh_3-CH_3^+$

E(M06-2X/6-31+G*)(benzene) = -1075.7053 E(M06-2X/6-311+G**) = -1075.8610 H(M06-2X/6-31+G*)(benzene) = -1075.5643

-1.2952918313	-0.5021454871	1.7785585537
-2.0364834281	-1.6570252009	2.0494636711
-0.9743455087	0.3968838316	2.8058294428
-2.4492918456	-1.9138741302	3.3553906736
-1.3911790511	0.1298971152	4.1048898055
-2.1261399000	-1.0252740981	4.3780978747
	-1.2952918313 -2.0364834281 -0.9743455087 -2.4492918456 -1.3911790511 -2.1261399000	-1.2952918313-0.5021454871-2.0364834281-1.6570252009-0.97434550870.3968838316-2.4492918456-1.9138741302-1.39117905110.1298971152-2.1261399000-1.0252740981

C7	-1.0004092682	-1.5714085665	-0.9497884217
C8	-2.0044807265	-1.5909541226	-1.9230124526
C9	-0.1737712572	-2.6872740489	-0.7545223447
C10	-2.1739563501	-2.7302549773	-2.7074812472
C11	-0.3519746737	-3.8181331805	-1.5429857647
C12	-1.3502198609	-3.8374822435	-2.5190996082
C13	-1.7202368649	1.2604962289	-0.5443141935
C14	-2.8783116424	1.6910994626	0.1116186192
C15	-1.2972807242	1.8837324666	-1.7270938568
C16	-3.6086493872	2.7538206387	-0.4168604889
C17	-2.0336623775	2.9433159863	-2.2446553048
C18	-3.1869158858	3.3780116380	-1.5886487085
P19	-0.7754270961	-0.1280406441	0.0983717341
H20	-0.4058129285	1.5442422554	-2.2491438787
H21	-1.7084480574	3.4302671341	-3.1581461831
H22	-3.7573904543	4.2074587194	-1.9944504579
H23	-4.5058650733	3.0934326009	0.0900569869
H24	-3.2075664086	1.2071398952	1.0270375626
H25	-0.4117762652	1.3041644568	2.5983207888
H26	-1.1432368168	0.8212347688	4.9036049201
H27	-2.4474645042	-1.2313929396	5.3941659331
H28	-3.0221252048	-2.8097248218	3.5712415029
H29	-2.2883871083	-2.3520254115	1.2532284363
H30	0.5978472144	-2.6832256996	0.0118590528
H31	0.2862698831	-4.6834768301	-1.3971335481
H32	-1.4845710686	-4.7215457649	-3.1343897243
H33	-2.9496392124	-2.7497992769	-3.4659119073
H34	-2.6474557615	-0.7277668311	-2.0714106180
C35	0.9828024529	0.3156984175	0.1124769523
H36	1.3386805339	0.4415125770	-0.9130048956
H37	1.1221032793	1.2505201889	0.6607481251
H38	1.5571442118	-0.4767545650	0.5983390029

$$\begin{split} \textbf{P(p-Cl-C_6H_4)_3} \\ & E(M06-2X/6-31+G^*)(benzene) = -2414.6952 \\ & E(M06-2X/6-311+G^{**}) = -2414.9659 \\ & H(M06-2X/6-31+G^*)(benzene) = -2.414.7030 \end{split}$$

-0.9220962634	-0.2845226874	1.7885311423
-1.8389250683	-1.2533460535	2.2087174372
-0.3734059719	0.5803476286	2.7443146599
-2.2078895697	-1.3535831385	3.5493120540
-0.7427510206	0.5009025161	4.0833879486
-1.6595200277	-0.4712835657	4.4738364027
-1.0886925660	-1.5609689693	-0.7493264144
-2.3411455520	-1.6046854517	-1.3701638235
-0.3146435102	-2.7279666773	-0.7154771782
-2.8164177823	-2.7863270781	-1.9367263204
-0.7816621828	-3.9177873896	-1.2652794282
-2.0332650338	-3.9339952344	-1.8742662564
-1.5467314912	1.2399524930	-0.5327441930
-2.6672730623	1.6668641268	0.1870113825
-1.2846465401	1.8263258088	-1.7776696873
-3.5129958460	2.6496071144	-0.3250087996
-2.1273992165	2.7985944488	-2.3072236815
-3.2373488269	3.2029620578	-1.5707843077
-0.3698451219	-0.0585307237	0.0431644213
-0.4091806455	1.5189522516	-2.3456035615
-1.9243507552	3.2470363055	-3.2741738345
	$\begin{array}{r} -0.9220962634\\ -1.8389250683\\ -0.3734059719\\ -2.2078895697\\ -0.7427510206\\ -1.6595200277\\ -1.0886925660\\ -2.3411455520\\ -0.3146435102\\ -2.8164177823\\ -0.7816621828\\ -2.0332650338\\ -1.5467314912\\ -2.6672730623\\ -1.2846465401\\ -3.5129958460\\ -2.1273992165\\ -3.2373488269\\ -0.3698451219\\ -0.4091806455\\ -1.9243507552\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Cl22	-4.2925373981	4.4283686818	-2.2173720505
H23	-4.3809164968	2.9821530161	0.2352074764
H24	-2.8913520835	1.2334299129	1.1581215722
H25	0.3536284333	1.3301307429	2.4397290754
H26	-0.3199529736	1.1758424880	4.8203004728
Cl27	-2.1196881520	-0.5889822914	6.1494275434
H28	-2.9173098360	-2.1074657698	3.8750400876
H29	-2.2757182185	-1.9415411972	1.4899859253
H30	0.6690788076	-2.7100811689	-0.2513906619
H31	-0.1816363580	-4.8212449584	-1.2328655947
CI32	-2.6233161302	-5.4141948296	-2.5770992707
H33	-3.7873099143	-2.8190453857	-2.4204916235
H34	-2.9600397814	-0.7125380968	-1.4168047771

P(p-CI-C	$C_{6}H_{4})_{3}-H^{+}$	2415 0875	
E(M06-2	$2X/6_311+G^{**}$ = -2415 '	27413.0073 2744	
H(M06-2	$2X/6_31+G^*)(henzene) =$	= -2 415 0858	
C1	-0 9781849727	-0.2934311812	1 8694268055
C2	-1 7550856979	-1 3385450308	2 3804224275
C3	-0 4108063859	0.6590858375	2 7283435547
C4	-1 9678693121	-1 4314199815	3 7516391465
C5	-0.6203420330	0.5645896420	4 0965676398
C6	-1 3999567562	-0 4809670489	4 5991016854
C7	-1 1567440441	-1 6340279380	-0 7666355413
C8	-2 3296072450	-1 7049819645	-1 5259968340
C9	-0.3168639331	-2.7504059869	-0.6457559425
C10	-2.6666115336	-2.8944363187	-2.1626130671
C11	-0.6513765223	-3.9363180090	-1.2837395229
C12	-1.8265674567	-4.0003921022	-2.0374161343
C13	-1.6266796491	1.2817449234	-0.5516783134
C14	-2.6787566524	1.8500902875	0.1744461852
C15	-1.2825344630	1.7797818222	-1.8165184479
C16	-3.3908108010	2.9157591134	-0.3650836478
C17	-1.9908309960	2.8452092192	-2.3535749972
C18	-3.0426163389	3.4054680350	-1.6234579227
H19	-0.4663838031	1.3423530846	-2.3872169056
H20	-1.7348833754	3.2466716144	-3.3282709053
Cl21	-3.9216381593	4.7289909313	-2.2917157879
H22	-4.2087607925	3.3693005247	0.1842962192
H23	-2.9451773618	1.4708654851	1.1575229722
H24	0.1928314268	1.4754333487	2.3380106535
H25	-0.1849020188	1.2894653885	4.7760600102
Cl26	-1.6595201055	-0.5967264793	6.2991776011
H27	-2.5667200141	-2.2356071708	4.1653932958
H28	-2.1929498910	-2.0814260293	1.7190234100
H29	0.5966055271	-2.7026611097	-0.0571326580
H30	-0.0107510082	-4.8082276936	-1.2055487828
CI31	-2.2404704326	-5.4742622544	-2.8294513121
H32	-3.5714227372	-2.9672330531	-2.7563627947
H33	-2.9799175566	-0.8401424135	-1.6278343700
P34	-0.7340159753	-0.1263378544	0.1026122511
H35	0.6309473706	0.1093261805	-0.1126438940

$P(p-CF_3-C_6H_4)_3$
$E(M06-2X/6-31+G^*)(benzene) = -2046.8548$
E(M06-2X/6-311+G**) = -2047.31898373111
$H(M06-2X/6-31+G^*)(benzene) = -2.047.0094$

C1	-0.8642212494	-0.3100956066	1.7976706989
C2	-1.7694204928	-1.2908831429	2.2189124189
C3	-0.3422607738	0.5841889403	2.7398705587
C4	-2.1563678600	-1.3626835562	3.5538469106
C5	-0.7369523112	0.5268825832	4.0736384461
C6	-1.6452767618	-0.4490661880	4.4739592541
C7	-1.0342324759	-1.5808423997	-0.7512723017
C8	-2.2793069109	-1.6037521605	-1.3894740511
C9	-0.2630381179	-2.7500398440	-0.7243435999
C10	-2.7451198021	-2.7725995358	-1.9863479904
C11	-0.7286548832	-3.9245176893	-1.3070083956
C12	-1.9686863044	-3.9278002825	-1.9421067836
C13	-1.4928271482	1.2115628633	-0.5117218301
C14	-2.6132179403	1.6258134466	0.2163517846
C15	-1.2398015991	1.7929823002	-1.7607176471
C16	-3.4699063301	2.5955830198	-0.2985097807
C17	-2.0986924453	2.7527204376	-2.2862110303
C18	-3.2130742164	3.1496477426	-1.5499072399
P19	-0.3075679803	-0.0860007438	0.0529973098
H20	-0.3653593462	1.4881710028	-2.3310963936
H21	-1.9043820988	3.1907468973	-3.2601223595
H22	-4.3418668771	2.9106064362	0.2665194865
H23	-2.8284473347	1.1894732266	1.1875113153
H24	0.3776273705	1.3374598002	2.4281267211
H25	-0.3342227216	1.2278770387	4.7971866860
H26	-2.8584383817	-2.1249076668	3.8797749031
H27	-2.1804501244	-1.9999964808	1.5059280027
H28	0.7147575285	-2.7411017404	-0.2483568742
H29	-0.1250564612	-4.8262758183	-1.2850741572
H30	-3.7074834900	-2.7838918423	-2.4890148397
H31	-2.8919604334	-0.7077060229	-1.4290640196
C32	-2.1244105967	-0.5175505595	5.8972389138
F33	-1.3769380597	0.2285583426	6.7252603798
F34	-3.3944016469	-0.0808404739	6.0091693063
F35	-2.1107034381	-1.7776374227	6.3666883281
C36	-4.1168467595	4.2264849498	-2.0818803427
F37	-4.1181494864	4.2641667235	-3.4248884012
F38	-5.3885792805	4.0570306203	-1.6817547029
F39	-3.7361588587	5.4469438767	-1.6574835350
C40	-2.4984658370	-5.1968272791	-2.5495715331
F41	-1.5118095822	-6.0303610591	-2.9181285223
F42	-3.2773171055	-5.8727504581	-1.6820248618
F43	-3.2505092931	-4.9562534983	-3.6368046200

$$\begin{split} \textbf{P(p-CF_3-C_6H_4)_3-H^+} \\ & E(M06-2X/6-31+G^*)(benzene) = -2047.2361 \\ & E(M06-2X/6-311+G^{**}) = -2047.6621 \\ & H(M06-2X/6-31+G^*)(benzene) = -2.047.3803 \end{split}$$

C1	-0.9822709304	-0.2790968747	1.8761830937
C2	-1.7806461139	-1.3149879347	2.3711189259
C3	-0.3921507457	0.6555262066	2.7372592230
C4	-1.9910256628	-1.4135398426	3.7433644942
C5	-0.6054767646	0.5489754295	4.1061515764
C6	-1.4030179472	-0.4843955749	4.5974580899
C7	-1.1494826901	-1.6220555757	-0.7624113392
C8	-2.3408311818	-1.7051813390	-1.4895830213
C9	-0.2835138398	-2.7192822032	-0.6626446645
C10	-2.6685269635	-2.9013039407	-2.1226406104
C11	-0.6165343790	-3.9081220897	-1.2989312089
C12	-1.8059403749	-3.9892497416	-2.0235626701
C13	-1.6291589046	1.2959208109	-0.5570945987
C14	-2.6180923119	1.9253451308	0.2041089853
C15	-1.3361913288	1.7226346748	-1.8599914718
C16	-3.3217253488	2.9943522243	-0.3459359897
C17	-2.0408772277	2.7899450555	-2.4001438281
C18	-3.0280311162	3.4170651473	-1.6385846541
H19	-0.5666346144	1.2316745885	-2.4511688379
H20	-1.8212344902	3.1407445801	-3.4034132190
H21	-4.0881518214	3.4997594815	0.2324246441
H22	-2.8396883792	1.5958442130	1.2153905438
H23	0.2311752330	1.4586578545	2.3511210159
H24	-0.1475915708	1.2568528382	4.7893162213
H25	-2.6011520773	-2.2151613635	4.1470162980
H26	-2.2295550544	-2.0432185487	1.7012581541
H27	0.6436599091	-2.6527207160	-0.0984097781
H28	0.0469729372	-4.7650699819	-1.2422623760
H29	-3.5848499642	-2.9823875810	-2.6981304762
H30	-3.0059161707	-0.8498177645	-1.5721159975
P31	-0.7297270157	-0.1090035097	0.1071080205
H32	0.6363166552	0.1236401586	-0.1001223527
C33	-2.1818538360	-5.3016386241	-2.6752047143
F34	-1.0961702934	-5.9706281060	-3.0785697212
F35	-2.8409809162	-6.0819073983	-1.8064659851
F36	-2.9743876483	-5.1100870312	-3.7348651506
C37	-1.6741975400	-0.5767024952	6.0827966642
F38	-0.6814405957	-0.0342468204	6.7950593874
F39	-2.8040499933	0.0757779234	6.3922732825
F40	-1.8210952902	-1.8485820654	6.4692894116
C41	-3.8225618828	4.5470122379	-2.2551842308
F42	-3.0723173867	5.2605724182	-3.1020459194
F43	-4.8643996513	4.0615482966	-2.9458076087
F44	-4.3017024924	5.3738388124	-1.3202695628

9-phosphatriptycene

E(M06-2X/6-31+G*)(benzene) = -1072.9051 E(M06-2X/6-311+G**) = -1073.0850 E(BP86/6-31G*) = -1073.2223 H(M06-2X/6-31+G*)(benzene) = -1072.8127

C1	-2.0918068395	1.3671487355	6.3299126470
C2	-2.1816119929	2.6396491834	5.7589799018
C3	-1.0710603973	3.4779419327	5.7335285899
C4	0.1408993348	3.0477279407	6.2805426780
C5	0.2331842723	1.7812377868	6.8495015044
C6	1.6645511090	-0.5156764413	6.7272075718
C7	2.7314818186	-1.1086646444	6.0593342812
C8	2.5559556048	-2.3411686816	5.4243140210
C9	1.3160080033	-2.9719914825	5.4613470157
C10	0.2424290277	-2.3787476356	6.1313591490
C11	0.4150772986	-1.1528476488	6.7632968362
C12	-0.8873226971	0.9372022932	6.8742622184
H13	-2.9607317049	0.7137271458	6.3481386773
H14	-3.1235689171	2.9735977109	5.3337037876
H15	-1.1446085896	4.4658971435	5.2887041967
H16	1.0109703611	3.6993959214	6.2624727861
H17	3.6984838784	-0.6124617157	6.0326206222
H18	3.3877038026	-2.8050235840	4.9024590880
H19	1.1793927992	-3.9298193248	4.9678774046
H20	-0.7257290089	-2.8734862417	6.1586123959
C21	-0.4362084382	-0.4728746180	11.3420481055
C22	0.7387559657	0.2506725949	11.5229888143
C23	1.4332791197	0.7427240731	10.4146178393
C24	0.9468634687	0.5076546630	9.1323212401
C25	-0.2378998524	-0.2219311504	8.9516506102
C26	-0.9272300632	-0.7107441115	10.0552848910
H27	-0.9759622869	-0.8556576982	12.2033069370
H28	1.1172963115	0.4332923545	12.5243210158
H29	2.3516132182	1.3083405065	10.5514943907
H30	-1.8453859018	-1.2769424272	9.9166733973
P31	1.7922909276	1.1153063416	7.5987010941
C32	-0.6957869699	-0.4314117745	7.5145532652
H33	-1.6248705185	-1.0087097995	7.4825867855

9-phosphatriptycene-H⁺

E(M06-2X/6-31+G*)(benzene) = -1073.2899 E(M06-2X/6-311+G**) = -1073.4355 H(M06-2X/6-31+G*)(benzene) = -1073.1886

C1	-2.1113595670	1.3652622233	6.3191360344
C2	-2.1995512408	2.6387974883	5.7494203512
C3	-1.0981027107	3.4910959649	5.7212560199
C4	0.1192342681	3.0813432190	6.2658002143
C5	0.1928923407	1.8125473557	6.8290016771
C6	1.6775150136	-0.5527260532	6.7020237594
C7	2.7591575517	-1.1243163046	6.0416776444
C8	2.5716283474	-2.3549326397	5.4118467151
C9	1.3273768253	-2.9798208593	5.4533978820
C10	0.2479644036	-2.3935564048	6.1209501142
C11	0.4140682402	-1.1690366287	6.7541650483

C12	-0.9087920267	0.9387491319	6.8664855158
H13	-2.9787909441	0.7115084838	6.3332321600
H14	-3.1418393735	2.9667854869	5.3223629490
H15	-1.1831146526	4.4761657121	5.2750824365
H16	0.9811718835	3.7418146003	6.2464960620
H17	3.7270639604	-0.6326143121	6.0120793574
H18	3.3989565988	-2.8231744025	4.8893626479
H19	1.1917979100	-3.9370179607	4.9601417618
H20	-0.7165567712	-2.8927613109	6.1445016917
C21	-0.4458420580	-0.4830902219	11.3538158688
C22	0.7269597301	0.2423212115	11.5505246134
C23	1.4326119511	0.7439500463	10.4566588816
C24	0.9321346673	0.4979429385	9.1831045725
C25	-0.2503449622	-0.2324154148	8.9654077994
C26	-0.9381180435	-0.7228639718	10.0674927921
H27	-0.9874732117	-0.8690468395	12.2114695766
H28	1.0955819053	0.4196639275	12.5551938921
H29	2.3472635800	1.3105367650	10.6045762270
H30	-1.8542762519	-1.2900087368	9.9297597683
C31	-0.6985758744	-0.4357754256	7.5129020548
H32	-1.6236938156	-1.0147930495	7.4798111565
P33	1.5980035299	1.0015253079	7.5952091518
H34	2.7821429408	1.7437861593	7.6370248384

9-phosphatriptycene-CH₃+

 $\begin{array}{l} \mathsf{E}(\mathsf{M06\text{-}2X/6\text{-}31\text{+}G^*})(\mathsf{benzene}) = -1112.6077\\ \mathsf{E}(\mathsf{M06\text{-}2X/6\text{-}311\text{+}G^{**}}) = -1112.7643\\ \mathsf{H}(\mathsf{M06\text{-}2X/6\text{-}31\text{+}G^*})(\mathsf{benzene}) = -1112.4852 \end{array}$

C1	-2.2765227378	1.5618503405	7.0554238041
C2	-2.4344733082	2.9356546264	6.8499161514
C3	-1.3376152677	3.7937001214	6.8629773272
C4	-0.0561249841	3.2875879572	7.0838365879
C5	0.0890649237	1.9200419869	7.2868387507
C6	1.4938543278	-0.2866795041	6.3394320874
C7	2.4486644842	-0.6478784410	5.3956528995
C8	2.1502238926	-1.6869714774	4.5132523792
C9	0.9206240294	-2.3363190151	4.5895851100
C10	-0.0320290689	-1.9645923953	5.5428711738
C11	0.2481999768	-0.9328383104	6.4285393624
C12	-1.0084594650	1.0412925025	7.2760344762
H13	-3.1413312671	0.9044024387	7.0427039322
H14	-3.4277420591	3.3376186760	6.6775686942
H15	-1.4766180620	4.8573606105	6.7016004592
H16	0.8020299968	3.9540131469	7.0948453343
H17	3.4073555557	-0.1395106948	5.3389678974
H18	2.8790724479	-1.9871510176	3.7679717859
H19	0.6967084481	-3.1435874124	3.8996292950
H20	-0.9869652098	-2.4804014231	5.5909400421
C21	0.1461952668	-1.4488197948	11.1239025232
C22	1.3449200098	-0.7640981085	11.3069737626
C23	1.8702246705	0.0148661933	10.2752397161
C24	1.1694846737	0.0847857242	9.0765324378
C25	-0.0419256772	-0.6006479738	8.8769003252
C26	-0.5500823731	-1.3709907778	9.9141456800
H27	-0.2551122639	-2.0524725021	11.9316016559
H28	1.8733245953	-0.8345988128	12.2517306446
H29	2.8052527280	0.5505309914	10.4147439183
H30	-1.4841818478	-1.9106017987	9.7856270111

C31	-0.7190718284	-0.4445330087	7.5114972597
H32	-1.6461352450	-1.0210167377	7.4799279472
P33	1.6019407964	0.9989490366	7.5907653720
C34	3.1273347211	1.9484058963	7.6432763701
H35	3.9680107835	1.2767292728	7.8362788912
H36	3.2764987889	2.4524367126	6.6846133291
H37	3.0658038455	2.6936100021	8.4409694719

P-trip-He₈-ring complex

E(BP86/6-31G*) = -1096.3628

3.7736000000#	3.4440000000#	5.4276000000#
3.7668000000#	1.0683000000#	9.8272000000#
5.2223000000#	0.4646000000#	6.6623000000#
2.3180000000#	4.0477000000#	8.5926000000#
4.7994000000#	1.8292000000#	5.3895000000#
2.7423000000#	2.6840000000#	9.8658000000#
4.7946000000#	0.1494000000#	8.5004000000#
2.7457000000#	4.3629000000#	6.7544000000#
3.7702000000#	2.2561000000#	7.6274000000#
-1.7389000000	1.4132000000	5.0296000000
-1.7874000000	2.7417000000	4.5763000000
-0.7148000000	3.6034000000	4.8370000000
0.4029000000	3.1449000000	5.5572000000
0.4577000000	1.8224000000	6.0246000000
1.9737000000	-0.4353000000	5.8746000000
3.1414000000	-0.9295000000	5.2710000000
3.0942000000	-2.0650000000	4.4427000000
1.8774000000	-2.7168000000	4.2071000000
0.700000000	-2.2225000000	4.7915000000
0.7457000000	-1.0886000000	5.6132000000
-0.6249000000	0.9548000000	5.7452000000
-2.5704000000	0.7277000000	4.8219000000
-2.6602000000	3.0973000000	4.0165000000
-0.7403000000	4.6395000000	4.4798000000
1.2291000000	3.8303000000	5.7407000000
4.097000000	-0.4335000000	5.4311000000
4.0168000000	-2.4358000000	3.9812000000
1.8391000000	-3.6037000000	3.5641000000
-0.2613000000	-2.7169000000	4.6023000000
-1.0293000000	-1.0480000000	10.0037000000
0.0602000000	-0.3345000000	10.5184000000
0.9559000000	0.3145000000	9.6503000000
0.7733000000	0.2565000000	8.2589000000
-0.3343000000	-0.4614000000	7.7493000000
-1.2262000000	-1.1090000000	8.6149000000
-1.7281000000	-1.5554000000	10.6788000000
0.2204000000	-0.2775000000	11.6013000000
1.7926000000	0.8657000000	10.0751000000
-2.079000000	-1.6617000000	8.2005000000
1.9136000000#	1.0923000000#	6.9973000000#
-0.5076000000	-0.4848000000	6.2368000000
-1.4023000000	-1.0669000000	5.9551000000
	3.773600000# 3.766800000# 5.222300000# 2.318000000# 2.742300000# 2.742300000# 2.745700000# 3.770200000# -1.738900000 -1.787400000 0.402900000 0.402900000 0.457700000 0.457700000 3.141400000 3.094200000 1.877400000 0.700000000 0.745700000 0.745700000 0.745700000 0.745700000 0.745700000 0.745700000 0.745700000 0.740300000 -2.570400000 -2.570400000 4.097000000 4.016800000 1.229100000 4.016800000 -0.261300000 0.73300000 0.773300000 0.773300000 0.773300000 0.773300000 0.773300000 0.773300000 0.773300000 0.220400000 1.913600000 1.913600000 -1.402300000	3.773600000#3.444000000#3.766800000#1.068300000#5.222300000#0.464600000#2.318000000#4.047700000#4.799400000#1.829200000#2.742300000#2.684000000#4.794600000#0.149400000#2.745700000#2.256100000#3.770200000#2.256100000#-1.7389000001.413200000-1.7874000002.741700000-0.7148000003.6034000000.4029000003.1449000000.457700000-0.8224000001.973700000-0.4353000003.094200000-2.0650000000.745700000-2.7168000000.745700000-1.0886000000.7457000003.097300000-2.5704000003.097300000-2.5704000003.603700000-2.6602000003.097300000-2.6602000003.603700000-2.716900000-2.716900000-2.716900000-2.716900000-2.7100000-2.716900000-2.7100000-2.716900000-2.7100000-2.660200000-2.7100000-2.716900000-2.7100000-2.716900000-2.7100000-2.716900000-2.7100000-2.716900000-1.229100000-2.716900000-1.226200000-1.048000000-1.226200000-1.55400000-2.79900000-2.77500000-1.728100000-1.661700000-2.79900000-2.66900000-2.079000000-1.066900000-2.079000000-1.66900000

CI-phosphatriptycene

E(M06-2X/6-31+G*)(benzene)= -1532.4742 E(M06-2X/6-311+G**) = -1532.6847 E(BP86/6-31G*) = -1532.8495 H(M06-2X/6-31+G*)(benzene) = -1532.4210

P1	3.1890524228	3.4351625269	4.3337671086
C2	1.9908776313	4.7787549172	4.7732859683
C3	2.3393388853	5.8737875313	5.5583980276
C4	1.3862323771	6.8553738653	5.8430846609
H5	1.6554776676	7.7110291841	6.4554803595
C6	0.0931571888	6.7348920221	5.3422574472
H7	-0.6476959998	7.4978673083	5.5637213813
C8	-0.2597743447	5.6352455994	4.5549911394
H9	-1.2712245113	5.5435405864	4.1653728586
C10	0.6875587670	4.6588128688	4.2704770433
C11	0.3985245817	3.4263495329	3.4253261503
H12	-0.6420286847	3.4211071726	3.0878191178
C13	1.3523792675	3.4242684791	2.2393942495
C14	0.9319965616	3.4224651604	0.9146062890
H15	-0.1300609339	3.4242369466	0.6795066822
C16	1.8790864223	3.4187906084	-0.1130964660
H17	1.5499550135	3.4177986389	-1.1483470023
C18	3.2388805291	3.4159767802	0.1838783498
H19	3.9713739943	3.4123334543	-0.6181048457
C20	3.6628802262	3.4172650980	1.5153699777
C21	2.7217240985	3.4216219947	2.5404517915
Cl22	3.9175620293	0.7528219861	6.2014889075
C23	1.9987313743	2.0721699516	4.7710012091
C24	2.3108095069	0.9615047571	5.5481129150
C25	1.3580706216	-0.0187878114	5.8305876028
H26	1.6330629505	-0.8737482151	6.4394901362
C27	0.0712498642	0.1189233745	5.3253734110
H28	-0.6729597993	-0.6413902003	5.5432010628
C29	-0.2674109234	1.2251578184	4.5436023407
H30	-1.2751732665	1.3302949727	4.1497687861
C31	0.6911546615	2.1928341596	4.2699849195
H32	3.3504874266	5.9628156469	5.9476854911
H33	4.7238136065	3.4145172547	1.7526339084

CI-phosphatriptycene+H⁺

E(M06-2X /6-31+G*)(benzene) = -1532.8550 E(M06-2X/6-311+G**) = -1533.0332 H(M06-2X/6-31+G*)(benzene) = -1532.7931

2.9815187663	3.4441690820	4.3252351195
1.9678957733	4.8327235669	4.8357917770
2.3217930778	5.9181020206	5.6292957554
1.3517854502	6.8857867160	5.8919485242
1.6009158397	7.7430633820	6.5081523027
0.0688872110	6.7514979045	5.3662382304
-0.6784179421	7.5098354745	5.5767167529
-0.2739376805	5.6537076855	4.5711428107
-1.2790239574	5.5627839325	4.1692456151
0.6772809607	4.6801209536	4.2978715186
0.4111546827	3.4359271961	3.4421540717
-0.6213266244	3.4349396850	3.0860319620
1.3830548033	3.4347274135	2.2560193243
0.9864132775	3.4331464244	0.9254282894
	2.9815187663 1.9678957733 2.3217930778 1.3517854502 1.6009158397 0.0688872110 -0.6784179421 -0.2739376805 -1.2790239574 0.6772809607 0.4111546827 -0.6213266244 1.3830548033 0.9864132775	2.98151876633.44416908201.96789577334.83272356692.32179307785.91810202061.35178545026.88578671601.60091583977.74306338200.06888721106.7514979045-0.67841794217.5098354745-0.27393768055.6537076855-1.27902395745.56278393250.67728096074.68012095360.41115468273.4359271961-0.62132662443.43493968501.38305480333.43472741350.98641327753.4331464244

H15	-0.0696468892	3.4326324212	0.6710159155
C16	1.9532698009	3.4325663450	-0.0845420611
H17	1.6377888065	3.4317791731	-1.1229838264
C18	3.3122405590	3.4328058370	0.2211487148
H19	4.0495672559	3.4317639376	-0.5745243099
C20	3.7314223527	3.4341155118	1.5517646999
C21	2.7594131760	3.4351916175	2.5458700697
Cl22	3.9193952463	0.8099383353	6.2561487362
C23	1.9709892182	2.0474710080	4.8280437038
C24	2.3151822889	0.9549956780	5.6139903030
C25	1.3606863099	-0.0234897013	5.8822121334
H26	1.6258936211	-0.8777990385	6.4956493134
C27	0.0793505623	0.1137861549	5.3564273587
H28	-0.6613059609	-0.6506959136	5.5679042687
C29	-0.2705199543	1.2118618422	4.5649094035
H30	-1.2760671142	1.2991144904	4.1647372350
C31	0.6772283266	2.1891892712	4.2950989061
H32	3.3233174916	6.0166509278	6.0374512602
H33	4.7895214557	3.4331728934	1.7961966594
H34	4.3010707503	3.4452573490	4.7807506319

CI-phosphatriptycene+Me+

E(M06-2X/6-31+G*)(benzene) = -1572.1729 E(M06-2X/6-311+G**) = -1572.3617 H(M06-2X/6-311+G**)(benzene) = -1572.0898

P1	-0.0533248927	-0.0063800442	-0.0001871044
C2	-0.8631937654	-0.8060995844	1.3906936564
C3	-0.2605906267	-1.4254991344	2.4800224387
C4	-1.0792948138	-2.0004374518	3.4528823852
C5	-2.4648202627	-1.9460671036	3.3209390263
C6	-3.0595600147	-1.3199962161	2.2214104809
C7	-2.2587996534	-0.7441172114	1.2444930747
C8	-2.7957304117	-0.0336451924	-0.0001667796
C9	-2.2587841833	-0.7434903743	-1.2456007076
C10	-3.0590484267	-1.3189457993	-2.2232143004
C11	-2.4643257344	-1.9449526805	-3.3230093778
C12	-1.0787074755	-1.9992634103	-3.4544428758
C13	-0.2603026950	-1.4247348085	-2.4809981640
C14	-0.8630986053	-0.8059440564	-1.3912558596
CI15	1.3687057447	3.1444761685	0.0023760137
C16	-0.8829818541	1.6008483319	0.0002501577
C17	-0.3489971376	2.8850753792	0.0006433707
C18	-1.1960701604	3.9916235051	0.0001292620
C19	-2.5728324130	3.7984132179	-0.0004581019
C20	-3.1193116857	2.5130919504	-0.0008540777
C21	-2.2791971560	1.4087962373	-0.0001789442
C22	1.7418297990	-0.1193999539	-0.0022104891
H23	2.0055587242	-1.1815323559	-0.0066745308
H24	2.1457988378	0.3698021124	-0.8910754687
H25	2.1483730037	0.3629236221	0.8892099711
H26	0.8206388609	-1.4658436840	2.5802110275
H27	-0.6331360461	-2.4895543059	4.3122348972
H28	-3.0937376452	-2.3962484168	4.0823018553
H29	-4.1416528507	-1.2854071233	2.1315228777
H30	-3.8877469296	-0.0385029874	0.0000677614
H31	-4.1412014725	-1.2843770627	-2.1337017590
H32	-3.0931477947	-2.3948844072	-4.0845956934
H33	-0.6321560781	-2.4876822414	-4.3140353347

H34	0.8209547517	-1.4648256675	-2.5812290903
H35	-0.7705625404	4.9893110451	0.0006231003
H36	-3.2293464941	4.6624751984	-0.0010437811
H37	-4.1965971715	2.3766275997	-0.0006676651

Cl-phosphatriptycene-He₈-ring complex

E(BP86/6-31G*) = -1555.9751

He1	3.7736000000#	3.4440000000#	5.4276000000#
He2	3.7667995223#	1.0683005516#	9.8271999260#
He3	5.2223000000#	0.4646000000#	6.6623000000#
He4	2.3180000000#	4.0477000000#	8.5926000000#
He5	4.7994000000#	1.8292000000#	5.3895000000#
He6	2.7423004334#	2.6839994715#	9.8658000610#
He7	4.7946000426#	0.1494000267#	8.5004000146#
He8	2.7457000000#	4.3629000000#	6.7544000000#
X9	3.7702000000#	2.2561000000#	7.6274000000#
C10	-1.6531784432	2.2692364667	5.1258873934
C11	-1.8126806295	3.6245720131	5.4484061631
C12	-0.8748579980	4.2378535814	6.2868066519
C13	0.2352347698	3.5179534031	6.7625792433
C14	0.4417157948	2.1732124343	6.4067519934
C15	2.0788772308	0.1345839594	5.3442425269
C16	3.2940136108	-0.2841075816	4.7734185312
C17	3.3257984096	-0.9931943253	3.5601163403
C18	2.1378997358	-1.3083406796	2.8913543016
C19	0.9137678171	-0.9404462630	3.4668045496
C20	0.8869914993	-0.2427170947	4.6825288725
C21	-0.5507002441	1.5524977930	5.6126060948
H22	-2.3981827580	1.7545785855	4.5060929748
H23	-2.6736130619	4.1854112665	5.0676312034
H24	-0.9997554265	5.2857682886	6.5829776384
H25	0.9215281563	4.0261520124	7.4290963894
H26	4.2375408650	-0.0822396192	5.2650756069
H27	4.2925404395	-1.3003309765	3.1448335193
H28	2.1593470862	-1.8539934944	1.9411515607
H29	-0.0320123328	-1.2104289606	2.9803633985
C30	-1.3217503417	-2.1939219567	8.3389585431
C31	-0.3196486149	-1.8528760658	9.2479883372
C32	0.6499730864	-0.8918543101	8.8991031281
C33	0.6610233285	-0.2442050994	7.6489009568
C34	-0.3785681489	-0.6162310249	6.7526654076
C35	-1.3494515033	-1.5689717311	7.0847142076
H36	-2.0767183846	-2.9404954715	8.6081907483
H37	-0.2708822325	-2.3186517056	10.2364681860
H38	-2.1295059096	-1.8194403347	6.3561895951
P39	1.9136000017#	1.0922999502#	6.9972999984#
C40	-0.4178656188	0.0620097859	5.3851726004
H41	-1.2720311364	-0.3191609746	4.8001055998
Cl42	1.8439453270	-0.5582609125	10.1477385977

F-Phosphatriptycene

E(M06-2X/6-31+G*)(benzene) = -1172.1182 E(M06-2X/6-311+G**) = -1172.3264 E(BP86/6-31G*) = -1172.4582 H(M06-2X/6-311+G**)(benzene) = -1172.0618

P1	-0.9127034394	-0.6972960501	-1.2156021615
C2	-0.2237372100	1.0099486784	-1.4354040621
C3	-0.3448294189	1.7274861429	-2.6216125552
C4	0.1938469632	3.0138137693	-2.7138475285
C5	0.8499988669	3.5731358912	-1.6211956763
C6	0.9736099708	2.8543899551	-0.4289065319
C7	0.4373462046	1.5754799433	-0.3352936753
C8	0.5217607786	0.7211488697	0.9218277393
C9	-0.8951216362	0.3736653456	1.3569353287
C10	-1.4149794115	0.7006672701	2.6037729673
C11	-2.7286970187	0.3457701189	2.9224273816
C12	-3.5168221761	-0.3333559634	1.9979739366
C13	-2.9951674723	-0.6635397171	0.7440976242
C14	-1.6877058391	-0.3107447216	0.4239530947
F15	0.7175732758	-3.2930210945	-1.7713159262
C16	0.6480802949	-1.3443572303	-0.4460589720
C17	1.2634664509	-2.5325466178	-0.8015117426
C18	2.4318770493	-2.9819272588	-0.1965357982
C19	2.9999280020	-2.2022784499	0.8049690057
C20	2.4071376511	-0.9968278634	1.1911145934
C21	1.2392116520	-0.5738726896	0.5673325835
H22	-0.8575149743	1.2868536556	-3.4730531590
H23	0.0999594407	3.5753521154	-3.6386393676
H24	1.2689028503	4.5726835556	-1.6928807350
H25	1.4867739062	3.2938789854	0.4233167576
H26	1.0534572479	1.2516173155	1.7174824385
H27	-0.8010118607	1.2316133360	3.3276158267
H28	-3.1341355118	0.6025801077	3.8967861880
H29	-4.5370408214	-0.6077021187	2.2493382074
H30	-3.6075904283	-1.1943587484	0.0194805146
H31	2.8701253590	-3.9215403466	-0.5157776691
H32	3.9120932488	-2.5365166796	1.2897061634
H33	2.8568603262	-0.3930789060	1.9746619313

F-phosphatriptycene-H

 $E(M06-2X/6-31+G^*)(benzene) = -1172.4988$ $E(M06-2X/6-311+G^{**}) = -1172.6736$ $H(M06-2X/6-31+G^*)(benzene) = -1172.4336$

P1	-1.2127087780	1.2220823515	0.3946846314
C2	0.4270966075	1.9384553186	0.5240781012
C3	0.7803610064	3.2560560903	0.7924656795
C4	2.1371285851	3.5772824172	0.8434689509
C5	3.0978678548	2.5925249654	0.6279759868
C6	2.7285140503	1.2718691317	0.3564072935
C7	1.3839305180	0.9312107179	0.3012122656
C8	0.8711913245	-0.4841739595	0.0095899708
C9	0.0089106620	-0.9484844124	1.1898623139
C10	0.2751030243	-2.0824236308	1.9455189456
C11	-0.5707282904	-2.4224880368	3.0054682417
C12	-1.6807517371	-1.6415441075	3.3181576040
C13	-1.9660850337	-0.4979853401	2.5716524515
C14	-1.1164007125	-0.1710347487	1.5207493046
F15	-3.0364716361	1.3378123928	-2.1817676580
C16	-1.1270970961	0.4066980048	-1.1954594766
C17	-1.9792702338	0.5194284125	-2.2789207724
C18	-1.7492866112	-0.1974073739	-3.4441316636

C19	-0.6374624010	-1.0336694325	-3.4942599331
C20	0.2367205503	-1.1607079062	-2.4075555330
C21	-0.0041578409	-0.4385571176	-1.2480880046
H22	-2.2895873262	2.0931564261	0.5714214051
H23	0.0265489631	4.0199383759	0.9583990800
H24	2.4402478770	4.5977731643	1.0512804679
H25	4.1507553724	2.8520540173	0.6701682508
H26	3.4899185160	0.5152780996	0.1893601038
H27	1.7101790678	-1.1673194524	-0.1375573316
H28	1.1369690758	-2.7017095516	1.7140843019
H29	-0.3571945839	-3.3097096672	3.5927725614
H30	-2.3274442607	-1.9197562460	4.1433178889
H31	-2.8309267704	0.1139519229	2.8099626760
H32	-2.4306040050	-0.0936200940	-4.2812949908
H33	-0.4457927620	-1.6000205406	-4.3997455454
H34	1.0965176099	-1.8201443436	-2.4735208317

F-phosphatriptycene-Me

E(M06-2X/6-31+G*)(benzene) = -1211.8181 E(M06-2X/6-311+G**) = -1212.0038 H(M06-2X/6-31+G*)(benzene) = -1211.7317

P1	1.3198292569	0.1761140805	0.1685527734
C2	0.5493412807	1.8002672952	0.1752197941
C3	1.1767813515	3.0408417068	0.1864899185
C4	0.3813957743	4.1875979173	0.1907291452
C5	-1.0066368782	4.0738667784	0.1843847946
C6	-1.6263420734	2.8208098055	0.1752743625
C7	-0.8508417949	1.6695685503	0.1707453800
C8	-1.4246545214	0.2493245260	0.1633917374
C9	-0.9052983902	-0.4840813481	-1.0776151609
C10	-1.7251511873	-1.0246593099	-2.0592473375
C11	-1.1545542922	-1.6745990983	-3.1579349884
C12	0.2277103307	-1.7899082709	-3.2841083807
C13	1.0669272499	-1.2522620417	-2.3070355923
C14	0.4884033891	-0.6081512234	-1.2191391245
F15	2.3527275057	-1.3342159693	2.7406308459
C16	0.4723615885	-0.6005194067	1.5472042851
C17	1.0146911504	-1.2451358506	2.6440968113
C18	0.2077802831	-1.7924394931	3.6306304440
C19	-1.1722722563	-1.6765659084	3.4893505070
C20	-1.7437717406	-1.0278748724	2.3882796125
C21	-0.9228783027	-0.4850684666	1.4104573521
C22	3.1159499526	0.1334984056	0.1767640875
H23	2.2601010614	3.1248578810	0.1926852966
H24	0.8474511520	5.1669969261	0.1995576729
H25	-1.6187037520	4.9700101424	0.1873564039
H26	-2.7104690245	2.7484945257	0.1714976922
H27	-2.5161522241	0.2808690263	0.1564309192
H28	-2.8050509494	-0.9422341841	-1.9740896003
H29	-1.7998669993	-2.0948807741	-3.9226026729
H30	0.6558313994	-2.2975985628	-4.1418100619
H31	2.1457021389	-1.3406457940	-2.4018100174
H32	0.6605357595	-2.2923622349	4.4796685964
H33	-1.8175774089	-2.0997040785	4.2522942843
H34	-2.8232314021	-0.9508380363	2.3011850127
H35	3.4548561723	-0.9054240585	0.1804769159
H36	3.4916818711	0.6472660767	-0.7121692075
H37	3.4833812749	0.6283610336	1.0792232740

F-P-trip-He₈-ring complex

E(BP86/6-31G*) = -1195.5935

He1	3.7736000000#	3.4440000000#	5.4276000000#
He2	3.7667996230#	1.0682997565#	9.8271997047#
He3	5.2223000001#	0.4646000000#	6.6623000000#
He4	2.3180000001#	4.0477000001#	8.5926000000#
He5	4.7994000000#	1.8292000000#	5.3895000000#
He6	2.7423001956#	2.6840002518#	9.8658001791#
He7	4.7946002050#	0.1494001283#	8.5004000699#
He8	2.7457000000#	4.3629000000#	6.7544000000#
X9	3.7702000000#	2.2561000000#	7.6274000000#
C10	-1.8469431626	1.9354186242	5.3793540015
C11	-2.0126837246	3.3197329132	5.5411674480
C12	-1.0090648018	4.0607424122	6.1769171874
C13	0.1669688668	3.4305378487	6.6217547131
C14	0.3645710287	2.0521016111	6.4323003050
C15	1.9796657555	0.0094471948	5.4324157131
C16	3.1621656422	-0.3404869797	4.7584239840
C17	3.1266666750	-1.1518227231	3.6106988270
C18	1.9059436044	-1.6310008267	3.1209587308
C19	0.7190544827	-1.3137106525	3.7987448863
C20	0.7567809479	-0.5101763851	4.9464939220
C21	-0.6770964590	1.3077937257	5.8295481793
H22	-2.6365897358	1.3341156735	4.9112906064
H23	-2.9273230302	3.8092243139	5.1878776341
H24	-1.1346480516	5.1379843986	6.3360738409
H25	0.9132586331	4.0316227642	7.1326722873
H26	4.1276586278	-0.0000724724	5.1211869806
H27	4.0639862805	-1.4083556442	3.1036321963
H28	1.8748788236	-2.2593152571	2.2234216418
H29	-0.2435678248	-1.7005785356	3.4412390517
C30	-0.9408922344	-2.1223399502	9.0428888514
C31	0.1321221173	-1.6187867402	9.7837742253
C32	0.9821322839	-0.6697578699	9.1955485400
C33	0.8150123047	-0.1958135569	7.8879391352
C34	-0.2875503812	-0.7217165475	7.1675750272
C35	-1.1524964300	-1.6699763041	7.7300736326
H36	-1.6139443590	-2.8629367123	9.4883736665
H37	0.3322731705	-1.9386265232	10.8108537837
F38	1.9997862515	-0.2116501945	9.9633009464
H39	-1.9937813837	-2.0528838359	7.1406741723
P40	1.9135999763#	1.0922998632#	6.9973000462#
C41	-0.4952248798	-0.1989548148	5.7478466570
H42	-1.3796297954	-0.6739765863	5.2893579349

CF₃-phosphatriptycene

E(M06-2X /6-31+G*)(benzene) = -1409.8603 E(M06-2X/6-311+G**) = -1410.1355 E(BP86/6-31G*) = -1410.2604 H(M06-2X/6-31+G*)(benzene) = -1409.8552

P1	1.3899965702	-2.8784751405	-0.0009978385
C2	2.4627345964	-3.5362987092	-1.3592318920

C3	1.9495846332	-4.2123838974	-2.4621334946
C4	2.8172045000	-4.6913494691	-3.4469356896
C5	4.1888865807	-4.4910593623	-3.3230061162
C6	4.7063289152	-3.8107770397	-2.2173584495
C7	3.8442504842	-3.3342064021	-1.2369416893
C8	4.3098248063	-2.5760549677	-0.0025568050
C9	3.8451387167	-3.3329700937	1.2333830197
C10	4.7077350529	-3.8103106788	2.2131326209
C11	4.1907066249	-4.4901541993	3.3193902321
C12	2.8190432085	-4.6896267815	3.4446225092
C13	1.9508574664	-4.2103133419	2.4604678305
C14	2.4635487952	-3.5346743945	1.3569826156
C15	0.0510773959	0.0531260048	0.0011937638
C16	2.2265142435	-1.2056178945	-0.0016214375
C17	1.5580309436	0.0204751956	0.0005844853
C18	2.2691554236	1.2211956806	0.0029713153
C19	3.6595646997	1.1980323945	0.0026867278
C20	4.3399599732	-0.0185912921	0.0003162461
C21	3.6286196933	-1.2144220206	-0.0020487847
F22	-0.4291051394	1.3086770259	-0.0011749018
F23	-0.4644115557	-0.5641561483	-1.0780281445
F24	-0.4632475305	-0.5596484085	1.0835790020
H25	0.8772808897	-4.3650474055	-2.5543652954
H26	2.4197182977	-5.2189323546	-4.3086991650
H27	4.8625072620	-4.8637490871	-4.0889723968
H28	5.7783966040	-3.6544355119	-2.1235640832
H29	5.3979526074	-2.4621604433	-0.0029459783
H30	5.7798921941	-3.6551064273	2.1183461985
H31	4.8648139148	-4.8635483026	4.0846174336
H32	2.4220082054	-5.2167973997	4.3068635493
H33	0.8785663420	-4.3626695972	2.5535268031
H34	1.7351932638	2.1647350224	0.0048688498
H35	4.2139611943	2.1311426458	0.0049916648
H36	5.4270512258	-0.0361757386	-0.0003004548

CF₃-phosphatriptycene-H⁺

E(M06-2X/6-31+G*)(benzene) = -1410.2397 E(M06-2X/6-311+G**) = -1410.4825 H(M06-2X/6-31+G*)(benzene) = -1410.2252

P1	1.6653965127	-2.8047015958	-0.0018608563
C2	2.5253578467	-3.5250020049	-1.4004328250
C3	1.9852624784	-4.1911230311	-2.4948999425
C4	2.8600312645	-4.6729905853	-3.4689104730
C5	4.2330599274	-4.4815151806	-3.3331617479
C6	4.7621274303	-3.8071149533	-2.2286540536
C7	3.9082298055	-3.3207231638	-1.2480998345
C8	4.3760736678	-2.5614136898	-0.0014205746
C9	3.9070641774	-3.3177560193	1.2473027057
C10	4.7598604861	-3.8061581655	2.2278734074
C11	4.2293993592	-4.4812539504	3.3314510919
C12	2.8562316177	-4.6724619545	3.4659136555
C13	1.9825730173	-4.1893361333	2.4915793961
C14	2.5239641041	-3.5212100169	1.3989187043
C15	0.1327777004	0.0571294220	0.0017288563
C16	2.3228029099	-1.1242219403	-0.0029523594
C17	1.6365232439	0.0869545820	-0.0013333215
C18	2.3519308156	1.2784701456	-0.0007753795
C19	3.7465479104	1.2385260507	-0.0017627166

64 0.023751	6618 -0.0	025881588
02 -1.174997	'5891 -0.0	030211150
45 1.264043	8890 0.00	001692142
73 -0.616282	1728 1.08	311058414
50 -0.621182	2194 -1.0	728367819
96 -2.930797	'0215 -0.0	012069791
-4.334548	8444 -2.5	957838648
-5.196695	57319 -4.3	333572672
-4.860048	8713 -4.0	969823357
31 -3.664116	6771 -2.1	380948631
32 -2.466950	0.0-	010584495
-3.664794	4193 2.1	377283464
47 -4.861545	3894 4.0	951084171
43 -5.197217	'5283 4.3	293173833
-4.332831	5766 2.5	911832484
76 2.226152	.9041 0.00	005181212
71 2.168383	3106 -0.0	012594436
97 0.011242	.3943 -0.0	032351737
	64 0.023751 02 -1.174997 45 1.264043 73 -0.616282 50 -0.621182 96 -2.930797 76 -4.334548 33 -5.196695 25 -4.860048 31 -3.664116 32 -2.466950 72 -3.664794 47 -4.861545 43 -5.197217 78 -4.332831 276 2.226152 371 2.168383 397 0.011242	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CF₃-phosphatriptycene-Me⁺

E(M06-2X/6-31+G*)(benzene) = -1449.5568 E(M06-2X/6-311+G**) = -1449.8108 H(M06-2X/6-311+G**)(benzene) = -1449.5216

P1	4.0495517239	-2.3075907376	-0.2255118296
C2	3.2216983368	-3.1237306529	-1.5962940605
C3	3.8178415049	-3.7577207156	-2.6811455128
C4	2.9930337811	-4.3208359092	-3.6557306614
C5	1.6082840631	-4.2408859667	-3.5301686707
C6	1.0202294756	-3.6003498697	-2.4352291821
C7	1.8276185043	-3.0347094369	-1.4581235028
C8	1.3021404777	-2.3124653709	-0.2163145312
C9	1.8279696315	-0.8759433970	-0.2130618280
C10	1.0208972609	0.2532545264	-0.2143293509
C11	1.6092856779	1.5216592198	-0.2082535228
C12	2.9941340086	1.6702236346	-0.1996413910
C13	3.8184978326	0.5442328639	-0.1976075462
C14	3.2219884015	-0.7120874410	-0.2044714271
C15	5.2603758919	-3.8689146992	2.4791094077
C16	3.2357219972	-3.1236157814	1.1876924269
C17	3.7697690734	-3.7697307241	2.3048630799
C18	2.9219073374	-4.3223710217	3.2596122650
C19	1.5419204498	-4.2288127028	3.0969903651
C20	1.0037474439	-3.5853205513	1.9858614742
C21	1.8425271629	-3.0287583723	1.0237890309
F22	5.6113997269	-4.5147145572	3.5841290165
F23	5.8220371906	-2.6410045374	2.5211501593
F24	5.8255640961	-4.5057814960	1.4302726966
C25	5.8347332365	-2.1961865025	-0.4183448748
H26	4.8985054492	-3.8192995882	-2.7756060736
H27	3.4341592656	-4.8216724001	-4.5109441542
H28	0.9743281442	-4.6818231332	-4.2928247300
H29	-0.0614729195	-3.5454136875	-2.3506439711
H30	0.2101684501	-2.3193203263	-0.2045713856
H31	-0.0608141748	0.1524064925	-0.2209285166
H32	0.9753170484	2.4026291870	-0.2101844756
H33	3.4355526094	2.6611221809	-0.1937027273
H34	4.8991511402	0.6566305935	-0.1898720131
H35	3.3427857654	-4.8232248959	4.1244883746

H36	0.8835468384	-4.6610630653	3.8430521871
H37	-0.0735055671	-3.5160350905	1.8649959184
H38	6.2764978122	-3.1915737078	-0.4852121322
H39	6.0103876721	-1.6470544691	-1.3491234272
H40	6.2790486219	-1.6580313509	0.4203317938

CF₃-phosphatriptycene-He₈-ring complex

E(BP86/6-31G*) = -1433.3820

He1	3.7735999708#	3.4439999911#	5.4275999836#
He2	3.7667984401#	1.0683020985#	9.8271999902#
He3	5.2222999705#	0.4646000247#	6.6623000132#
He4	2.3179999739#	4.0477000001#	8.5925999582#
He5	4.7994000144#	1.8292000090#	5.3895000049#
He6	2.7423014964#	2.6839978257#	9.8657998878#
He7	4.7946001271#	0.1494000515#	8.5004000387#
He8	2.7457000420#	4.3628999919#	6.7544000471#
X9	3.7702000000#	2.2561000000#	7.6274000000#
C10	-1.5590698026	2.4029158225	5.0259236842
C11	-1.7209319397	3.7427252436	5.4054747592
C12	-0.8208365201	4.2997596741	6.3209828555
C13	0.2582128325	3.5437457271	6.8116799148
C14	0.4750796607	2.2173809237	6.3962542503
C15	2.1195513136	0.1693809411	5.3256187092
C16	3.3415313336	-0.2923477151	4.8042945482
C17	3.4064713528	-0.9650902517	3.5719195546
C18	2.2437304593	-1.2019034973	2.8307700528
C19	1.0086454636	-0.8014396946	3.3586898745
C20	0.9497196689	-0.1434920305	4.5952506534
C21	-0.4886859733	1.6503368290	5.5302708511
H22	-2.2793025916	1.9261113689	4.3492748101
H23	-2.5563947318	4.3323974201	5.0117937456
H24	-0.9512057619	5.3315140376	6.6671597520
H25	0.9093962005	4.0101309128	7.5395896980
H26	4.2642468188	-0.1596856929	5.3533061397
H27	4.3792903557	-1.3060413625	3.1994244629
H28	2.2910958430	-1.7167386394	1.8644489952
H29	0.0775337771	-1.0184620000	2.8202338032
C30	-1.4568307834	-2.1717940672	8.0766778122
C31	-0.4842570657	-1.8921505323	9.0379410163
C32	0.5302925374	-0.9464078941	8.7855076561
C33	0.5985500574	-0.2512367620	7.5532877666
C34	-0.4034462595	-0.5559699277	6.5969022769
C35	-1.4111771334	-1.4969885232	6.8520161076
H36	-2.2419156115	-2.9075745413	8.2808962592
H37	-0.4992350810	-2.4057806591	10.0021225050
H38	-2.1638448425	-1.6981037352	6.0797624525
P39	1.9135999648#	1.0923000074#	6.9973000763#
C40	-0.3748650318	0.1684409602	5.2532349073
H41	-1.2121469195	-0.1738096232	4.6214006705
F42	1.5237301820	0.5806777242	10.3054551549
C43	1.5316118225	-0.7186430659	9.8902376572
F44	1.2817425214	-1.4812284487	10.9962066307
F45	2.7958924656	-1.0287995960	9.4833310876

1,4-di-Me-phosphatriptycene

E(M06-2X/6-31+G*)(benzene)= -1151.4954 E(M06-2X/6-311+G**) = -1151.6948 E(BP86/6-31G*) = -1151.8484 H(M06-2X/6-31+G*)(benzene) = -1151.3639

P1	1.4026056661	-2.8301039745	-0.0005240499
C2	2.4497393734	-3.5256219253	-1.3582977378
C3	1.9304292505	-4.2023625997	-2.4577561008
C4	2.7930668237	-4.6919071422	-3.4422071420
C5	4.1666100307	-4.5018464069	-3.3202349085
C6	4.6897887607	-3.8235952159	-2.2159828571
C7	3.8327933632	-3.3359637143	-1.2358187236
C8	4.3114035249	-2.5861019594	-0.0014560975
C9	3.8335702523	-3.3350931486	1.2339039424
C10	4.6910054773	-3.8239833101	2.2130124864
C11	4.1682459543	-4.5026740178	3.3172567776
C12	2.7947692306	-4.6924126313	3.4400644606
C13	1.9316404932	-4.2021007947	2.4563965641
C14	2.4505148000	-3.5248304479	1.3570272702
C15	0.0349526700	0.0551158879	0.0017152191
C16	2.2623380757	-1.1799640463	-0.0010966945
C17	1.5448895577	0.0191079409	0.0006464580
C18	2.2787452438	1.2116875394	0.0017570947
C19	3.6653224660	1.1964325413	0.0015699740
C20	4.3950492930	-0.0008231840	0.0002025769
C21	3.6708579308	-1.1971724911	-0.0013365694
C22	5.9040527240	0.0983385675	-0.0002119808
H23	0.8568539769	-4.3489730695	-2.5478862935
H24	2.3909899765	-5.2205025988	-4.3014452883
H25	4.8367311531	-4.8821890955	-4.0857284056
H26	5.7635651291	-3.6771540510	-2.1227035066
H27	5.3999415619	-2.5305933131	-0.0019523397
H28	5.7648406250	-3.6784884289	2.1189121159
H29	4.8388733611	-4.8841360277	4.0817605677
H30	2.3931086436	-5.2213411477	4.2992898640
H31	0.8581014618	-4.3488388819	2.5468608677
H32	-0.3242850321	1.0878071312	0.0006913465
H33	-0.3791544944	-0.4486877811	-0.8777778437
H34	-0.3776900094	-0.4463265248	0.8832842174
H35	1.7511575812	2.1624953754	0.0033599703
H36	4.2086727677	2.1394604578	0.0028038646
H37	6.4065227709	-0.8690171855	0.0050851636
H38	6.2498012342	0.6429199334	-0.8854163458
H39	6.2495872184	0.6523391840	0.8791738422

1,4-di-Me-phosphatriptycene-H*

E(M06-2X/6-31+G*)(benzene) = -1151.8823 E(M06-2X/6-311+G**) = -1152.0502 H(M06-2X/6-31+G*)(benzene) = -1151.7422

P1	1.6826757788	-2.7721094745	0.0001412194
C2	2.5200122833	-3.5200952779	-1.3981122824
C3	1.9780554425	-4.1912646887	-2.4883811406
C4	2.8506666014	-4.6797217167	-3.4611009243
C5	4.2244593033	-4.4907275774	-3.3271189744
C6	4.7549984884	-3.8145333060	-2.2249091444

C7	3.9028086679	-3.3205669518	-1.2458237770
C8	4.3758112757	-2.5652071676	0.0007384009
C9	3.9023015078	-3.3191157856	1.2480083720
C10	4.7539426531	-3.8167618883	2.2256871362
C11	4.2224923580	-4.4951638292	3.3261660800
C12	2.8485501955	-4.6835945808	3.4593903329
C13	1.9765309284	-4.1922374767	2.4876022786
C14	2.5192890960	-3.5177206321	1.3997673880
C15	0.0967676571	0.1016668909	-0.0013430425
C16	2.3412082903	-1.1012477902	-0.0013249990
C17	1.6046875356	0.0815112686	-0.0018098174
C18	2.3531256624	1.2637295040	-0.0020507217
C19	3.7400166485	1.2323695324	-0.0015303350
C20	4.4760459344	0.0352557500	-0.0008352292
C21	3.7522221963	-1.1580944562	-0.0005856206
C22	5.9822868611	0.1306527667	-0.0012059207
H23	0.2906608061	-2.8908650085	0.0006150130
H24	0.9061803424	-4.3355274505	-2.5872206983
H25	2.4554287261	-5.2075166556	-4.3224597876
H26	4.8946887262	-4.8743155637	-4.0897071619
H27	5.8286809322	-3.6757887765	-2.1338526793
H28	5.4629934108	-2.5123823658	0.0008438539
H29	5.8278502681	-3.6798814997	2.1345060566
H30	4.8923404265	-4.8819961096	4.0874594728
H31	2.4527712536	-5.2135454783	4.3191797117
H32	0.9045690186	-4.3365028326	2.5855778280
H33	-0.2737680599	1.1286684798	-0.0056523051
H34	-0.3151606448	-0.3947618545	-0.8873609311
H35	-0.3140241752	-0.3870145535	0.8895324569
H36	1.8367455694	2.2192694986	-0.0020934306
H37	4.2861258719	2.1726604720	-0.0017329644
H38	6.4828848176	-0.8371433694	0.0066589442
H39	6.3260456904	0.6728603139	-0.8875178546
H40	6.3257153183	0.6867483552	0.8765238685

1,4-di-Me-phosphatriptycene-Me+

E(M06-2X/6-31+G*)(benzene) = -1191.1987 E(M06-2X/6-311+G**) = -1191.3768 H(M06-2X/6-31+G*)(benzene) = -1191.0373

P1	4.5746604445	-2.0534954286	-0.3189915476
C2	3.7767601393	-2.8541117033	-1.7148395982
C3	4.3758419770	-3.4841435227	-2.8000494611
C4	3.5538784088	-4.0441603935	-3.7789098500
C5	2.1686503782	-3.9641615512	-3.6565966092
C6	1.5784271651	-3.3256015880	-2.5621044911
C7	2.3825367370	-2.7632514898	-1.5796571020
C8	1.8494245065	-2.0386335171	-0.3420765531
C9	2.3840483124	-0.6049806738	-0.3348951822
C10	1.5811985095	0.5279380681	-0.3400551678
C11	2.1727328305	1.7945472049	-0.3354054162
C12	3.5581587271	1.9394404961	-0.3269302864
C13	4.3788833027	0.8107219364	-0.3216520380
C14	3.7784446655	-0.4435642468	-0.3246109146
C15	5.8549327888	-3.5930263356	2.3548678286
C16	3.7574928232	-2.8592295897	1.0789112544
C17	4.3611875430	-3.4879127036	2.1689461258
C18	3.4959803582	-4.0384014956	3.1217323168
C19	2.1207530051	-3.9565963098	2.9769719760

C20	1.5125692253	-3.3241479399	1.8806067008
C21	2.3535792188	-2.7655587813	0.9162295975
C22	0.0030428489	-3.3026224280	1.8355883331
C23	6.3707140170	-1.9835725671	-0.4416814795
H24	5.4568873514	-3.5448947483	-2.8926391196
H25	3.9967992867	-4.5416256727	-4.6351971570
H26	1.5366318110	-4.4023181708	-4.4224464277
H27	0.4963902289	-3.2689627076	-2.4813607010
H28	0.7618303926	-2.0201323353	-0.3728615059
H29	0.4990710799	0.4305284165	-0.3486447911
H30	1.5412895004	2.6772971219	-0.3397808752
H31	4.0020854357	2.9292602032	-0.3244658421
H32	5.4600223370	0.9202689051	-0.3151947291
H33	6.0833183674	-4.1325805767	3.2762481492
H34	6.3312987950	-4.1413166294	1.5356123414
H35	6.3263549857	-2.6079095700	2.4346377838
H36	3.9157168400	-4.5386549085	3.9896891936
H37	1.4830313257	-4.3978475009	3.7392247835
H38	-0.4091456882	-2.7905559300	0.9667251027
H39	-0.3869671279	-4.3252475236	1.8301500742
H40	-0.3926014708	-2.8070968362	2.7275799315
H41	6.7911304129	-2.9901219587	-0.4867332378
H42	6.6151123161	-1.4464912004	-1.3635480591
H43	6.7922888466	-1.4489792101	0.4118135568

1,4-di-Me-phosphatriptycene-He₈-ring complex

E(BP86/6-31G*) = -1174.9755

He1	3.7735998619#	3.4439999372#	5.4275999081#
He2	3.7667986375#	1.0683011068#	9.8271998407#
He3	5.2222998776#	0.4646000821#	6.6622999567#
He4	2.3179998505#	4.0476999175#	8.5925998806#
He5	4.7994000186#	1.8291998666#	5.3895001043#
He6	2.7423011687#	2.6839986136#	9.8657999992#
He7	4.7946003826#	0.1494001887#	8.5004001218#
He8	2.7457000978#	4.3628999926#	6.7544000526#
X9	3.7702000000#	2.2561000000#	7.6274000000#
C10	-1.6691386216	2.2598188320	5.1622793773
C11	-1.8377516329	3.6129535249	5.4887503931
C12	-0.8955243861	4.2323718425	6.3176328961
C13	0.2244537324	3.5200086895	6.7819403959
C14	0.4374316334	2.1762232652	6.4250772050
C15	2.0764598691	0.1536093830	5.3297580579
C16	3.3007802873	-0.2449946378	4.7651106551
C17	3.3378925931	-0.9213033919	3.5367780431
C18	2.1538634389	-1.2100263961	2.8529965208
C19	0.9054173134	-0.8768719428	3.4097397649
C20	0.8858782733	-0.2165453520	4.6601968488
C21	-0.5560029075	1.5503483539	5.6364421631
H22	-2.4169578207	1.7395788561	4.5501820469
H23	-2.7073670604	4.1674638011	5.1181932171
H24	-1.0241428313	5.2796983066	6.6149907197
H25	0.9137244535	4.0372385423	7.4385736245
H26	4.2373423814	-0.0614691188	5.2748904363
H27	4.3041234788	-1.2211007775	3.1143222787
H28	2.1887440421	-1.7233935615	1.8839219323
C29	-1.2382412439	-2.2339776648	8.3384333128
C30	-0.2201928827	-1.8838573231	9.2290619708
C31	0.7505232559	-0.9062942154	8.9123563521

C32	0.6910671369	-0.2639913428	7.6510141584
C33	-0.3445515416	-0.6297710531	6.7556664523
C34	-1.2993302785	-1.5992776967	7.0919142583
H35	-1.9783511029	-2.9941559624	8.6131030073
H36	-0.1638026512	-2.3748296810	10.2085381830
H37	-2.0897305416	-1.8527551679	6.3744140209
P38	1.9136001048#	1.0923002949#	6.9973001361#
C39	-0.4117251633	0.0629843665	5.3967991644
H40	-1.2784651643	-0.3130273137	4.8319574368
H41	1.7751947157	0.4495710993	10.2647783248
C42	1.8031277626	-0.6066521301	9.9523061216
H43	1.6467573626	-1.2259374576	10.8520187266
H44	2.8176090961	-0.8153956847	9.5751178799
C45	-0.3680225227	-1.2446983858	2.6711148186
H46	-0.9752131294	-1.9818206324	3.2294402224
H47	-1.0112726140	-0.3643832768	2.4862764513
H48	-0.1305411032	-1.6917303069	1.6907328384

1,4-di-Me-5-CI-phosphatriptycene

E(BP86/6-31G*) = -1611.4758

P1	-4.6618828485	-0.0923851042	0.0252958689
C2	-2.7878227511	-0.1147951235	0.0023235461
C3	-2.0706308341	-1.3291120563	-0.0057143598
C4	-0.6630386122	-1.2464822080	-0.0070286695
C5	-0.0096902113	-0.0123617426	-0.0001043422
C6	-0.7169605947	1.2096093699	0.0029942156
C7	-2.1271048234	1.1398660721	0.0008044512
C8	-3.0509104100	2.3699163274	-0.0065884098
C9	-3.9389698713	2.3232345883	1.2376128847
C10	-3.9601713186	3.3245144210	2.2174023623
C11	-4.8110858741	3.1954507129	3.3297084067
C12	-5.6401076121	2.0720923191	3.4617355388
C13	-5.6225006784	1.0660530019	2.4795044510
C14	-4.7724973264	1.1921890676	1.3710640691
CI15	-6.6774261466	-0.3500656027	-2.6784670518
C16	-4.7797548500	1.1599721441	-1.3587281197
C17	-5.6152028766	1.0491019019	-2.4794245976
C18	-5.6360367155	2.0383326992	-3.4775416190
C19	-4.8045668111	3.1573750786	-3.3472404035
C20	-3.9585418533	3.2920739199	-2.2337865823
C21	-3.9463760510	2.2979711220	-1.2471425164
C22	-2.7555495298	-2.6820141714	-0.0150523534
H23	-0.0730805882	-2.1715357013	-0.0130190475
C24	0.0889766659	2.4970092420	0.0097089209
H25	-2.4754157970	3.3079788547	-0.0223547335
H26	-3.3140564518	4.2058915283	2.1176843333
H27	-4.8249387421	3.9792948814	4.0957467137
H28	-6.3028116409	1.9770091295	4.3294820868
H29	-6.2693212224	0.1857981063	2.5755437154
H30	-6.2979972993	1.9242976397	-4.3411055829
H31	-4.8176508234	3.9311239403	-4.1230213072
H32	-3.3090992430	4.1702849449	-2.1365688839
H33	1.0876839479	0.0138853509	0.0018301657
H34	-2.0109186410	-3.4962376675	-0.0403741618
H35	-3.3870159166	-2.8288915466	0.8799825730
H36	-3.4173357391	-2.8002858337	-0.8919711752
H37	-0.5306300849	3.4065470556	0.0283356366

H38	0.7541520868	2.5366675956	0.8921673862
H39	0.7367800425	2.5596320307	-0.8843582003

1,4-di-Me-5-CI-phosphatriptycene-He₈-ring complex

E(BP86/6-31G*) = -1634.5750

He1	3.7735997905#	3.4440000715#	5.4275996700#
He2	3.7667996661#	1.0683014324#	9.8272002842#
He3	5.2222996589#	0.4646001217#	6.6623000341#
He4	2.3179996810#	4.0477001642#	8.5926000324#
He5	4.7993999322#	1.8291998299#	5.3895003020#
He6	2.7423005364#	2.6839982710#	9.8657996832#
He7	4.7946001169#	0.1493998445#	8.5004000005#
He8	2.7457003078#	4.3628995220#	6.7544001069#
X9	3.7702000000#	2.2561000000#	7.6274000000#
C10	-1.8384966092	0.5324157720	5,1758550783
C11	-2.4065903990	1.8017334737	5.0099982159
C12	-1.7280615291	2,9150984224	5,5065302351
C13	-0 4717480630	2 7591381410	6 1252519693
C14	0 1735706526	1 5092488595	6 2361601343
C15	2 2936523120	-0 2171261809	5 5928856381
C16	3 4017382605	-0 3523941043	4 8634110216
C17	3 6556457545	-1 3160351025	3 8532050200
C18	2 617//02810	2 1025375742	3 5235731006
C10	1 1117910022	2 0810527248	A 2254746077
C 20	1.4117019022	1 1173100475	4.2204740977
C20	0.5964005012	-1.1173109475	5.2330292037
	-0.0004990010	0.3932079725	0.7097019001
	-2.3/2/000010	-0.3033000470	4.0370010004
ПZЭ 1194	-3.3022000/41	1.9210217000	4.3200930224
HZ4	-2.1015017898	3.9170452780	5.4394451139
CI25	0.1811422209	4.2419857762	6.8162259280
H26	4.3375401604	0.2840009478	5.0452965898
H27	4.6145518915	-1.3682558894	3.3248898016
H28	2.7391777208	-2.9436614909	2.7351821643
H29	0.5675947264	-2.7434239510	3.9943089254
C30	-0.0037960244	-2.4996349772	9.5033200390
C31	0.4693707769	-1.3971636680	10.2127862401
C32	0.9227485954	-0.2203570074	9.5767630876
C33	0.9938064908	-0.2136273888	8.1552733663
C34	0.2901534868	-1.2391436972	7.4718370375
C35	-0.1780115033	-2.4091672159	8.1123936760
H36	-0.3261226676	-3.4025023564	10.0364787399
H37	0.4517755983	-1.4146903405	11.3102289535
C38	-0.8647819527	-3.5335865187	7.3605376142
P39	1.9136003100#	1.0923007428#	6.9972998868#
C40	-0.0200106968	-1.0023435490	5.9999018619
H41	-0.7475388623	-1.7443611764	5.6379142002
H42	0.9351793403	1.9227627566	9.9306045655
C43	1.0797401840	0.9843676700	10.4809372990
H44	0.2918894656	0.9390189700	11.2539141738
H45	2.0433033233	1.0267468089	11.0123382052
H46	-0.2663972264	-3.8880024353	6,5013832393
H47	-1.0275120050	-4.3965084543	8.0287326222
H48	-1.8564701058	-3.2342035219	6.9693382498

5. Chiral HPLC analysis

HPLC_column Daicel Chiralpak IA 250x4.6mm

Figure S3. Chiral HPLC analysis of the racemic phosphatriptycene 9a.

HPLC conditions			
HPLC system:	Waters Alliance 2690 + Waters PDA 996		
Stationnary Phase:	Daicel Chiralpak IA 250x4.6 mm 5 μm		
Mobile phase:	isocratic condition – isohexane/isopropanol 98/02		
Flow Rate:	0.5 mL/min		
Exctracted wavelength:	220 nm		
Oven Temperature:	20 °C		

Table S3. Chiral HPLC analysis of the racemic phosphatriptycene 9a.

6. Crystallographic data

Single-crystals X-ray diffraction data collected using an Oxford Diffraction Gemini Ultra R diffractometer (fine-focus sealed tube with multilayer mirror for Cu Ka radiation or graphite monochromator for Mo Ka radiation) (all datasets, except **10a**) or MAR345 image plate (Incoatec I μ S microfocus source with Montel multilayer optics ELM33). The data were integrated using the CrysAlisPro software.^[11] The structures were solved by the dual-space algorithm implemented in SHELXT,^[12] and refined by full-matrix least squares on $|F|^2$ using SHELXL-2018/3,^[13] the shelXLe,^[14] and Olex2 software.^[15] Non-hydrogen atoms were refined anisotropically; and hydrogen atoms in most of the cases were located from the difference Fourier map but placed on calculated positions in riding mode with equivalent isotropic temperature factors fixed at 1.2 times U_{eq} of the parent atoms (1.5 times U_{eq} for methyl groups). Absolute configuration, in cases where applicable, where established by anomalous-dispersion effects in diffraction measurements on the crystal.

For the structures not shown in the main text, see Figure below.

Details of single-crystal X-ray diffraction data collection and determination are given the below tables.

	7a	7b	8a
Chemical formula	C ₁₉ H ₁₂ FP	C ₁₉ H ₁₂ CIP	C ₂₁ H ₁₇ P
<i>M</i> _r	290.26	306.71	300.32
Crystal system, space group	Monoclinic, <i>I</i> 2/ <i>a</i>	Monoclinic, <i>P</i> 2 ₁ / <i>m</i>	Monoclinic, <i>P</i> 2 ₁ / <i>n</i>
Temperature (K)	100	295	295
a, b, c (Å)	13.8967 (8), 8.1179 (3), 13.4003 (7)	7.2135 (3), 13.7539 (4), 8.1944 (3)	8.6630 (4), 8.8328 (4), 20.9003 (8)
α, β, γ (°)	90, 113.349 (7), 90	90, 113.053 (4), 90	90, 98.024 (4), 90
V (Å ³)	1387.93 (14)	748.07 (5)	1583.62 (12)
Ζ	4	2	4
Radiation type	Cu <i>Κ</i> α		Μο <i>Κ</i> α
μ (mm ⁻¹)	1.76	3.16	0.17
Crystal size (mm)	0.60 × 0.54 × 0.41	0.19 × 0.15 × 0.02	0.66 × 0.42 × 0.37
Diffractometer	Oxford Diffraction Xcalibur, Ruby,		Gemini Ultra
Absorption correction	Analytical		Gaussian
T _{min} , T _{max}	0.495, 0.613	0.662, 0.941	0.595, 1.000
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	3246, 1216, 1191	2755, 2755, 1966	10088, 4830, 3752
R _{int}	0.038	0.036	0.018
θ _{max} (°)	67.3	67.2	30.5
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.598	0.598	0.714
$\begin{array}{ll} R[F^2 > & 2\sigma(F^2)],\\ wR(F^2), \ S \end{array}$	0.069, 0.154, 1.36	0.066, 0.208, 1.08	0.046, 0.127, 1.03
No. of reflections	1216	2755	4830
No. of parameters	214	120	220
No. of restraints	209	1	18
H-atom treatment	constrained		
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \cdot Å^{-3})$	0.17, -0.37	0.31, -0.26	0.29, -0.20
CCDC deposition number	2061849	2061850	2061851

	9a	10a	13a
Chemical formula	C ₂₃ H ₂₀ CIP	C ₂₁ H ₁₆ CIP	C ₁₈ H ₉ Br ₃ Cl ₃ P
<i>M</i> _r	362.81	334.76	602.27
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁ / <i>m</i>	Triclinic, <i>P</i> ⁻¹	Monoclinic, <i>P</i> 2 ₁ /c
Temperature (K)	295	295	295
a, b, c (Å)	8.1914 (2), 13.7899 (4), 8.6284 (2)	13.9870 (17), 16.009 (4), 16.436 (4)	31.4777 (8), 8.5972 (2), 14.8825 (4)
α, β, γ (°)	90, 99.365 (3), 90	74.36 (2), 89.257 (14), 79.319 (16)	90, 94.161 (3), 90
V (Å ³)	961.67 (5)	3480.1 (13)	4016.89 (19)
Ζ	2	8	8
Radiation type	Cu <i>K</i> α	Μο <i>Κ</i> α	Cu <i>K</i> α
μ (mm ⁻¹)	2.54	0.31	11.88
Crystal size (mm)	0.29 × 0.07 × 0.03	0.20 × 0.14 × 0.07	0.11 × 0.09 × 0.01
Diffractometer	Oxford Diffraction Xcalibur, Ruby, Gemini Ultra	MAR345 image plate	Oxford Diffraction Xcalibur, Ruby, Gemini Ultra
Absorption correction	Gaussian	Multi-scan	Analytical
T _{min} , T _{max}	0.673, 0.931	0.689, 1.000	0.373, 0.863
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	2998, 2998, 2585	17918, 4206, 2334	12995, 6263, 4873
R _{int}	0.043	0.147	0.034
θ _{max} (°)	67.2	17.2	62.6
$(\sin \theta / \lambda)_{max} (A^{-1})$	0.598	0.417	0.576
$ \begin{array}{l} R[F^2 > & 2\sigma(F^2)],\\ wR(F^2), \ S \end{array} $	0.052, 0.155, 1.15	0.088, 0.235, 1.04	0.043, 0.103, 1.06
No. of reflections	2998	4206	6263
No. of parameters	140	887	527
No. of restraints	4	760	84
H-atom treatment	mixed	constrained	
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \cdot Å^{-3})$	0.38, -0.27	0.27, -0.25	0.97, -0.79
CCDC deposition number	2061852	2061853	2061854

	13b	15a	25a
Chemical formula	C ₁₈ H ₉ Br ₆ P	C ₃₂ H ₁₉ Cl ₂ O ₄ P	C ₁₉ H ₁₃ AuCIP
<i>M</i> _r	735.68	569.34	504.68
Crystal system, space group	Triclinic, <i>P</i> ⁻¹	Triclinic, <i>P</i> ⁻¹	Monoclinic, <i>P</i> 2 ₁ / <i>n</i>
Temperature (K)	100	295	295
a, b, c (Å)	7.4004 (9), 8.9219 (12), 15.889 (3)	8.7704 (4), 9.6774 (3), 16.3912 (4)	8.26532 (9), 14.28693 (14), 14.00053 (14)
α, β, γ (°)	78.126 (13), 82.433 (12), 81.201 (11)	106.886 (3), 96.369 (3), 92.054 (3)	90, 91.8231 (9), 90
V (Å ³)	1009.1 (3)	1319.60 (9)	1652.43 (3)
Ζ	2	2	4
Radiation type	Cu <i>Κ</i> α	Μο <i>Κ</i> α	Cu <i>K</i> α
µ (mm⁻¹)	15.12	0.35	19.06
Crystal size (mm)	0.43 × 0.06 × 0.02	0.52 × 0.13 × 0.05	0.36 × 0.27 × 0.06
Diffractometer	Oxford Diffraction Xcalibur, Ruby, Gemini ultra		
Absorption correction	Gaussian	Anal	ytical
T _{min} , T _{max}	0.153, 0.736	0.855, 0.985	0.062, 0.495
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	2316, 2316, 1816	12095, 5383, 4209	7819, 2934, 2690
R _{int}	0.071	0.022	0.032
θ _{max} (°)	40.8	26.4	67.2
$(\sin \theta / \lambda)_{max} (A^{-1})$	0.424	0.625	0.598
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.074, 0.227, 1.10	0.038, 0.102, 1.03	0.030, 0.076, 1.07
No. of reflections	2316	5383	2934
No. of parameters	227	352	199
No. of restraints	171	0	0
H-atom treatment	constrained		
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \cdot Å^{-3})$	1.02, -1.22	0.33, -0.19	1.64, -1.18
CCDC deposition number	2061855	2061856	2061857

	25d	26a	26b
Chemical formula	$2(C_{20}H_{12}AuCIF_{3}P) \cdot C_{7}H_{8}$	$C_{25}H_{20}O_3PRh$	$C_{25}H_{19}FO_3PRh$
M _r	1237.50	502.29	520.28
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁ / <i>n</i>	Triclinic, <i>P</i> ⁻¹	Triclinic, <i>P</i> ⁻ 1
Temperature (K)	100	295	295
a, b, c (Å)	14.81554 (13), 17.38646 (13), 16.11733 (12)	9.3940 (2), 15.7924 (3), 16.7012 (4)	9.5012 (2), 15.7667 (5), 16.6900 (5)
α, β, γ (°)	90, 90.9329 (7), 90	65.676 (2), 80.915 (2), 76.193 (2)	65.119 (3), 80.211 (2), 75.563 (2)
V (Å ³)	4151.11 (6)	2187.53 (10)	2190.45 (12)
Ζ	4	4	4
Radiation type	Cu Kα		
μ (mm ⁻¹)	15.54	7.20	7.28
Crystal size (mm)	0.30 × 0.22 × 0.18	0.33 × 0.12 × 0.06	0.11 × 0.07 × 0.06
Diffractometer	Oxford Diffraction Xcalibur, Ruby, Gemini Ultra		
Absorption correction		Analytical	
T _{min} , T _{max}	0.064, 0.234	0.258, 0.671	0.596, 0.727
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	28416, 7376, 7267	21822, 7739, 7213	21134, 7736, 6495
R _{int}	0.026	0.026	0.041
θ _{max} (°)	67.2	67.2	67.1
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.598	0.598	0.597
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.071, 1.19	0.024, 0.063, 1.04	0.035, 0.102, 1.04
No. of reflections	7376	7739	7736
No. of parameters	598	545	583
No. of restraints	105	0	8
H-atom treatment	constrained		
$Δρ_{max}$, $Δρ_{min}$ (e·Å ⁻³)	1.12, -1.91	0.40, -0.43	0.92, -0.67
CCDC deposition number	2061858	2061859	2061860
	26c	26d	
--	--	---	
Chemical formula	C ₂₅ H ₁₉ ClO ₃ PRh	$C_{26}H_{19}F_3O_3PRh$	
M _r	536.73	570.29	
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁ / <i>c</i>	Orthorhombic, $P2_12_12_1$	
Temperature (K)	295	295	
a, b, c (Å)	8.62702 (10), 21.4229 (2), 12.62171 (15)	8.26668 (8), 15.72226(15), 17.67340 (19)	
α, β, γ (°)	90, 107.1655 (13), 90	90, 90, 90	
V (Å ³)	2228.78 (5)	2297.03 (4)	
Ζ	4	4	
Radiation type	Cu Ko		
μ (mm ⁻¹)	8.18	7.13	
Crystal size (mm)	0.36 × 0.23 × 0.16	0.41 × 0.22 × 0.05	
Diffractometer	Oxford Diffraction Xcalibur, Ruby, Gemini Ultra		
Absorption correction	Analytical		
T _{min} , T _{max}	0.230, 0.416	0.110, 0.688	
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	11623, 3948, 3716	13181, 4062, 3941	
R _{int}	0.025	0.039	
θ _{max} (°)	67.0	67.1	
(sin θ/λ) _{max} (Å-1)	0.597	0.597	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.074, 1.09	0.027, 0.068, 1.01	
No. of reflections	3948	4062	
No. of parameters	292	309	
No. of restraints	0	0	
H-atom treatment	constrained		
Δρ _{max} , Δρ _{min} (e·Å ⁻³)	0.52, -0.59	0.47, -0.46	
Absolute structure	-	Flack x determined using 1611 quotients	
Absolute structure parameter	-	-0.024 (7)	
CCDC deposition number	2061861	2061862	

7. References

- 1. S. Ito, K. Koshino, K. Mikami, *Chem. Asian J.* 2018, **13**, 830.
- 2. A. Ben Saida, A. Chardon, A. Osi, N. Tumanov, J. Wouters, A. I. Adjieufack, B. Champagne, G. Berionni, *Angew. Chem. Int. Ed.* 2019, **58**, 16889.
- 3. L. Hu, D. Mahaut, N. Tumanov, J. Wouters, R. Robiette, G. Berionni, 2019, 84, 11268.
- 4. V. D. Vuković, E. Richmond, E. Wolf, J. Moran, Angew. Chem. Int. Ed. 2017, 56, 3085.
- 5. S. E. Creutz, J. C. Peters, J. Am. Chem. Soc. 2014, **136**, 1105.
- 6. L. Y. Chen, P. Ren, B. P. Carrow, J. Am. Chem. Soc. 2016, 138, 6392.
- 7. J. A. Werra, M. A. Wünsche, P. Rathmann, P. Mehlmann, P. Löwe, F. Dielmann, Z. Anorg. Allg. Chem. 2020, 646, 1.
- Calculations were carried out at the M06-2X/6-31+G(d)(benzene) level of theory using the Jaguar 8.5 pseudospectral program package (Jaguar 8.5, Schrodinger, Inc., New York, NY, 2014).
- 9. J. Jover, N. Fey, M. Purdie, G. C. Lloyd-Jones, J. N. Harvey, *J. Mol. Catal. A: Chem.* 2010, **324**, 39.
- 10. A. J. Poë, D. H. Farrar, Y. Zheng, J. Am. Chem. Soc. 1992, 114, 5146.
- 11. Rigaku Oxford Diffraction. CrysAlis PRO. Rigaku Oxford Diffraction: Oxford, UK 2018.
- 12. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3.
- 13. G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3.
- 14. C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281.
- 15. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, Puschmann, H. J. Appl.Crystallogr. 2009, 42, 339.