Supporting Information

Sterically hindered phenanthroimidazole ligands drive the structural flexibility and unprecedented lability of cyclometalated iridium(III) complexes

Sergei V. Tatarin, Paulina Kalle, Ilya V. Taydakov, Evgenia A. Varaksina, Vladislav M. Korshunov and Stanislav I. Bezzubov

- 1. NMR and HRMS spectra.
- 2. X-ray data.
- 3. Redox and optical properties
- 4. Computational details

Figure S4. ¹H NMR spectrum of phi (400 MHz, 298K, CDCl₃).

Figure S6. ¹H NMR spectrum of dmphi (400 MHz, 298K, CDCl₃).

Figure S8. ¹H NMR spectrum of [Ir(fphi)₂Cl]₂ (400 MHz, 298K, CDCl₃).

Figure S10. ¹H NMR spectrum of [Ir(mphi)₂Cl]₂ (400 MHz, 298K, CDCl₃).

Figure S12. ¹H NMR spectrum of [Ir(dmphi)₂Cl]₂ (400 MHz, 298K, CDCl₃).

Figure S13. Aromatic region of ¹H NMR spectrum of [Ir(dmphi)₂Cl]₂ (400 MHz, 298K, CDCl₃).

Figure S14. ¹H NMR spectrum of 1 (400 MHz, 298K, CDCl₃).

Figure S16. ¹H NMR spectrum of 2 (400 MHz, 298K, CDCl₃).

Figure S18. ¹H NMR spectrum of **3** (400 MHz, 298K, CDCl₃).

Figure S19b. ¹³C{¹H} APT NMR spectrum of **3** (101 MHz, 298K, CDCl₃).

Figure S21. Aromatic region of ¹H NMR spectrum of 4 (400 MHz, 298K, CDCl₃).

Figure S23. Aromatic region of ¹H NMR spectrum of **5** (400 MHz, 298K, CDCl₃).

Figure S24. Aromatic region of COSY ¹H, ¹H NMR spectrum of 1

Assignment: 8.97 (d, *J*=7.9 Hz, 1 H) q'/q 8.91 (d, J=7.9 Hz, 1 H) q/q' 8.65 (d, J=8.4 Hz, 2 H) m, m' 8.52 – 8.45 (m, 2 H) n, n' 8.12 - 8.08 (m, 1 H) r 7.97 (d, *J*=7.7 Hz, 1 H) u/s 7.93 - 7.81 (m, 9 H); 7.76 - 7.71 (m, 1 H) residual signals 7.57 (d, *J*=7.9 Hz, 1 H) s/u 7.50 – 7.43 (m, 2H) I, I' 7.36 (d, J=4.9 Hz, 1 H) y/w 7.30 – 7.27 (m, 1H) 0'/0 7.25 – 7.17 (m, 4 H) k, k'; o/o'; t 7.15 – 7.03 (m, 4 H) p'/p; w/y; j, j' 6.89-6.78 (m, 4H) (c, c')/(d, d'); p/p'; Х 6.46 - 6.34 (m, 4H) a, a'; (d, d')/(c, c') 5.72 (s, 1 H) v 3.88 (s, 3 H) $COOCH_3$

8.08 - 8.05 (m, 1 H)7.96 (d, *J*=7.7 Hz, 1 H) 8.00 - 7.80 (m, 10 H); 7.70 - 7.65 (m, 1 H) 11 residual signals 7.55 – 7.50 (m, 1 H) 7.50 - 7.44 (m, 2 H) 7.35 (dd, *J*=5.0, 1.0 Hz, 1 H) 7.30-7.27 (m, 1H) 7.26 - 7.04 (m, 10H) j, j'; a, a'; y/w; p'/p 6.86 – 6.77 (m, 2H) 6.67 (ddd, J = 8.5, 3.8, 2.2 Hz, 2H) 6.39-6.32 (m, 2H) 5.67 (s, 1 H) v

 $COOCH_3$

3.89 (s, 3 H)

,,,,,0

r

MeOOC

2

а

u

s

t

d, d'

Figure S26. Aromatic region of COSY ¹H, ¹H NMR spectrum of **3**

Figure S30. High resolution mass spectrum of 1.

Figure S32. High resolution mass spectrum of 2.

Figure S34. High resolution mass spectrum of **3**.

Figure S36. High resolution mass spectrum of 4.

Figure S38. High resolution mass spectrum of 5.

Table S1. Complex species (with their relative masses) in mass spectra of 1-5.

	$Ir(C^N)_2^+$	$Ir(C^N)_2(O^O)^+$
1	967.2217	1254.2608
2	999.1614	1286.2002
3	931.2403	1218.2794
4	991.2623	1278.3005
5	1051.2826	1338.3212

Figure S39. Binuclear structures of reaction products of 1H (upper left), 2H (upper right), 4H (lower left) and 5H (lower right) with TiO_2 .

	[Ir(dmphi) ₂ Cl] ₂	[Ir(cphi) ₂ Cl] ₂	[Ir(fphi) ₂ Cl] ₂	[Ir(mphi) ₂ Cl] ₂
Emminical formula	$C_{116}H_{84}Ir_2N_8O_8Cl_2$	$C_{108}H_{64}Cl_6Ir_2N_8$	$C_{108}H_{64}Cl_{2}F_{4}Ir_{2}N_{8}$	$C_{112}H_{76}Cl_2Ir_2N_8O_4$
Empirical formula	+solvent	+solvent	+solvent	+solvent
M _w	2173.21	2070.77	2004.97	2053.10
Temperature (K)	150	150	230	150
Size (mm)	0.30 x 0.27 x 0.04	0.35 x 0.20 x 0.07	0.36 x 0.12 x 0.1	0.30 x 0.18 x 0.05
Cryst. system	monoclinic	triclinic	monoclinic	triclinic
Space group	C2/c	P-1	C2/c	P-1
<i>a</i> (Å)	24.510(3)	17.8595(11)	29.578(10)	13.8139(5)
b (Å)	22.242(3)	18.4756(10)	24.131(8)	19.0358(8)
c (Å)	22.805(3)	19.4513(11)	20.493(8)	20.5748(7)
α(°)		69.415(2)		73.4120(10)
β (°)	115.060(2)	64.151(2)	126.799(9)	70.6910(10)
γ(°)		79.109(2)		74.1020(10)
V (Å ³)	11262(2)	5402.4(5)	11712(7)	4796.1(3)
Z	4	2	4	2
$\rho_{\rm cald}$ (g·cm ⁻³)	1.282	1.273	1.137	1.422
Abs coeff (mm ⁻¹)	2.463	2.655	2.363	2.885
F(000)	4352	2048	3968	2048
θ range (deg)	$1.98 \le \theta \le 27.00$	$1.94 < \theta < 26.3$	$1.72 < \theta < 25.05$	2.15< <i>θ</i> < 25.01
no. of collected/unique rflns	48294/12241	58725/21930	28161/10334	47688/16918
Completeness to θ (%)	99.5	98.8	99.3	99.4
no. of data/restraints/params	12241/6/627	21930/0/117	10334/0/560	16918/0/1157
Goodness of fit on F ²	1.069	1.045	0.979	1.027
Final <i>P</i> indices $(I > 2\sigma(I))$	$R_1 = 0.0502,$	$R_1 = 0.0485,$	$R_1 = 0.0544,$	$R_1 = 0.0386,$
Find K indices $(I > 20(I))$	$wR_2 = 0.1117$	$wR_2 = 0.1327$	$wR_2 = 0.1315$	$wR_2 = 0.0928$
R indices (all data)	$R_1 = 0.0751,$	$R_1 = 0.0612,$	$R_1 = 0.0914,$	$R_1 = 0.0460,$
A mulees (an uala)	$wR_2 = 0.1197$	$wR_2 = 0.1405$	$wR_2 = 0.1488$	$wR_2 = 0.0963$
Largest diff peak/hole (e/Å ³)	1.96/-2.44	3.94/-2.83	1.57/-2.60	3.28/-0.78

Table S2. Details of the X-ray crystal data collection and structure refinement for dimeric compounds

	1	2	3	4	5
Empirical formula	$C_{69}H_{43}IrN_4O_4F_2S\cdot$	$C_{69}H_{43}IrN_4O_4Cl_2S\cdot$	C ₆₉ H ₄₅ IrN ₄ O ₄ S·	$C_{71}H_{49}IrN_4O_6S\cdot$	C ₇₃ H ₅₃ IrN ₄ O ₈ S·
Empirical formula	0.5 CH ₂ Cl ₂	1.3 CH ₂ Cl ₂	0.65 CH ₃ CN	1.3 CH ₂ Cl ₂ ·0.27 H ₂ O	0.45 CH ₃ OH
M _w	1381.72	1397.64	1245.03	1538.04	1352.87
Temperature (K)	100	150	150	150	150
Size (mm)	0.20 x 0.12 x 0.10	0.20 x 0.18 x 0.12	0.30 x 0.25 x 0.05	0.17 x 0.14 x 0.08	0.32 x 0.23 x 0.18
Cryst. system	monoclinic	triclinic	Triclinic	triclinic	orthorhombic
Space group	C2/c	P-1	P-1	P-1	Pna2 ₁
<i>a</i> (Å)	23.5656(15)	14.6748(9)	15.7615(4)	11.3617(4)	23.0818(17)
b (Å)	17.6138(11)	15.3911(8)	19.7594(6)	11.4387(4)	11.7771(8)
<i>c</i> (Å)	29.183(2)	15.5092(10)	21.2004(6)	25.1626(9)	22.3446(16)
α(°)		93.940(2)	84.9820(10)	87.1280(10)	
β (°)	98.663(2)	107.762(2)	68.2350(10)	82.5430(10)	
γ(°)		106.996(2)	77.2280(10)	82.4970(10)	
V (Å ³)	11974.9(13)	3141.9(3)	5980.1(3)	3213.0(2)	6074.1(7)
Z	8	2	4	2	4
$\rho_{\rm cald}({\rm g}\cdot{\rm cm}^{-3})$	1.533	1.477	1.383	1.590	1.479
Abs coeff (mm ⁻¹)	2.460	2.406	2.320	2.419	2.296
F(000)	5528	1397	2505	1545	2736
θ range (deg)	$1.75 < \theta < 25.05$	$2.37 < \theta < 25.03$	$2.11 < \theta < 25.05$	$2.29 < \theta < 30.54$	1.94< <i>θ</i> <29.00
no. of collected/unique rflns	57032/10610	45730/10988	50466/21080	38911 / 19375	70959/16116
Completeness to θ (%)	99.9	98.9	99.5	98.3	99.9
no. of data/restraints/params	10610/15/627	10988/42/750	21080/123/1426	19375 /0 / 836	16116/10/699
Goodness of fit on F ²	1.061	1.046	1.066	1.043	1.023
Final R indices $(I > 2\sigma(I))$	$R_1 = 0.0733,$	$R_1 = 0.0699,$	$R_1 = 0.0528,$	$R_1 = 0.0427,$	$R_1 = 0.0400,$
$1 \max X \operatorname{maters} (1 \ge 20(1))$	$wR_2 = 0.2026$	$wR_2 = 0.1847$	$wR_2 = 0.1554$	$wR_2 = 0.0986$	$wR_2 = 0.0964$
R indices (all data)	$R_1 = 0.0930,$	$R_1 = 0.0934,$	$R_1 = 0.0727,$	$R_1 = 0.0531,$	$R_1 = 0.0493,$
A marces (an data)	$wR_2 = 0.2188$	$wR_2 = 0.2006$	$wR_2 = 0.1676$	$wR_2 = 0.1028$	$wR_2 = 0.1010$
Largest diff peak/hole (e/Å ³)	2.72/-1.56	2.17/-1.85	2.26/-1.51	1.91 /-1.51	1.59/-1.16

Table S3. Details of the X-ray crystal data collection and structure refinement for complexes 1-5.

	5	1 1	5 5	1 ()	
	1H	2Н	3Н	4H	5H
Empirical formula	$C_{122}H_{72}Ir_2N_8O_4F_4S\cdot$	$C_{122}H_{72}Cl_4Ir_2N_8O_4S\cdot$	$C_{122}H_{76}Ir_2N_8O_4S\cdot$	$C_{126}H_{84}Ir_2N_8O_8S$	$C_{130}H_{92}Ir_2N_8O_{12}S\cdot$
	4.5 CH ₃ CN	7 CH ₃ CN	0.5 CH ₃ CN+solvent	·5 CH ₃ CN	7 CH ₃ CN
M _w	2391.07	2354.24	2175.42	2459.79	2661.95
Temperature (K)	100	100	150	100	100
Size (mm)	0.12 x 0.10 x 0.03	0.20 x 0.10 x 0.02	0.16 x 0.08 x 0.07	0.14 x 0.11 x 0.09	0.15 x 0.12 x 0.07
Cryst. system	triclinic	triclinic	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1	P-1	P-1
a (Å)	17.471(2)	12.202(3)	13.7602(5)	15.9214(10)	14.2021(15)
b (Å)	17.750(2)	20.438(5)	18.4965(5)	19.4903(12)	19.393(2)
c (Å)	18.145(2)	21.092(6)	22.4727(6)	20.8240(13)	23.025(2)
α(°)	104.068(4)	99.336(8)	111.7180(10)	89.263(2)	105.080(3)
β (°)	107.253(2)	101.460(9)	97.9180(10)	69.208(2)	101.124(3)
γ(°)	93.552(4)	102.695(8)	105.2410(10)	68.446(2)	90.032(4)
V (Å ³)	5157.9(10)	4911(2)	4947.4(3)	5567.1(6)	5999.5(11)
Z	2	2	2	2	2
$\rho_{\rm cald}({\rm g}\cdot{\rm cm}^{-3})$	1.540	1.592	1.460	1.467	1.474
Abs coeff (mm ⁻¹)	2.671	2.902	2.770	2.474	2.305
F(000)	2394	2348	2176	2480	2691
θ range (deg)	$1.98 < \theta < 26.00$	$1.94 < \theta < 25.05$	$2.00 < \theta < 26.38$	$2.15 < \theta < 26.00$	$2.00 < \theta < 26.00$
no. of collected/unique rflns	84068/20266	83692/17415	54309/20035	89775/21855	98817/23568
Completeness to θ (%)	99.9	100	99.0	99.8	99.9
no. of data/restraints/params	20266/27/1408	17415/7/1224	20035/556/1373	21855/22/1406	23568/9/1582
Goodness of fit on F ²	1.035	0.999	1.014	1.023	1.036
Final P indices $(I > 2\sigma(I))$	$R_1 = 0.0297,$	$R_1 = 0.0531,$	$R_1 = 0.0365,$	$R_1 = 0.0424,$	$R_1 = 0.0346,$
T mat K matces $(1 \ge 20(1))$	$wR_2 = 0.0694$	$wR_2 = 0.0922$	$wR_2 = 0.0793$	$wR_2 = 0.1041$	$wR_2 = 0.0648$
Pindices (all data)	$R_1 = 0.0405,$	$R_1 = 0.1229,$	$R_1 = 0.0537,$	$R_1 = 0.0598,$	$R_1 = 0.0510,$
	$wR_2 = 0.0748$	$wR_2 = 0.1154$	$wR_2 = 0.0858$	$wR_2 = 0.1141$	$wR_2 = 0.0693$
Largest diff peak/hole (e/Å ³)	1.96/-1.80	1.07/-1.28	1.45/-0.92	2.10/-1.80	2.35/-1.87

Table S4. Details of the X-ray crystal data collection and structure refinement for binuclear compounds obtained by partial decomposition of hydrolysed complexes (1H - 5H)

	Ir ₁ –C ₁	Ir ₁ -C ₂₈	Ir ₁ -N ₁	Ir ₁ -N ₃	Ir ₁ –O ₄	Ir ₁ –O ₃	
Commission 1	1.989(10)	2.020(10)	2.091(8)	2.056(8)	2.140(6)	2.181(6)	
Complex I	C ₁ -Ir ₁ -C ₂₈	$N_1 - Ir_1 - C_{28}$	C ₁ -Ir ₁ -N ₃	C ₁ –Ir ₁ –O ₃	C_{28} – Ir_1 – O_4	N_1 – Ir_1 – O_3	N ₃ -Ir ₁ -O ₄
	95.0(4)	98.7(3)	95.3(4)	93.7(3)	85.5(3)	80.2(3)	80.9(3)
	Ir ₁ -C ₂₈	Ir ₁ –C ₁	Ir ₁ -N ₃	Ir ₁ -N ₁	Ir ₁ –O ₄	Ir ₁ –O ₃	
Commission 2	1.979(11)	1.993(9)	2.072(7)	2.066(7)	2.155(6)	2.115(6)	
Complex 2	C ₁ -Ir ₁ -C ₂₈	$N_1 - Ir_1 - C_{28}$	C ₁ -Ir ₁ -N ₃	C_1 – Ir_1 – O_3	C_{28} – Ir_1 – O_4	N_1 – Ir_1 – O_4	N ₃ -Ir ₁ -O ₃
	95.6(4)	79.5(3)	79.5(3)	86.2(3)	91.2(3)	81.8(3)	80.1(3)
	Ir ₁ –C ₁	$Ir_1 - C_{28}$	Ir ₁ –N ₁	Ir ₁ -N ₃	Ir ₁ –O ₄	Ir ₁ –O ₃	
Commission 2*	1.998(6)	1.989(6)	2.066(5)	2.063(5)	2.147(4)	2.152(4)	
Complex 3"	C ₁ -Ir ₁ -C ₂₈	$N_1 - Ir_1 - C_{28}$	C ₁ -Ir ₁ -N ₃	C ₁ –Ir ₁ –O ₃	C ₂₈ -Ir ₁ -O ₄	N ₁ -Ir ₁ -O ₃	N ₃ -Ir ₁ -O ₄
	96.9(2)	96.0(2)	97.5(2)	88.0(2)	90.2(2)	81.08(17)	80.69(19)
	Ir ₁ –C ₁	$Ir_1 - C_{28}$	Ir ₁ –N ₁	Ir ₁ -N ₃	Ir ₁ –O ₃	Ir ₁ –O ₄	
Committee 4	1.993(3)	1.979(3)	2.053(3)	2.073(3)	2.173(2)	2.138(2)	
Complex 4	C ₁ -Ir ₁ -C ₂₈	$N_1 - Ir_1 - C_{28}$	C ₁ -Ir ₁ -N ₃	C ₁ -Ir ₁ -O ₃	C_{28} – Ir_1 – O_4	N ₃ -Ir ₁ -O ₃	N ₁ -Ir ₁ -O ₄
	94.15(13)	80.06(12)	79.93(12)	95.14(11)	86.45(12)	80.10(10)	81.11(10)
	Ir ₁ –C ₁	$Ir_1 - C_{28}$	Ir ₁ -N ₁	Ir ₁ -N ₃	Ir ₁ –O ₄	Ir ₁ –O ₃	
Committee 5	1.993(6)	1.988(6)	2.060(5)	2.068(5)	2.153(5)	2.161(4)	
Complex 5	C ₁ -Ir ₁ -C ₂₈	N ₁ -Ir ₁ -C ₂₈	C ₁ -Ir ₁ -N ₃	C ₁ –Ir ₁ –O ₃	C ₂₈ -Ir ₁ -O ₄	N ₁ -Ir ₁ -O ₃	N ₃ -Ir ₁ -O ₄
	98.0(2)	95.2(2)	99.2(2)	88.0(2)	88.5(2)	83.47(18)	80.2(2)

Table S5. Selected bond lengths [Å] and angles [°] in structures of the complexes

Figure S40. Labelling of planes in phenanthroimidazole ligands

Complex 1									
Angle[°]	Α	В	С	D	Е				
Α		6.0(4)	9.5(4)	10.2(4)	13.5(4)				
В	11.9(4)		5.0(4)	8.6(4)	8.9(4)				
С	16.9(4)	5.1(4)		4.9(4)	4.0(4)				
D	17.3(4)	7.5(4)	4.7(6)		6.2(4)				
Е	20.4(4)	8.8(4)	3.7(4)	5.1(4)					
		Con	plex 2	1	·				
Angle[°]	A	В	С	D	E				
А		11.9(4)	15.2(4)	14.8(4)	17.5(4)				
В	7.1(4)		3.8(3)	5.7(3)	6.2(4)				
С	8.7(3)	3.5(3)		3.5(4)	2.4(4)				
D	4.2(4)	3.4(4)	4.6(4)		3.9(3)				
E	15.3(3)	10.8(3)	7.4(3)	11.5(3)					
		Com	plex 3*	· · · ·					
Angle[°]	A	В	С	D	Е				
А		7.5(3)	5.1(2)	3.2(3)	11.1(2)				
В	12.9(3)		4.2(2)	7.8(3)	11.0(2)				
С	18.5(2)	6.6(3)		7.2(2)	7.6(3)				
D	18.2(2)	7.4(2)	2.1(3)		14.0(3)				
E	22.1(2)	11.3(2)	5.0(3)	4.1(2)					
		Con	nplex 4						
Angle[°]	A	В	С	D	Е				
А		11.1(3)	15.2(4)	12.8(4)	24.5(6)				
В	12.2(3)		5.6(3)	9.6(4)	14.7(3)				
С	12.1(4)	1.8(4)		7.6(4)	9.4(4)				
D	11.7(4)	0.5(4)	1.5(4)		14.3(4)				
Е	12.6(4)	4.6(3)	2.8(5)	4.3(3)					
		Con	nplex 5						
Angle[°]	A	В	С	D	E				
А		2.8(4)	8.9(3)	11.1(4)	16.1(5)				
В	16.8(3)		6.3(3)	10.0(4)	13.4(4)				
С	20.9(4)	6.9(4)		7.2(4)	7.9(4)				
D	18.0(4)	10.3(3)	6.4(4)		13.4(4)				
E	29.2(4)	15.2(4)	8.7(4)	12.1(4)					

Table S6. Angles between various planes in phenanthroimidazoles in structures of the complexes Complex 1

* in structure of complex 3 two independent molecules were observed, data is given for less disordered one

Figure S41. Fragment of the crystal packing of [Ir(fphi)₂Cl]₂ Image along 2 axis.

Figure S42. Fragment of the crystal packing of [Ir(cphi)₂Cl]₂ Image along 2 axis.

Figure S43. Fragment of the crystal packing of $[Ir(mphi)_2Cl]_2$

Figure S44. Fragment of the crystal packing of [Ir(dmphi)₂Cl]₂ Image along 2 axis.

Figure S45. Fragment of the crystal packing of complex 1. Image along 2 axis; minor components of disordered groups are not shown.

Figure S46. Fragment of the crystal packing of complex **2**. Minor components of disordered groups are not shown.

Figure S47. Fragment of the crystal packing of complex **3**. Minor components of disordered groups are not shown.

Figure S48. Fragment of the crystal packing of complex 4.

Figure S49. Fragment of the crystal packing of complex 5. Image along 2_1 axis; minor components of disordered groups are not shown.

3. Redox and optical properties.

Figure S50. Cyclic voltammetry curves of complexes 1 - 5 measured versus ferrocene in Ar-saturated N,N-dimethylformamide (electrolyte – 0.1 M NBu₄PF₆) at a scan rate of 50 mV/s.

Figure S51. Excitation (---) and absorption (—) spectra of complexes 1 - 5 measured in CH₂Cl₂ at 25°C.

Figure S52. Comparison of absorption spectra of synthesized complexes (red) and benzimidazole-based complexes (black).

Figure S53. Comparison of absorption spectra of decomposition product of complex 3 in pure CH_2Cl_2 (a) with its chloride precursor (b) and decomposition product of complex 3 upon addition of CF_3SO_3H and NBu_4Cl (c) (upper) and absorption spectra of the β -diketone (lower).

Figure S54. Changing of absorption spectra of complex 3 under continuous irradiation in time (measured in CH_2Cl_2 at 25°C).

Figure S55. Changing of absorption spectra of complexes 1, 2, 4 and 5 under continuous irradiation (measured in CH_2Cl_2 at 25°C).

Figure S56. Photoluminescence decay curve of complex 1with its approximation.

Figure S57. Photoluminescence decay curves of complexes 2 - 4. (for complex 5 it was unable to record a decay curve due to weak luminescence)

Figure S58. Mapping the surface of the selected crystallite (on the left) with spatial resolution by lifetime and luminescence intensity.

4. Calculation details.

complex		1	2	3	4	5
	Ir	43	43	48	38	38
номо	C^N	53	52	47	58	58
nomo	0^0	4	5	5	4	4
	energy, eV	-4.97	-5.00	-4.79	-4.71	-4.55
	Ir	5	5	5	5	5
LUMO	C^N	11	11	11	11	11
Lomo	0^0	84	84	84	84	84
	energy, eV	-1.92	-1.94	-1.82	-1.79	-1.79

Table S7. Composition (%) of frontier molecular orbitals for 1-5.

Figure S59. TDDFT electronic spectra of complexes 1–5.

	1	2	3	4	5
$Ir - C1 (S_0 / T_1)$	1.9959 / 2.0103	1.9974 / 2.0110	1.9977 / 2.0125	1.9981 / 2.0132	1.9984 / 2.0094
$Ir - C2 (S_0 / T_1)$	1.9929 / 2.0038	1.9942 / 2.0050	1.9944 / 2.0057	1.9947/ 2.0068	1.9952 / 2.0027
$Ir - N1 (S_0 / T_1)$	2.0997/ 2.1005	2.0996 / 2.1002	2.0988 / 2.1014	2.0984 / 2.1001	2.0959 / 2.1015
$Ir - N2 (S_0 / T_1)$	2.0945 / 2.0944	2.0948 / 2.0945	2.0942 / 2.0942	2.0975 / 2.0965	2.1009 / 2.0978
$Ir - O1 (S_0 / T_1)$	2.1768 / 2.1287	2.1747 / 2.1282	2.1828 / 2.1247	2.1818 / 2.1248	2.1780 / 2.1187
Ir – O2 (S ₀ / T ₁)	2.1708 / 2.0897	2.1710 / 2.0892	2.1775 / 2.0791	2.1763 / 2.0821	2.1801 / 2.0748

Table S8	Selected bond	lengths in	ntimized	structures of	1 - 5 < 1	t the ground	and triplet	excited state
Table So.	Selected Dolla	ienguis in o	opunnzea	situctures or	1-32	it the ground	i and unpiet	exciled state

Figure S60a. Optimized geometries of S0(left) and T1(right) states of complexes 1 - 3.

Figure S60b. Optimized geometries of S0(left) and T1(right) states of complexes 4 and 5.

aute 59. TDDF	i singici	exerce states it	n 1 – 5.
Compound	State	λ / nm (f)	Dominant monoexcitations
1	S_1	504 (0.007)	$H \rightarrow L (97\%)$
	S ₂	435 (0.02)	$H-2 \to L (56\%), H-1 \to L (40\%)$
	S ₃	421 (0.02)	$H-1 \to L (59\%), H-2 \to L (39\%)$
	S ₅	399 (0.15)	$H \rightarrow L+1 \ (66\%), H \rightarrow L+2 \ (10\%)$
	S ₆	395 (0.09)	$H \rightarrow L+3 \ (67\%), H \rightarrow L+1 \ (16\%)$
2	S ₁	503 (0.007)	$H \rightarrow L (97\%)$
	S ₂	432 (0.02)	$H-2 \to L (63\%), H-1 \to L (32\%)$
	S ₃	420 (0.02)	$H-1 \to L (67\%), H-2 \to L (27\%)$
	S ₄	409 (0.14)	$H \to L+1 (77\%), H \to L+2 (13\%)$
	S ₅	404 (0.06)	$H \rightarrow L+2 (54\%), H-3 \rightarrow L (31\%)$
3	S_1	524 (0.007)	H → L (97%)
	S ₂	440 (0.02)	$\text{H-1} \rightarrow \text{L} (95\%)$
	S ₃	418 (0.13)	$H \rightarrow L+1 (72\%), H \rightarrow L+2 (14\%)$
	S_4	416 (0.011)	$\text{H-2} \rightarrow \text{L} (95\%)$
	S ₅	412 (0.06)	$H \rightarrow L+3$ (36%), $H \rightarrow L+2$ (33%), $H \rightarrow L+1$ (14%)
4	S_1	529 (0.006)	H → L (96%)
	S ₃	432 (0.02)	$H-2 \rightarrow L (77\%), H-1 \rightarrow L (13\%)$
	S ₅	411 (0.08)	$H \rightarrow L+1 (55\%), H \rightarrow L+2 (29\%)$
	S ₆	397 (0.12)	$H \rightarrow L+4 \ (61\%), H \rightarrow L+2 \ (17\%), H \rightarrow L+1 \ (14\%)$
	S ₇	394 (0.04)	$H \rightarrow L+2 (47\%), H \rightarrow L+4 (27\%), H \rightarrow L+1 (21\%)$
5	S_1	568 (0.006)	$H \rightarrow L (98\%)$
	S ₃	444 (0.09)	$H \rightarrow L+1 (87\%)$
	S_4	439 (0.03)	$H-2 \rightarrow L (84\%), H-1 \rightarrow L (11\%),$
	S_5	423 (0.03)	$H \to L+3 (45\%), H \to L+4 (39\%)$
	S ₆	418 (0.04)	$H \rightarrow L+2 (66\%), H \rightarrow L+5 (23\%)$
	•	•	

Table S9. TDDFT singlet excited states for 1-5.

Only the singlet states in the visible spectral range are included. H = HOMO, L = LUMO. All excitations are of combined MLCT / LLCT character. MLCT – metal-to-ligand charge transfer, LLCT – ligand-to-

All excitations are of combined MLC1 / LLC1 character. MLC1 – metal-to-ligand charge transfer, LLC1 – ligand-to ligand charge transfer.

Table S10. Spin density distribution (%) for complexes 1-5 at their T₁ states.

complex		1	2	3	4	5
	Ir	14	14	18	17	20
moiety	0^0	83	82	76	78	70
	C^N	3	4	6	5	10

Table S11. Calculated emission wavelength for complexes 1-5 from the triplet excited state (calculated as $\lambda=hc/\Delta E$, where ΔE is $E(T_1)-E(S_0$ in T_1 geometry)

com	plex	1	2	3	4	5
λ,	nm	658	657	697	687	727