Electronic Supplementary Information

Coordination-induced emission enhancement in copper(I) iodide coordination polymers supported by 2-(alkylsulfanyl)pyrimidines

Katerina A. Vinogradova, *^a Nikita A. Shekhovtsov, *^a Alexey S. Berezin, ^a Taisiya S. Sukhikh, ^a Maxim I. Rogovoy, ^a Alexander V. Artem'ev ^a and Mark B. Bushuev*^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia. E-mail addresses: vinogradova@niic.nsc.ru (Katerina A. Vinogradova), shna1998@mail.ru (Nikita A. Shekhovtsov), bushuev@niic.nsc.ru (Mark B. Bushuev). Fax: +7 383 330 94 89; Tel: +7 383 316 51 43.

Table of Contents

Figure S1	4
Figure S2	5
Figure S3	6
Figure S4	6
Figure S5	6
Table S1	7
Table S2	8
Table S3	10
Table S4	13
Table S5	16
Table S6	20
Table S7	20
Figure S6	21
Figure S7	21
Table S8	21
Table S9	23
Table S10	24
Table S11	24
Table S12	26
Table S13	27
Table S14	27
Table S15	28
Table S16	
Table S17	
Table S18	
Table S19	
Table S20	
Table S21	32
Table S22	32
Table S23	
Table S24	
Table S25	
Table S26	34
Table S27	34
Table S28	35

able S29
gure S836
gure S9
able S30
gure S10
gure S11
able S3140
gure S1241
gure S1341
able S3242
gure S1443
gure S1543
gure S1644
gure S1744
gure S1844
gure S1945
gure S2046
gure S2147
gure S2248

Figure S1. IR spectra of the complexes.

In the region $3100 - 2850 \text{ cm}^{-1}$, weak bands to the left of 3000 cm^{-1} can be attributed to v(C-H) vibrations of the pyrimidine ring, whereas those to the left of 3000 cm^{-1} belong to v(C-H) vibrations of the alkyl groups. Intense bands in the $1570 - 1545 \text{ cm}^{-1}$ range can be assigned to the stretching vibrations of the pyrimidine ring.^{S1} Although it is difficult to assign bands in the fingerprint region (1450 cm⁻¹ and below, C-C and C-S stretching vibrations and deformation vibrations of various groups), a weak band at 1320 cm^{-1} in the spectrum of $[Cu_2L^1l_2]_n$, which is absent in the spectrum of the complexes with L², is informative of the $v(S-CH_3)$ vibrations.^{S2}

- S. Breda, I.D. Reva, L. Lapinski, M.J. Nowak and R. Fausto, J. Mol. Struct., 2006, 786, 193–206.
- S2 K. Nakanishi, Infrared Absorption Spectroscopy, Holden-Day, Inc., San Francisco and Nankodo Company limited, Tokyo, 1962.

Figure S2. X-ray powder diffraction patterns of $[Cu_2L^1l_2]_n$.

Figure S3. X-ray powder diffraction patterns of [Cu₂L²l₂]_n.

Figure S4. X-ray powder diffraction patterns of $[Cu_2L^2I_2]_n$, $[CuL^2I]_n$ and their mixture.

Figure S5. X-ray powder diffraction patterns of [CuL²I]_n.

Identification code	[Cu ₂ L ¹ I ₂] _n	$[Cu_2L^2I_2]_n$	[CuL ² I] _n
Empirical formula	$C_5H_6Cu_2I_2N_2S$	$C_6H_8Cu_2I_2N_2S$	C ₆ H ₈ CuIN₂S
Formula weight	507.06	521.08	330.64
Space group	P-1	P-1	P21/c
a/Å	7.6410(4)	7.5758(6)	4.1293(4)
b/Å	8.5752(4)	9.4445(9)	15.0107(13)
c/Å	9.4222(5)	9.9008(8)	14.8554(13)
α/°	67.325(2)	61.958(3)	90
β/°	67.177(2)	82.979(3)	97.948(3)
γ/°	81.785(2)	66.443(2)	90
Volume/ų	525.04(5)	571.24(9)	911.95(14)
Z	2	2	4
$\rho_{calc}g/cm^3$	3.207	3.029	2.408
µ/mm ⁻¹	10.076	9.266	5.946
F(000)	460.0	476.0	624.0
Crystal size/mm ³	0.35 × 0.29 × 0.1	0.13 × 0.12 × 0.12	0.28 × 0.05 × 0.05
20 range for data collection/°	5.148 to 54.42	4.676 to 54.456	2.714 to 56.208
Index ranges	$-9 \le h \le 9, -9 \le k \le 10, -$	$-9 \le h \le 9, -12 \le k \le 9, -$	$-4 \le h \le 5, -19 \le k \le 19,$
	$12 \le \le 12$	$12 \leq \leq 11$	-19 ≤ l ≤ 12
Reflections collected	6767	5668	10024
Independent reflections	2317 [R _{int} = 0.0283,	2468 [R _{int} = 0.0207,	2167 [R _{int} = 0.0320,
	R _{sigma} = 0.0280]	R _{sigma} = 0.0275]	R _{sigma} = 0.0257]
Restraints/parameters	0/110	0/119	0/102
Goodness-of-fit on F ²	1.245	1.072	1.055
Final R indexes [1>-20 (1)]	R ₁ = 0.0215, wR ₂ =	$R_1 = 0.0203$, $wR_2 =$	R ₁ = 0.0190, wR ₂ =
	0.0538	0.0404	0.0461
Final R indexes [all data]	$R_1 = 0.0221$, $wR_2 =$	$R_1 = 0.0229$, $wR_2 =$	R ₁ = 0.0196, wR ₂ =
	0.0541	0.0415	0.0464
Largest diff. peak/hole / e Å ⁻³	0.72/-1.48	0.60/-0.66	1.28/-0.47

 $\label{eq:table_state} Table \ S1. \ Crystallographic \ data \ of the \ complexes \ [Cu_2L^1l_2]_n, \ [Cu_2L^2l_2]_n \ and \ [CuL^2l]_n.$

Table S2. A search of CCDC structures (CSD version 5.41, Mar 2020) containing $(Cu_2l_2)_n$ ribbons. Dihedral angles between $\{Cu_2l\}$ planes (deg.) as well as Cu–I and Cu…Cu distances (Å) in $\{Cu_2l_2\}$ quadrangles and ligand type are listed. *m* is for supporting ligands that do not bind Cu atoms in a ribbon; *b* is for ligands that bridge Cu atoms in a ribbon. Note that bridging ligands connecting only adjacent ribbons are assigned *m*-type. The cases where ligand type is *m*, but the dihedral angle is far from 180°, are highlighted yellow.

ignoring structures with further coordination Cu and I atoms (e.g. cubane-like structures and triple ribbons). The total number of structures ignoring retaken ones was 47. Most of them present almost flat $\{Cu_2l_2\}$ quadrangles with the dihedral angle greater than 175°. 14 structures reveal both flat (>175°) and folded (<175°) $\{Cu_2l_2\}$ fragments, while 3 structures (viz. DIVKUQ, DUFHAP and RUPTED) exhibit only folded fragments. Cu–I bonds range from 2.56 to 2.88 Å, while Cu…Cu distances range from 2.61 to 3.76 Å; no correlation between these distances and the dihedral angle was found. No correlation between Cu…Cu distance and ligand type was also found.

Index	Refcode	ligand type	dihedral angle	Cu–l	Cu…Cu	Index	Refcode	ligand type	dihedral angle	Cu–	Cu…Cu
1	ACIGAX	m	180.00	2.73	3.21	64	MRHCUI	m	180.00	2.67	2.96
2	ACIGAX	m	180.00	2.73	2.92	65	MUHQOV	m	180.00	2.73	3.41
3	AGIYEU01	m	180.00	2.65	2.76	66	MUHQOV	m	180.00	2.64	2.78
4	AGIYEU01	m	180.00	2.61	2.76	67	MUHQOV01	m	180.00	2.67	2.80
5	AGIYEU02	m	180.00	2.66	2.79	68	MUHQOV01	m	180.00	2.74	3.41
6	AYELOH	т	180.00	2.56	2.75	69	NEKXAD	т	180.00	2.69	3.33
7	AYELOH	т	180.00	2.76	2.87	70	OMIHEX	т	179.30	2.64	2.85
8	AYELOH	т	175.77	2.71	3.12	71	ONAXUX	b	180.00	2.76	3.52
9	BIGLUY	b	180.00	2.59	2.62	72	ONAXUX	b	155.60	2.76	3.52
10	BIGLUY	b	180.00	2.58	2.61	73	ORUSAW	т	180.00	2.67	3.36
11	BIGLUY	b	131.43	2.74	2.76	74	ORUSAW	т	180.00	2.67	2.76
12	BUWJIN	b	180.00	2.71	3.32	75	QALNOJ	т	180.00	2.66	2.69
13	BUWJIN	b	180.00	2.70	3.76	76	QALNOJ	т	180.00	2.61	3.00
14	BUWJIN	Ь	164.17	2.71	3.55	77	QEZBEF	b	180.00	2.62	2.79
15	CAJQOT	т	180.00	2.63	3.44	78	QEZBEF	b	145.81	2.62	2.79
16	CAJQOT	m	180.00	2.77	2.89	79	REJCAL	b	180.00	2.68	2.80
17	<mark>CAJQOT</mark>	m	172.03	2.68	2.92	80	REJCAL	b	164.96	2.68	2.80
18	CEPFOS	т	180.00	2.65	2.65	81	RIWXIF	b	180.00	2.69	2.64
19	CEPFOS	т	180.00	2.74	3.56	82	RIWXIF	b	180.00	2.63	2.72
20	CEZBEQ	т	180.00	2.63	2.77	83	RIWXIF	b	145.62	2.69	2.88
21	CEZBEQ	т	180.00	2.68	2.73	84	RUPTED	т	158.25	2.66	2.69
22	CUIPYS	т	179.27	2.64	2.87	85	RUPTED	т	157.41	2.66	2.69
23	<mark>DIVKUQ</mark>	т	150.43	2.69	2.94	86	SAWTOZ	т	180.00	2.77	2.91
24	<mark>DIVKUQ</mark>	т	144.60	2.63	2.80	87	TAWKUZ	b	180.00	2.67	2.72
25	DUFHAP	Ь	151.32	2.64	2.81	88	TAWKUZ	b	180.00	2.62	2.76
26	DUFHAP	Ь	137.62	2.65	2.64	89	TAWKUZ	b	137.05	2.72	2.84
27	ECEVIS	т	180.00	2.74	3.54	90	TIYZOT	Ь	180.00	2.67	2.78
28	ECEVIS	т	180.00	2.66	3.08	91	TIYZOT	Ь	180.00	2.71	3.65
29	ECEVIS	m	170.52	2.65	2.86	92	TIYZOT	Ь	163.86	2.67	2.78

30	FALYEW	т	180.00	2.68	2.71	93	TIYZOT	b	162.50	2.71	3.65
31	FALYIA	т	180.00	2.78	3.60	94	TIYZOT01	b	180.00	2.67	2.73
32	FOLBAJ	т	180.00	2.74	2.96	95	TIYZOT01	b	165.64	2.70	3.63
33	GUYQAU	т	179.62	2.70	3.13	96	TIYZOT01	b	162.76	2.70	3.63
34	GUYQAU	т	179.41	2.71	3.21	97	TOKGAB	т	179.70	2.65	2.90
35	HALZAW	т	180.00	2.68	2.93	98	VEVGUY	т	179.36	2.76	3.51
36	HALZAW	т	178.48	2.66	2.96	99	VEVGUY	т	177.91	2.70	2.79
37	HUJHID	т	179.97	2.67	2.82	100	VEYJUE	т	180.00	2.71	3.21
38	HUJHUP	т	180.00	2.63	2.70	101	VIXBEK	т	178.10	2.75	2.83
39	HUJHUP	т	180.00	2.69	2.76	102	WEMDAU	т	180.00	2.74	3.17
40	HUJHUP01	т	180.00	2.63	2.72	103	XAKNED	т	180.00	2.61	2.73
41	HUJHUP01	т	180.00	2.69	2.78	104	XAKNED	т	180.00	2.61	2.65
42	JULWOE	т	179.27	2.62	3.17	105	XAKNED	т	180.00	2.65	3.03
43	JULWOE	т	179.17	2.69	2.80	106	<mark>XAKNED</mark>	т	167.89	2.76	3.19
44	KALNOA	т	180.00	2.68	2.82	107	XIHFAV	т	180.00	2.66	2.86
45	KAWGOG	b	180.00	2.69	2.91	108	XIHFAV	т	180.00	2.66	2.87
46	KAWGOG	b	180.00	2.71	2.90	109	ZEBNUP	т	180.00	2.63	2.85
47	KAWGOG	b	153.76	2.69	2.91	110	ZEBNUP	т	180.00	2.65	2.78
48	KAWGOG	b	145.23	2.71	2.90	111	ZEBNUP	т	177.48	2.62	2.77
49	LAGVAS	т	178.80	2.61	2.79	112	ZEGRIM01	т	180.00	2.66	3.12
50	LAGVAS	т	178.47	2.66	3.00	113	ZEGRIM02	т	180.00	2.65	3.01
51	LIGGOA	b	180.00	2.65	3.43	114	ZEGRIM03	т	180.00	2.64	3.01
52	LIGGOA	b	152.71	2.72	2.72	115	ZEGRIM10	т	178.95	2.64	3.02
53	LUZQAA	b	180.00	2.67	2.84						
54	LUZQAA	b	180.00	2.67	2.94						
55	LUZQAA	b	179.89	2.61	3.12						
56	LUZQAA	b	179.02	2.70	3.15						
57	LUZQAA	b	178.58	2.60	3.01						
58	LUZQAA	b	174.87	2.67	2.92						
59	LUZQAA	b	174.58	2.88	3.63						
60	LUZQAA	b	174.30	2.71	3.65						
61	LUZQAA	b	171.15	2.85	3.67						
62	LUZQAA	b	170.90	2.62	3.73						
63	LUZQAA	b	169.04	2.73	3.72						

Table S3. Gas phase geometries of the model $\{Cu_8l_8(L^1)_4\}$ (the complex $[Cu_2L^1l_2]_n$) in Cartesian (XYZ) coordinates as calculated in Gaussian software at the B3LYP/LANL2DZ/D95V level of theory.

Ground state (S₀)

I	2.808719000000	-0.803896000000	-1.891077000000
Ι	0.837818000000	2.158802000000	0.252364000000
Cu	1.219430000000	-0.540472000000	0.240286000000
Cu	3.260402000000	1.225282000000	-0.185623000000
S	4.665610000000	3.162936000000	-1.325631000000
N	6.738097000000	1.514641000000	-1.963886000000
N	5.974790000000	2.963160000000	-3.726397000000
C	7.703015000000	1.023720000000	-2.792997000000
н	8.330850000000	0.238410000000	-2.385906000000
C	5.911811000000	2.482949000000	-2.469335000000
C	3,576232000000	4,136041000000	-2.519690000000
н	3 187305000000	3 459566000000	-3 28096100000
н	2 76702100000	4 530080000000	-1 901452000000
н	4 163677000000	4 933857000000	-2 972279000000
C	7 846067000000	1 487941000000	-4 10840800000
н	8 613596000000	1 090680000000	-4 761261000000
Ċ	6 936858000000	2 468284000000	-4 543544000000
н	6.964559000000	2.400204000000	-5 552277000000
	4 832268000000	0 80301000000	1 80110800000
÷	-0.837818000000	-2 15880200000	-0.252364000000
	-1 210/2000000	-2.138802000000	-0.232304000000
Cu	-1.219430000000 6 42126000000	0.540472000000	-0.240280000000
Cu	4 2202650000000	1 22564700000	-0.240070000000
N	4.580805000000	1 02022100000	0.163439000000
	1.556457000000	-1.020321000000	2.260644000000
1	-4.832268000000	-0.803919000000	-1.891108000000
і С	-0.803113000000	2.158722000000	0.252355000000
Cu	-6.421260000000	-0.540928000000	0.240070000000
cu	-4.380865000000	1.225647000000	-0.185439000000
5	-3.116315000000	3.0618/9000000	-1.45/64/000000
N	-1.538437000000	1.020321000000	-2.280844000000
N	-2.438/39000000	2.406199000000	-4.032321000000
С	-0.900594000000	0.26380/000000	-3.2141/9000000
Н	-0.316703000000	-0.569525000000	-2.842096000000
С	-2.281287000000	2.067833000000	-2.738295000000
С	-4.365591000000	4.015587000000	-2.501714000000
Н	-4.978750000000	3.308745000000	-3.060818000000
Н	-4.975451000000	4.562599000000	-1.780144000000
Н	-3.829955000000	4.685927000000	-3.172989000000
С	-1.009319000000	0.543676000000	-4.585922000000
Н	-0.502770000000	-0.07008000000	-5.320879000000
С	-1.806021000000	1.639276000000	-4.956180000000
Н	-1.950665000000	1.921160000000	-5.995013000000
I	-2.808719000000	0.803896000000	1.891077000000
Cu	-3.260402000000	-1.225282000000	0.185623000000
Ν	-6.738097000000	-1.514641000000	1.963886000000
T	6.803113000000	-2.158722000000	-0.252355000000
S	3.116315000000	-3.061879000000	1.457647000000
Ν	2.438739000000	-2.406199000000	4.032321000000
С	0.900594000000	-0.263807000000	3.214179000000
Н	0.316703000000	0.569525000000	2.842096000000

С	2.281287000000	-2.067833000000	2.738295000000
С	4.365591000000	-4.015587000000	2.501714000000
Н	4.978750000000	-3.308745000000	3.060818000000
Н	4.975451000000	-4.562599000000	1.780144000000
Н	3.829955000000	-4.685927000000	3.172989000000
С	1.009319000000	-0.543676000000	4.585922000000
Н	0.502770000000	0.070080000000	5.320879000000
С	1.806021000000	-1.639276000000	4.956180000000
Н	1.950665000000	-1.921160000000	5.995013000000
S	-4.665610000000	-3.162936000000	1.325631000000
Ν	-5.974790000000	-2.963160000000	3.726397000000
С	-7.703015000000	-1.023720000000	2.792997000000
Н	-8.330850000000	-0.238410000000	2.385906000000
С	-5.911811000000	-2.482949000000	2.469335000000
С	-3.576232000000	-4.136041000000	2.519690000000
Н	-3.187305000000	-3.459566000000	3.280961000000
Н	-2.767021000000	-4.53008000000	1.901452000000
Н	-4.163677000000	-4.933857000000	2.972279000000
С	-7.846067000000	-1.487941000000	4.108408000000
Н	-8.613596000000	-1.090680000000	4.761261000000
С	-6.936858000000	-2.468284000000	4.543544000000
Н	-6.964559000000	-2.869369000000	5.552277000000
	Lowest	triplet excited state	(T ₁)
T	2.808706000000	-0.803886000000	-1.891076000000
T	0.837759000000	2.158861000000	0.252369000000
Cu	1.219297000000	-0.540188000000	0.240481000000
Cu	3.260554000000	1.225102000000	-0.185698000000
S	4.577153000000	3.172531000000	-1.238175000000
N	6.769264000000	1.637794000000	-1.848842000000
Ν	6.041602000000	3.192609000000	-3.543989000000
С	7.838627000000	1.277917000000	-2.664166000000
Н	8.498273000000	0.510597000000	-2.275914000000
C	5.935757000000	2.606197000000	-2.357352000000
C	3.476223000000	4.085360000000	-2.466595000000
н	3.095762000000	3.378255000000	-3.204503000000
н	2.663888000000	4.508877000000	-1.872393000000
н	4 070757000000	4 858945000000	-2 949967000000
C	8.024740000000	1.857165000000	-3.919775000000
н	8.861056000000	1.560996000000	-4.543393000000
C	7.091677000000	2.821769000000	-4.355688000000
н	7,154060000000	3,308834000000	-5.321981000000
	4 832270000000	0.803911000000	1 891124000000
i	-0.837759000000	-2 158861000000	-0.252369000000
Cu	-1 219297000000	0 540188000000	-0 240481000000
Сц	6.421194000000	0.541050000000	-0.239991000000
Cu	4 380890000000	-1 225764000000	0 185286000000
N	1.518847000000	-1.024467000000	2,264765000000
1	-4 83227000000	-0.80391100000	-1 89112400000
	-6 80310800000	2 15871800000	0 25234500000
' Cu	-6 42119400000	-0 5410500000	0 229999100000
Cu	-4 3808000000	1 225764000000	-0 18528600000
s S	-3 08166400000	3 070787000000	-1 414473000000
N	-1.518847000000	1.024467000000	-2.26476500000

Ν	-2.420486000000	2.436359000000	-3.995544000000
С	-0.892322000000	0.271451000000	-3.217284000000
Н	-0.314525000000	-0.572864000000	-2.862576000000
С	-2.257746000000	2.083327000000	-2.711287000000
С	-4.310116000000	4.068938000000	-2.441872000000
Н	-4.936093000000	3.385588000000	-3.015414000000
Н	-4.908375000000	4.617098000000	-1.711619000000
Н	-3.757020000000	4.738462000000	-3.099385000000
С	-1.007736000000	0.569893000000	-4.582261000000
Н	-0.509238000000	-0.038254000000	-5.327576000000
С	-1.797240000000	1.677396000000	-4.938316000000
Н	-1.944837000000	1.975142000000	-5.971659000000
Τ	-2.808706000000	0.803886000000	1.891076000000
Cu	-3.260554000000	-1.225102000000	0.185698000000
Ν	-6.769264000000	-1.637794000000	1.848842000000
Т	6.803108000000	-2.158718000000	-0.252345000000
S	3.081664000000	-3.070787000000	1.414423000000
Ν	2.420486000000	-2.436359000000	3.995544000000
С	0.892322000000	-0.271451000000	3.217284000000
Н	0.314525000000	0.572864000000	2.862576000000
С	2.257746000000	-2.083327000000	2.711287000000
С	4.310116000000	-4.068938000000	2.441872000000
Н	4.936093000000	-3.385588000000	3.015414000000
Н	4.908375000000	-4.617098000000	1.711619000000
Н	3.757020000000	-4.738462000000	3.099385000000
С	1.007736000000	-0.569893000000	4.582261000000
Н	0.509238000000	0.038254000000	5.327576000000
С	1.797240000000	-1.677396000000	4.938316000000
Н	1.944837000000	-1.975142000000	5.971659000000
S	-4.577153000000	-3.172531000000	1.238175000000
Ν	-6.041602000000	-3.192609000000	3.543989000000
С	-7.838627000000	-1.277917000000	2.664166000000
Н	-8.498273000000	-0.510597000000	2.275914000000
С	-5.935757000000	-2.606197000000	2.357352000000
С	-3.476223000000	-4.08536000000	2.466595000000
Н	-3.095762000000	-3.378255000000	3.204503000000
Н	-2.663888000000	-4.508877000000	1.872393000000
Н	-4.070757000000	-4.85894500000	2.949967000000
С	-8.02474000000	-1.857165000000	3.919775000000
Н	-8.861056000000	-1.560996000000	4.543393000000
С	-7.091677000000	-2.821769000000	4.355688000000
Н	-7.154060000000	-3.308834000000	5.321981000000

Table S4. Gas phase geometries of the model $\{Cu_8l_8(L^2)_4\}$ (the complex $[Cu_2L^2l_2]_n$) in Cartesian (XYZ) coordinates as calculated in Gaussian software at the B3LYP/LANL2DZ/D95V level of theory.

Ground state (S₀)

Т	2.793787000000	-2.062865000000	0.081749000000
I	6.745856000000	-1.112760000000	-1.893680000000
Cu	4.321186000000	-0.328140000000	-1.223724000000
Cu	1.217530000000	-0.000683000000	-0.570164000000
S	3.027339000000	0.042648000000	-3.406870000000
Ν	1.513510000000	1.663041000000	-1.854901000000
Ν	2.324687000000	2.656615000000	-3.890879000000
С	2.211640000000	1.630129000000	-3.026252000000
С	1.700791000000	3.817202000000	-3.56704000000
Н	1.811373000000	4.635737000000	-4.272414000000
С	0.952829000000	3.948479000000	-2.385768000000
Н	0.452783000000	4.873245000000	-2.124368000000
С	4.271390000000	0.554694000000	-4.768650000000
Н	3.762221000000	1.320995000000	-5.355354000000
Н	5.130254000000	0.988966000000	-4.251554000000
С	0.881453000000	2.826386000000	-1.544644000000
Н	0.328203000000	2.840999000000	-0.613193000000
С	4.653929000000	-0.682169000000	-5.587224000000
н	5.372757000000	-0.386564000000	-6.363033000000
н	3.779600000000	-1.124622000000	-6.078967000000
н	5.132991000000	-1.445401000000	-4.963843000000
I	4.782010000000	2.062866000000	-0.081757000000
T	-0.829916000000	-1.112773000000	-1.893700000000
Т	0.829916000000	1.112773000000	1.893700000000
Cu	3.254678000000	0.328034000000	1.223644000000
Cu	-1.217530000000	0.000683000000	0.570164000000
Cu	6.358201000000	0.000825000000	0.570285000000
Т	-4.782010000000	-2.062866000000	0.081757000000
Cu	-3.254678000000	-0.328034000000	-1.223644000000
Cu	-6.358201000000	-0.000825000000	-0.570285000000
S	-4.701002000000	-0.154619000000	-3.437982000000
Ν	-6.703002000000	1.169041000000	-2.157713000000
Ν	-6.026229000000	2.112167000000	-4.262388000000
С	-5.922397000000	1.191783000000	-3.283770000000
С	-6.972768000000	3.073135000000	-4.131231000000
Н	-7.032327000000	3.802768000000	-4.933414000000
С	-7.828192000000	3.123751000000	-3.016323000000
н	-8.581430000000	3.894638000000	-2.908250000000
С	-3.630961000000	0.436578000000	-4.913245000000
Н	-4.304260000000	1.011663000000	-5.550676000000
Н	-2.867502000000	1.095085000000	-4.491935000000
С	-7.651756000000	2.139961000000	-2.033023000000
Н	-8.240583000000	2.120245000000	-1.121911000000
С	-3.024455000000	-0.783507000000	-5.613889000000
н	-2.400567000000	-0.439670000000	-6.449652000000
Н	-3.802794000000	-1.442870000000	-6.014625000000
Н	-2.385184000000	-1.362957000000	-4.938803000000
Ι	-2.793787000000	2.062865000000	-0.081749000000
Ι	-6.745856000000	1.112760000000	1.893680000000
Cu	-4.321186000000	0.328140000000	1.223724000000

S	4.701002000000	0.154619000000	3.437982000000
Ν	6.703002000000	-1.169041000000	2.157713000000
Ν	6.026229000000	-2.112167000000	4.262388000000
С	5.922397000000	-1.191783000000	3.283770000000
С	6.972768000000	-3.073135000000	4.131231000000
Н	7.032327000000	-3.802768000000	4.933414000000
С	7.828192000000	-3.123751000000	3.016323000000
Н	8.581430000000	-3.894638000000	2.908250000000
С	3.630961000000	-0.436578000000	4.913245000000
Н	4.304260000000	-1.011663000000	5.550676000000
Н	2.867502000000	-1.095085000000	4.491935000000
С	7.651756000000	-2.139961000000	2.033023000000
н	8.240583000000	-2.120245000000	1.121911000000
С	3.024455000000	0.783507000000	5.613889000000
Н	2.400567000000	0.439670000000	6.449652000000
н	3.802794000000	1.442870000000	6.014625000000
Н	2.385184000000	1.362957000000	4.938803000000
S	-3.027339000000	-0.042648000000	3.406870000000
Ν	-1.513510000000	-1.663041000000	1.854901000000
Ν	-2.324687000000	-2.656615000000	3.890879000000
С	-2.211640000000	-1.630129000000	3.026252000000
C	-1.700791000000	-3.817202000000	3.567040000000
Н	-1.811373000000	-4.635737000000	4.272414000000
С	-0.952829000000	-3.948479000000	2.385768000000
Н	-0.452783000000	-4.873245000000	2.124368000000
С	-4.271390000000	-0.554694000000	4.768650000000
Н	-3.762221000000	-1.320995000000	5.355354000000
н	-5.130254000000	-0.988966000000	4.251554000000
С	-0.881453000000	-2.826386000000	1.544644000000
Н	-0.328203000000	-2.840999000000	0.613193000000
С	-4.653929000000	0.682169000000	5.587224000000
Н	-5.372757000000	0.386564000000	6.363033000000
Н	-3.779600000000	1.124622000000	6.078967000000
Н	-5.132991000000	1.445401000000	4.963843000000
	Lowest	triplet excited state	(T ₁)
Т	3 360846000000	-0 777386000000	1 724025000000
Cu	2 825409000000	1 171670000000	-0 142291000000
S	4 73022400000	2 017481000000	-2 665773000000
c C	4 2445000000	3 427047000000	1 04811000000
н	3 617410000000	3 134376000000	1 882413000000
N	4 108477000000	2 686199000000	-0 116378000000
C	5 157881000000	4 482706000000	1 130769000000
н	5 261997000000	5 052625000000	2 047738000000
N	5 814228000000	4 035417000000	-1 161595000000
C	4.922637000000	3,039695000000	-1.166235000000
c	5 939086000000	4 773781000000	-0.005087000000
н	6.669886000000	5.57509400000	-0.022225000000
c	6.018990000000	2,065357000000	-5.156071000000
н	5.040786000000	2.14772800000	-5.64510400000
н	6.26094900000	1.001232000000	-5.04410300000
н	6.768233000000	2.51252800000	-5.822444000000
C	6.039641000000	2.79580900000	-3.807688000000
H	5.789880000000	3.854480000000	-3.901491000000

Н	7.002165000000	2.709665000000	-3.29884000000
Ι	0.768590000000	0.777198000000	-1.724116000000
Cu	1.303755000000	-1.171738000000	0.142445000000
T	-0.768590000000	-0.777198000000	1.724116000000
Cu	-1.303755000000	1.171738000000	-0.142445000000
S	0.090415000000	4.261403000000	0.194199000000
С	-3.048691000000	2.448864000000	1.858007000000
н	-3.483387000000	1.459536000000	1.766570000000
Ν	-1.935107000000	2.699829000000	1.103844000000
С	-3.604477000000	3.422202000000	2.696621000000
н	-4.488365000000	3.211554000000	3.286685000000
N	-1.861298000000	4.938988000000	1.989645000000
C	-1.383651000000	3.951000000000	1.204739000000
C	-2.969363000000	4.677641000000	2.733740000000
н	-3 334109000000	5 489799000000	3 355321000000
C	1 599754000000	6 573179000000	-0 26894000000
н	1 377982000000	6 483812000000	-1 339097000000
н	2 514573000000	6.006993000000	-0.057586000000
н	1 799891000000	7 630697000000	-0.052156000000
C II	0.423557000000	6.095/15000000	0.591851000000
н	-0.423337000000	6 639769000000	0.379/151000000
н	0.438833000000	6 164294000000	1 661928000000
	-3 360846000000	0.104294000000	-1 724025000000
	-2 82540000000	-1 17167000000	0 1/220100000
cu	4 72022409000000	2 017491000000	2 665772000000
с С	4.730224000000	2.017481000000	2.003773000000
с ц	-4.244300000000	-3.42/04/000000	1 882412000000
П	-3.01/410000000	-3.134370000000	-1.662415000000
	-4.108477000000	-2.080199000000	0.110378000000
	-5.157881000000	-4.462/0000000	-1.130769000000
	-5.201997000000	-5.052625000000	-2.047738000000
	-5.814228000000	-4.035417000000	1.101595000000
C	-4.922637000000	-3.039695000000	1.166235000000
	-5.939086000000	-4.773781000000	0.005087000000
н	-6.669886000000	-5.57509400000	0.022225000000
C	-6.018990000000	-2.065357000000	5.1560/1000000
н	-5.040786000000	-2.147728000000	5.645104000000
н	-6.260949000000	-1.001232000000	5.044103000000
Н	-6.768233000000	-2.512528000000	5.822444000000
C	-6.039641000000	-2.795809000000	3.807688000000
н	-5.789880000000	-3.854480000000	3.901491000000
Н	-7.002165000000	-2.709665000000	3.298840000000
S	-0.090415000000	-4.261403000000	-0.194199000000
C	3.048691000000	-2.448864000000	-1.858007000000
Н	3.483387000000	-1.459536000000	-1.766570000000
N	1.93510/000000	-2.699829000000	-1.103844000000
C	3.604477000000	-3.42220200000	-2.696621000000
Н	4.488365000000	-3.211554000000	-3.286685000000
N	1.861298000000	-4.938988000000	-1.989645000000
C	1.383651000000	-3.95100000000	-1.204739000000
С	2.969363000000	-4.6//641000000	-2./33/40000000
Н	3.334109000000	-5.489799000000	-3.355321000000
С	-1.599754000000	-6.573179000000	0.26894000000
Н	-1.377982000000	-6.483812000000	1.339097000000
Н	-2.514573000000	-6.006993000000	0.057586000000

Н	-1.799891000000	-7.630697000000	0.052156000000
С	-0.423557000000	-6.095450000000	-0.591851000000
Н	0.498835000000	-6.639769000000	-0.379451000000
Н	-0.631006000000	-6.164294000000	-1.661928000000

Table S5. Gas phase geometries of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) in Cartesian (XYZ) coordinates as calculated in Gaussian software at the B3LYP/LANL2DZ/D95V level of theory.

Ground state (S₀)

Т	3.360744000000	-0.777345000000	1,724092000000
Cu	2.825564000000	1.171609000000	-0.142422000000
S	4.344133000000	3.133966000000	-2.390379000000
C	4.202561000000	3.062339000000	1.584646000000
Н	3.745873000000	2.384432000000	2.298982000000
N	4.005673000000	2.766456000000	0.269930000000
С	4.973966000000	4.164868000000	1.982143000000
Н	5.125972000000	4.393620000000	3.030086000000
Ν	5.370102000000	4.652745000000	-0.349906000000
С	4.607074000000	3.578133000000	-0.656742000000
С	5.546511000000	4.944248000000	0.961624000000
Н	6.160949000000	5.812807000000	1.181571000000
С	5.255923000000	4.264527000000	-4.782086000000
Н	4.215970000000	4.344543000000	-5.120521000000
Н	5.642410000000	3.283980000000	-5.085206000000
Н	5.841214000000	5.033438000000	-5.302935000000
С	5.374869000000	4.476520000000	-3.267504000000
Н	4.982120000000	5.444317000000	-2.949038000000
Н	6.403195000000	4.381439000000	-2.911989000000
Т	0.768562000000	0.777354000000	-1.724098000000
Cu	1.303732000000	-1.171599000000	0.142427000000
Ι	-0.768562000000	-0.777354000000	1.724098000000
Cu	-1.303732000000	1.171599000000	-0.142427000000
S	-1.141343000000	4.362563000000	-1.312660000000
С	-1.852546000000	2.819000000000	2.286059000000
Н	-1.828480000000	1.811917000000	2.688866000000
Ν	-1.545036000000	2.940188000000	0.966129000000
С	-2.17547000000	3.929011000000	3.082215000000
Н	-2.422490000000	3.813297000000	4.130828000000
Ν	-1.849943000000	5.328465000000	1.145314000000
С	-1.554662000000	4.208062000000	0.440676000000
С	-2.161108000000	5.186218000000	2.455243000000
Н	-2.398739000000	6.099200000000	2.994594000000
С	-1.080187000000	6.560968000000	-3.037052000000
Н	-1.799381000000	6.047604000000	-3.686460000000
Н	-0.069129000000	6.270117000000	-3.347559000000
Н	-1.187003000000	7.641498000000	-3.200293000000
С	-1.332529000000	6.241416000000	-1.557712000000
Н	-2.342928000000	6.509493000000	-1.241747000000
Н	-0.617628000000	6.735654000000	-0.895989000000
Ι	-3.360744000000	0.777345000000	-1.724092000000
Cu	-2.825564000000	-1.171609000000	0.142422000000
S	-4.344133000000	-3.133966000000	2.390379000000
С	-4.202561000000	-3.062339000000	-1.584646000000

Н	-3.745873000000	-2.384432000000	-2.298982000000
Ν	-4.005673000000	-2.766456000000	-0.269930000000
С	-4.973966000000	-4.164868000000	-1.982143000000
Н	-5.125972000000	-4.393620000000	-3.030086000000
Ν	-5.370102000000	-4.652745000000	0.349906000000
С	-4.607074000000	-3.578133000000	0.656742000000
C	-5.546511000000	-4.944248000000	-0.961624000000
Н	-6.160949000000	-5.812807000000	-1.181571000000
c	-5 255923000000	-4 264527000000	4 78208600000
н	-4 215970000000	-4 344543000000	5 120521000000
н	-5 642410000000	-3 28398000000	5.08520600000
н	-5 8/121/000000	-5 033/38000000	5 302935000000
C	-5 37/86900000	-4 47652000000	3 26750/000000
с ц	4 08212000000	-4.470320000000	2.20730400000
п	-4.982120000000	-3.444317000000	2.949038000000
п с	-0.403195000000	-4.381439000000	2.911989000000
3	1.141343000000	-4.362563000000	1.312660000000
C	1.852546000000	-2.81900000000	-2.286059000000
н	1.828480000000	-1.81191/00000	-2.688866000000
N	1.545036000000	-2.940188000000	-0.966129000000
С	2.175470000000	-3.929011000000	-3.082215000000
Н	2.422490000000	-3.813297000000	-4.130828000000
Ν	1.849943000000	-5.328465000000	-1.145314000000
С	1.554662000000	-4.208062000000	-0.440676000000
С	2.161108000000	-5.186218000000	-2.455243000000
Н	2.398739000000	-6.099200000000	-2.994594000000
С	1.080187000000	-6.560968000000	3.037052000000
Н	1.799381000000	-6.047604000000	3.686460000000
Н	0.069129000000	-6.270117000000	3.347559000000
Н	1.187003000000	-7.641498000000	3.200293000000
С	1.332529000000	-6.241416000000	1.557712000000
Н	2.342928000000	-6.509493000000	1.241747000000
Н	0.617628000000	-6.735654000000	0.895989000000
	Lowest	triplet excited state	(T ₁)
	2 26084600000	0 77728600000	1 72402500000
	2 92540000000	1 17167000000	0.14220100000
cu	2.82540900000	1.1/16/000000	-0.142291000000
2	4.730224000000	2.017481000000	-2.665773000000
C	4.244500000000	3.42/04/000000	1.048110000000
н	3.61/410000000	3.1343/6000000	1.882413000000
N	4.108477000000	2.686199000000	-0.1163/8000000
C	5.15/881000000	4.482/0600000	1.130769000000
н	5.261997000000	5.052625000000	2.047738000000
Ν	5.814228000000	4.035417000000	-1.161595000000
С	4.922637000000	3.039695000000	-1.166235000000
С	5.939086000000	4.773781000000	-0.005087000000
Н	6.669886000000	5.575094000000	-0.022225000000
С	6.018990000000	2.065357000000	-5.156071000000
Н	5.040786000000	2.147728000000	-5.645104000000
Н	6.260949000000	1.001232000000	-5.044103000000
Н	6.768233000000	2.512528000000	-5.822444000000
С	6.039641000000	2.795809000000	-3.807688000000
н	5.789880000000	3.854480000000	-3.901491000000
н	7.002165000000	2.709665000000	-3.298840000000
Ι	0.768590000000	0.777198000000	-1.724116000000

Cu	1.303755000000	-1.171738000000	0.142445000000
Ι	-0.768590000000	-0.777198000000	1.724116000000
Cu	-1.303755000000	1.171738000000	-0.142445000000
S	0.090415000000	4.261403000000	0.194199000000
С	-3.048691000000	2.448864000000	1.858007000000
Н	-3.483387000000	1.459536000000	1.766570000000
Ν	-1.935107000000	2.699829000000	1.103844000000
С	-3.604477000000	3.422202000000	2.696621000000
Н	-4.488365000000	3.211554000000	3.286685000000
Ν	-1.861298000000	4.938988000000	1.989645000000
С	-1.383651000000	3.951000000000	1.204739000000
С	-2.969363000000	4.677641000000	2.733740000000
Н	-3.334109000000	5.489799000000	3.355321000000
С	1.599754000000	6.573179000000	-0.26894000000
Н	1.377982000000	6.483812000000	-1.339097000000
Н	2.514573000000	6.006993000000	-0.057586000000
Н	1.799891000000	7.630697000000	-0.052156000000
С	0.423557000000	6.095450000000	0.591851000000
Н	-0.498835000000	6.639769000000	0.379451000000
Н	0.631006000000	6.164294000000	1.661928000000
I	-3.360846000000	0.777386000000	-1.724025000000
Cu	-2.825409000000	-1.171670000000	0.142291000000
S	-4.730224000000	-2.017481000000	2.665773000000
С	-4.244500000000	-3.427047000000	-1.048110000000
Н	-3.617410000000	-3.134376000000	-1.882413000000
Ν	-4.108477000000	-2.686199000000	0.116378000000
С	-5.157881000000	-4.48270600000	-1.130769000000
Н	-5.261997000000	-5.052625000000	-2.047738000000
Ν	-5.814228000000	-4.035417000000	1.161595000000
С	-4.922637000000	-3.039695000000	1.166235000000
С	-5.939086000000	-4.773781000000	0.005087000000
Н	-6.669886000000	-5.575094000000	0.022225000000
С	-6.018990000000	-2.065357000000	5.156071000000
Н	-5.040786000000	-2.147728000000	5.64510400000
Н	-6.260949000000	-1.001232000000	5.044103000000
Н	-6.768233000000	-2.512528000000	5.822444000000
С	-6.039641000000	-2.795809000000	3.807688000000
Н	-5.789880000000	-3.85448000000	3.901491000000
Н	-7.002165000000	-2.709665000000	3.298840000000
S	-0.090415000000	-4.261403000000	-0.194199000000
С	3.048691000000	-2.448864000000	-1.858007000000
Н	3.483387000000	-1.459536000000	-1.766570000000
N	1.935107000000	-2.699829000000	-1.103844000000
C	3.604477000000	-3.422202000000	-2.696621000000
Н	4.488365000000	-3.211554000000	-3.286685000000
N	1.861298000000	-4.938988000000	-1.989645000000
C C	1.383051000000	-3.95100000000	-1.204/39000000
	2.969363000000	-4.677641000000	-2./33/4000000
п С	3.334109000000 1 500754000000	-3.463/33000000	-2.22227100000
с µ	-1.333734000000	-0.373173000000	1 23000700000
н	-1.377302000000	-0.403012000000	1.333037000000
н	-1 79989100000	-7 63069700000	0.057156000000
C	-0.423557000000	-6.09545000000	-0.591851000000
-			

Н	0.498835000000	-6.639769000000	-0.379451000000
н	-0.631006000000	-6.164294000000	-1.661928000000
	Lowest	singlet excited state	(S ₁)
Ι	3.360744000000	-0.777345000000	1.724092000000
Cu	2.825564000000	1.171609000000	-0.142422000000
S	4.200760000000	2.802664000000	-2.705976000000
C	4.312989000000	3,241639000000	1,280892000000
н	3 887087000000	2 687781000000	2 108621000000
N	4.007739000000	2.777088000000	0.002241000000
C	5 140955000000	4 350066000000	1 469256000000
н	5 374296000000	4 699447000000	2 46947400000
N	5 374283000000	4 529795000000	-0.940568000000
C	4 579170000000	3 462782000000	-1 042953000000
c	5 664253000000	1 993372000000	0 329875000000
ц	6 31189/000000	5 86069900000	0.32007000000
C	5 001/1000000	2 527508000000	-5 262621000000
с	1.046822000000	2 61201600000	5.202021000000
п	4.040822000000 E 4210E0000000	3.012910000000	-3.380409000000 E 42127E000000
	5.421050000000	2.495006000000	-5.451575000000
	5.097758000000	4.164045000000	-3.900731000000
	5.203422000000	3.942259000000	-3./95/25000000
н	4.932763000000	4.965765000000	-3.608367000000
н	6.295626000000	3.845358000000	-3.45230100000
	0.768562000000	0.777354000000	-1.724098000000
cu	1.303/32000000	-1.1/1599000000	0.142427000000
	-0.768562000000	-0.///354000000	1.724098000000
Cu	-1.303/32000000	1.1/1599000000	-0.142427000000
S	-1.046583000000	4.350584000000	-1.242216000000
C	-2.064447000000	2.780282000000	2.2/110/000000
Н	-2.108489000000	1.769069000000	2.659975000000
N	-1.654656000000	2.913364000000	0.981337000000
C	-2.403838000000	3.888331000000	3.061144000000
Н	-2./29//800000	3.767196000000	4.086896000000
N	-1.891002000000	5.303/85000000	1.1/5989000000
C	-1.584508000000	4.186211000000	0.4/2640000000
С	-2.297240000000	5.153307000000	2.457524000000
Н	-2.536668000000	6.066244000000	2.995623000000
С	-0.592928000000	6.571429000000	-2.875467000000
Н	-1.247472000000	6.127944000000	-3.635354000000
Н	0.429469000000	6.215197000000	-3.048842000000
Н	-0.600502000000	7.659938000000	-3.016712000000
С	-1.071410000000	6.243981000000	-1.455442000000
Н	-2.094619000000	6.577346000000	-1.270528000000
Н	-0.419187000000	6.665021000000	-0.687603000000
Ι	-3.360744000000	0.777345000000	-1.724092000000
Cu	-2.825564000000	-1.171609000000	0.142422000000
S	-4.200760000000	-2.802664000000	2.705976000000
С	-4.312989000000	-3.241639000000	-1.280892000000
Н	-3.887087000000	-2.687781000000	-2.108621000000
Ν	-4.007739000000	-2.777088000000	-0.002241000000
С	-5.140955000000	-4.350066000000	-1.469256000000
Н	-5.374296000000	-4.699447000000	-2.469474000000
Ν	-5.374283000000	-4.529795000000	0.940568000000
С	-4.57917000000	-3.462782000000	1.042953000000
С	-5.664253000000	-4.993372000000	-0.329875000000

Н	-6.311894000000	-5.860699000000	-0.39057600000
С	-5.091419000000	-3.527598000000	5.262621000000
Н	-4.046822000000	-3.612916000000	5.58646900000
Н	-5.42105000000	-2.495006000000	5.431375000000
Н	-5.697738000000	-4.18404500000	5.900731000000
С	-5.263422000000	-3.942259000000	3.795725000000
Н	-4.932763000000	-4.965765000000	3.608367000000
Н	-6.295626000000	-3.845358000000	3.452301000000
S	1.046583000000	-4.350584000000	1.242216000000
С	2.064447000000	-2.780282000000	-2.271107000000
Н	2.108489000000	-1.769069000000	-2.659975000000
Ν	1.654656000000	-2.913364000000	-0.981337000000
С	2.403838000000	-3.888331000000	-3.061144000000
Н	2.729778000000	-3.767196000000	-4.08689600000
Ν	1.891002000000	-5.303785000000	-1.175989000000
С	1.584508000000	-4.186211000000	-0.47264000000
С	2.297240000000	-5.153307000000	-2.457524000000
Н	2.536668000000	-6.066244000000	-2.995623000000
С	0.592928000000	-6.571429000000	2.875467000000
Н	1.247472000000	-6.127944000000	3.635354000000
Н	-0.429469000000	-6.215197000000	3.048842000000
Н	0.600502000000	-7.659938000000	3.016712000000
С	1.071410000000	-6.243981000000	1.455442000000
Н	2.094619000000	-6.577346000000	1.270528000000
Н	0.419187000000	-6.665021000000	0.68760300000

Table S6. X-ray crystal structure and gas phase optimized geometries of the complex $[Cu_2L^1l_2]_n$. Hydrogen atoms are omitted for clarity. Plane α is marked purple; plane β is marked orange.

X-ray crystal structure	Ground state (S ₀)	Lowest triplet excited state (T ₁)	

Table S7. X-ray crystal structure and gas phase optimized geometries of the complex $[Cu_2L^2l_2]_n$. Hydrogen atoms are omitted for clarity. Plane α is marked purple; plane β is marked orange.

Figure S6. Diffuse reflectance spectrum of the complex $[Cu_2L^1I_2]_n$ in the solid state (black). Vertical bars (blue) display the positions and oscillator strengths of the electronic transitions as calculated in Gaussian.

Figure S7. Diffuse reflectance spectrum of the complex $[Cu_2L^2I_2]_n$ in the solid state (black). Vertical bars (blue) display the positions and oscillator strengths of the electronic transitions as calculated in Gaussian.

Table S8. Excited state properties of the model $\{Cu_8l_8(L^1)_4\}$ (the complex $[Cu_2L^1l_2]_n$) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the ground state (S₀). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	2.0745	598	HOMO \rightarrow LUMO+1 (67.9 %),	0.0063	
			HOMO-1 \rightarrow LUMO (28.6 %)		
S2	2.3194	535	HOMO-1 \rightarrow LUMO (39.8 %),	0.0057	
			HOMO \rightarrow LUMO+1 (25.6 %),		
			HOMO-2 → LUMO+1 (21.0 %)		
S3	2.3735	522	HOMO-3 → LUMO (35.7 %),	0.0001	
			HOMO-4 \rightarrow LUMO+1 (21.3 %),		

-		1			
			HOMO-1 \rightarrow LUMO (18.5 %),		
			$HOMO-2 \rightarrow LOMO+1 (10.7\%)$		
S4	2.4836	499	HOMO-5 → LUMO (36.1 %), HOMO-7 → LUMO+1 (25.7 %)	0.0011	
S5	2.5281	490	HOMO-2 \rightarrow LUMO+1 (45.0 %).	0.0051	
			HOMO-4 \rightarrow LUMO+1 (24.1 %)	0.000-	
			HOMO-10 \rightarrow LUMO (10.2 %)		
56	2 5537	486	$HOMO \rightarrow IIIMO+5 (56.2\%)$	0.0056	XMLCT
50	2.3337	400	HOMO → LUMO+3 (26.0 %)		
S7	2.6148	474	HOMO-6 \rightarrow LUMO+1 (30.9 %),	0.0025	
			HOMO-3 \rightarrow LUMO (14.3 %),		
			HOMO-10 \rightarrow LUMO (13.5 %),		
			HOMO-2 \rightarrow LUMO+1 (12.6 %),		
			HOMO-5 → LUMO (11.5 %)		
S8	2.6538	467	HOMO-6 \rightarrow LUMO+1 (25.6 %),	0.0095	
			HOMO-8 \rightarrow LUMO (25.1 %),		
			HOMO-9 → LUMO+1 (15.9 %)		
S9	2.6659	465	HOMO \rightarrow LUMO+3 (43.1 %),	0.0034	
			HOMO \rightarrow LUMO+5 (22.5 %),		
			HOMO-1 \rightarrow LUMO+4 (15.3 %),		
			HOMO-2 → LUMO+2 (11.1 %)		
S10	2.7406	452	HOMO-4 \rightarrow LUMO (37.1 %),	0.0003	
			HOMO-3 \rightarrow LUMO+1 (23.8 %),		
			HOMO-5 → LUMO+1 (17.0 %)		
T1	2.0425	607	HOMO \rightarrow LUMO+1 (62.2 %),	0.0000	
			HOMO-1 → LUMO (30.5 %)		
T2	2.3077	537	HOMO-1 \rightarrow LUMO (34.5 %),	0.0000	
			HOMO \rightarrow LUMO+1 (29.7 %),		
			HOMO-2 \rightarrow LUMO+1 (22.2 %)		
Т3	2.3606	525	HOMO-3 \rightarrow LUMO (31.8 %),	0.0000	
			HOMO-4 \rightarrow LUMO+1 (23.5 %),		
			HOMO-1 \rightarrow LUMO (12.6 %)		
T4	2.4432	507	HOMO-7 \rightarrow LUMO+1 (24.9 %),	0.0000	
			HOMO-5 \rightarrow LUMO (23.3 %),		
			HOMO-10 \rightarrow LUMO (12.5 %),		
			HOMO-1 \rightarrow LUMO (11.6 %)		
T5	2.4860	499	HOMO \rightarrow LUMO+2 (55.4 %),	0.0000	
			HOMO → LUMO+4 (20.0 %)		XMLCT
Т6	2.5002	496	HOMO \rightarrow LUMO+5 (39.1 %),	0.0000	
			HOMO → LUMO+3 (18.2 %)		
T7	2.5038	495	HOMO-2 \rightarrow LUMO+1 (32.7 %),	0.0000	
			HOMO-4 \rightarrow LUMO+1 (21.4 %)		
Т8	2.5939	478	HOMO-6 \rightarrow LUMO+1 (30.0 %),	0.0000	
			HOMO-2 \rightarrow LUMO+1 (12.4 %)		
Т9	2.6305	471	HOMO-8 \rightarrow LUMO (26.7 %),	0.0000	
			HOMO-9 \rightarrow LUMO+1 (20.4 %),		
			HOMO-3 \rightarrow LUMO (13.5 %),		
	<u> </u>		HOMO-5 → LUMO (12.7 %)		
T10	2.6534	467	HOMO \rightarrow LUMO+3 (45.6 %),	0.0000	
			HOMO \rightarrow LUMO+5 (22.8 %),		
			HOMO-1 \rightarrow LUMO+4 (16.4 %),		
			HOMO-1 \rightarrow LUMO+2 (10.9 %)		

Table S9. Iso-surface contour plots (iso-value = 0.02) of the model $\{Cu_8I_8(L^1)_4\}$ (the complex $[Cu_2L^1I_2]_n$) as calculated in Gaussian software at the ground state (S₀) geometry.

Table S10. Orbital energies and characters resulting from Mulliken population analysis calculated at the ground state (S₀) optimized geometry of the model { $Cu_8l_8(L^1)_4$ } (the complex [$Cu_2L^1l_2]_n$).

Orbital	Energy	Contributions (%)		
	(ev)	Cu	I	L
HOMO-31	-0.2646	87.5	8.4	4.1
HOMO-28	-0.2601	91.4	5.2	3.4
HOMO-24	-0.2539	86.0	10.5	3.5
HOMO-8	-0.2156	41.6	50.0	8.4
HOMO-7	-0.2137	41.2	47.3	11.5
HOMO-6	-0.2103	51.2	47.3	1.5
HOMO-5	-0.2090	46.8	44.0	9.2
HOMO-4	-0.2080	35.0	61.3	3.7
HOMO-3	-0.2053	30.6	67.0	2.4
HOMO-2	-0.2035	43.1	53.9	3.0
HOMO-1	-0.1965	41.8	56.5	1.7
НОМО	-0.1916	43.0	54.5	2.5
LUMO	-0.0978	2.8	0.5	96.8
LUMO+1	-0.0978	2.8	0.5	96.8
LUMO+2	-0.0766	2.7	0.3	97.0
LUMO+3	-0.0759	2.5	0.6	96.9
LUMO+4	-0.0753	2.1	0.7	97.2
LUMO+5	-0.0752	1.7	0.7	97.6
LUMO+6	-0.0565	2.4	0.5	97.1
LUMO+7	-0.0563	2.2	0.6	97.2

Table S11. Excited state properties of the model $\{Cu_8I_8(L^2)_4\}$ (the complex $[Cu_2L^2I_2]_n$) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the ground state (S₀). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	2.0754	597	HOMO \rightarrow LUMO+1 (65.3 %),	0.0055	
			HOMO-1 → LUMO (30.7 %)		
S2	2.3244	533	HOMO-1 \rightarrow LUMO (44.3 %),	0.0054	
			HOMO \rightarrow LUMO+1 (30.4 %),		
			HOMO-2 → LUMO+1 (16.8 %)		
S3	2.3832	520	HOMO-3 → LUMO (36.4 %),	0.0002	
			HOMO-4 \rightarrow LUMO+1 (24.7 %),		
			HOMO-2 \rightarrow LUMO+1 (12.9 %),		
			HOMO-1 → LUMO (12.2 %)		

S4	2.4743	501	HOMO-5 → LUMO (37.9 %),	0.0014	
			HOMO-7 \rightarrow LUMO+1 (21.8 %)		
S5	2.5339	489	HOMO-2 \rightarrow LUMO+1 (44.2 %),	0.0061	
			HOMO-4 \rightarrow LUMO+1 (17.9 %),		XMLCT
			HOMO-10 \rightarrow LUMO (13.1 %)		
S6	2.5716	482	HOMO \rightarrow LUMO+5 (67.3 %),	0.0058	
			HOMO \rightarrow LUMO+3 (12.4 %)		
S7	2.6094	475	HOMO-6 → LUMO+1 (35.7 %),	0.0026	
			HOMO-3 \rightarrow LUMO (13.8 %),		
			HOMO-10 \rightarrow LUMO (13.7 %),		
			HOMO-2 \rightarrow LUMO+1 (12.8 %)		
S8	2.6507	468	HOMO-8 \rightarrow LUMO (25.6 %),	0.0084	
			HOMO-6 \rightarrow LUMO+1 (20.9 %),		
			HOMO-9 \rightarrow LUMO+1 (15.4 %),		
			HOMO-3 → LUMO (10.7 %)		
S9	2.6679	465	HOMO-8 \rightarrow LUMO (25.6 %),	0.0031	
			HOMO-6 \rightarrow LUMO+1 (20.9 %),		
			HOMO-9 \rightarrow LUMO+1 (15.4 %),		
			HOMO-3 → LUMO (10.7 %)		
S10	2.7457	452	HOMO-4 \rightarrow LUMO+1 (38.7 %),	0.0006	
			HOMO-5 \rightarrow LUMO (21.1 %),		
			HOMO-3 → LUMO (19.7 %)		
T1	2.0450	606	HOMO \rightarrow LUMO+1 (60.4 %),	0.0000	
			HOMO-1 → LUMO (32.1 %)		
T2	2.3130	536	HOMO-1 \rightarrow LUMO (37.8 %),	0.0000	
			HOMO \rightarrow LUMO+1 (33.9 %),		
			HOMO-2 → LUMO+1 (18.8 %)		
Т3	2.3725	523	HOMO-3 \rightarrow LUMO (31.5 %),	0.0000	
			HOMO-4 \rightarrow LUMO+1 (27.9 %),		
			HOMO-5 \rightarrow LUMO (14.1 %),		
			HOMO-2 → LUMO+1 (11.1 %)		
T4	2.4385	508	HOMO-7 → LUMO+1 (22.7 %),	0.0000	
			HOMO-1 \rightarrow LUMO (12.3 %),		
			HOMO-3 → LUMO (12.1 %)		
T5	2.5003	496	HOMO \rightarrow LUMO+2 (39.5 %),	0.0000	
			HOMO → LUMO+4 (24.6 %)		XMLCT
T6	2.5043	495	HOMO-2 \rightarrow LUMO+1 (37.1 %),	0.0000	
			HOMO-4 \rightarrow LUMO+1 (20.0 %),		
			HOMO-10 → LUMO (14.1 %)		
T7	2.5152	493	HOMO \rightarrow LUMO+5 (57.2 %),	0.0000	
			$HOMO-1 \rightarrow LUMO+2 (10.6 \%)$		
T8	2.5869	479	HOMO-6 \rightarrow LUMO+1 (31.0 %),	0.0000	
			HOMO-2 → LUMO+1 (12.1 %)		
Т9	2.6277	472	HOMO-8 \rightarrow LUMO (24.0 %),	0.0000	
			HOMO-9 \rightarrow LUMO+1 (18.3 %),		
			HOMO-3 \rightarrow LUMO (17.4 %),		
			HUMU-2 \rightarrow LUMU+1 (10.7 %),		
	0.0755		$HUMU-5 \rightarrow LUMU (10.3 \%)$	0.0000	
110	2.6559	467	HUMU \rightarrow LUMU+3 (55.0 %),	0.0000	
			HUMU-1 \rightarrow LUMU+2 (15.1 %),		
			HUMU-1 \rightarrow LUMU+4 (13.7 %),		
			HOMO → LUMO+5 (10.9 %)		

Table S12. Iso-surface contour plots (iso-value = 0.02) of the model $\{Cu_8I_8(L^2)_4\}$ (the complex $[Cu_2L^2I_2]_n$) as calculated in Gaussian software at the ground state (S_0) geometry.

Table S13. Orbital energies and characters resulting from Mulliken population analysis calculated at the ground state (S_0) optimized geometry of the model { $Cu_8l_8(L^2)_4$ } (the complex [$Cu_2L^2l_2$]_n).

Orbital Energy		Contributions (%)			
	(ev)	Cu	I	L	
HOMO-28	-0.2572	91.0	5.3	3.7	
HOMO-23	-0.2513	87.1	9.6	3.3	
HOMO-8	-0.2134	41.2	50.1	8.7	
HOMO-7	-0.2114	41.8	45.7	12.5	
HOMO-6	-0.2083	51.4	47.4	1.2	
HOMO-5	-0.2064	46.0	45.3	8.7	
HOMO-4	-0.2062	36.2	60.1	3.7	
HOMO-3	-0.2035	32.5	64.5	3.0	
HOMO-2	-0.2019	44.0	52.4	3.6	
HOMO-1	-0.1943	41.9	56.3	1.8	
НОМО	-0.1899	42.8	54.5	2.7	
LUMO	-0.0957	2.8	0.5	96.7	
LUMO+1	-0.0957	2.8	0.5	96.7	
LUMO+2	-0.0744	2.8	0.3	96.9	
LUMO+3	-0.0738	2.6	0.5	96.9	
LUMO+4	-0.0731	2.1	0.7	97.2	
LUMO+5	-0.0729	1.7	0.3	98.0	
LUMO+6	-0.0544	2.3	0.5	97.2	
LUMO+7	-0.0543	2.3	0.6	97.1	

Table S14. Excited state properties of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the ground state (S₀). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	1.9980	621	HOMO \rightarrow LUMO (84.4 %),	0.0021	
			HOMO-2 → LUMO+1 (12.5 %)		
S2	2.2293	556	HOMO-1 \rightarrow LUMO (56.0 %),	0.0161	
			HOMO-2 → LUMO+1 (27.1 %)		
S3	2.3249	533	HOMO → LUMO+2 (87.8 %)	0.0158	
S4	2.3539	527	HOMO-2 \rightarrow LUMO+1 (54.1 %),	0.0081	
			HOMO-1 → LUMO (36.3 %)		
S5	2.4600	504	HOMO-3 \rightarrow LUMO+1 (71.3 %),	0.0060	
			HOMO-4 → LUMO (22.0 %)		XMLCT
S6	2.5760	481	HOMO-1 → LUMO+2 (77.4 %)	0.0122	
S7	2.5807	480	HOMO-4 \rightarrow LUMO (66.5 %),	0.0137	
			HOMO-3 → LUMO+1 (19.7 %)		
S8	2.6480	468	HOMO \rightarrow LUMO+5 (84.4 %)	0.0034	

S9	2.6576	467	HOMO-4 → LUMO+2 (38.2 %),	0.0041	
			HOMO-3 → LUMO+3 (19.8 %),		
			HOMO-1 \rightarrow LUMO+2 (12.4 %),		
			HOMO-2 → LUMO+3 (12.2 %)		
S10	2.6864	462	HOMO-5 → LUMO+1 (86.2 %)	0.0039	
T1	1.9634	631	HOMO \rightarrow LUMO (77.0 %),	0.0000	
			HOMO-2 → LUMO+1 (17.1 %)		
T2	2.1776	569	HOMO-1 \rightarrow LUMO (57.7 %),	0.0000	
			HOMO-2 → LUMO+1 (18.6 %),		
			HOMO \rightarrow LUMO (12.6 %)		
Т3	2.2390	554	HOMO → LUMO+2 (82.5 %)	0.0000	
T4	2.3346	531	HOMO-2 → LUMO+1 (54.0 %),	0.0000	
			HOMO-1 → LUMO (28.8 %)		
T5	2.4429	508	HOMO-3 → LUMO+1 (64.9 %),	0.0000	
			HOMO-4 → LUMO (26.7 %)		XMLCT
T6	2.4922	498	HOMO-1 → LUMO+2 (57.3 %),	0.0000	
			HOMO-3 → LUMO+3 (17.0 %),		
			HOMO-4 \rightarrow LUMO+2 (11.6 %)		
T7	2.5623	484	HOMO-4 \rightarrow LUMO (52.9 %),	0.0000	
			HOMO-3 → LUMO+1 (26.2 %)		
Т8	2.5997	477	HOMO-4 \rightarrow LUMO+2 (37.2 %),	0.0000	
			HOMO-1 \rightarrow LUMO+2 (26.7 %),		
			HOMO-5 → LUMO+3 (13.8 %),		
			HOMO-3 → LUMO+3 (12.8 %)		
Т9	2.6381	470	HOMO → LUMO+5 (85.0 %)	0.0000	
T10	2.6751	463	HOMO-5 \rightarrow LUMO+1 (75.1 %),	0.0000	
			HOMO-4 \rightarrow LUMO (12.3 %)		

Table S15. Iso-surface contour plots (iso-value = 0.02) of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) as calculated in Gaussian software at the ground state (S₀) geometry.

Orbital	Energy	Contributions (%)				
	(ev)	Cu	I	L		
HOMO-13	-0.2293	21.7	3.0	75.3		
HOMO-12	-0.2270	53.9	12.8	33.3		
HOMO-11	-0.2246	82.1	12.6	5.3		
HOMO-5	-0.1921	57.6	36.6	5.8		
HOMO-4	-0.1879	49.8	44.0	6.2		
HOMO-3	-0.1860	37.7	59.1	3.2		
HOMO-2	-0.1802	45.0	50.4	4.6		
HOMO-1	-0.1786	48.5	49.6	1.9		
НОМО	-0.1697	45.5	50.8	3.7		
LUMO	-0.0768	2.1	0.3	97.6		
LUMO+1	-0.0767	2.0	0.4	97.6		
LUMO+2	-0.0618	1.6	0.5	97.9		
LUMO+3	-0.0618	1.6	0.5	97.9		
LUMO+4	-0.0538	1.2	0.2	98.6		
LUMO+5	-0.0539	1.1	0.2	98.7		
LUMO+7	-0.0404	1.1	0.2	98.7		
LUMO+8	0.0022	45.6	4.8	49.6		
LUMO+9	0.0058	29.1	2.5	68.4		

Table S16. Orbital energies and characters resulting from Mulliken population analysis calculated at the ground state (S_0) optimized geometry of the model { $Cu_4l_4(L^2)_4$ } (the complex [CuL^2l]_n).

Table S17. Excited state properties of the model { $Cu_8l_8(L^1)_4$ } (the complex [$Cu_2L^1l_2$]_n) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the lowest triplet excited state (T₁). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	1.8052	687	HOMO \rightarrow LUMO (72.5 %),	0.0071	
			HOMO-1 → LUMO+1 (24.9 %)		
S2	2.0368	609	HOMO-1 \rightarrow LUMO+1 (46.2 %),	0.0071	
			HOMO \rightarrow LUMO (22.9 %),		XMLCT
			HOMO-2 → LUMO (20.6 %)		
S3	2.0965	591	HOMO-3 \rightarrow LUMO+1 (37.2 %),	0.0001	
			HOMO-4 \rightarrow LUMO (26.1 %),		
			HOMO-1 → LUMO+1 (15.8 %)		
T1	1.7688	701	HOMO \rightarrow LUMO (65.4 %),	0.0000	
			HOMO-1 → LUMO+1 (27.9 %)		
T2	2.0211	613	HOMO-1 \rightarrow LUMO+1 (38.4 %),	0.0000	
			HOMO \rightarrow LUMO (28.2 %),		XMLCT
			HOMO-2 → LUMO (22.5 %)		
Т3	2.0814	596	HOMO-3 \rightarrow LUMO+1 (33.1 %),	0.0000	
			HOMO-4 \rightarrow LUMO (29.0 %),		
			HOMO-1 → LUMO+1 (11.4 %)		

Table S18. Iso-surface contour plots (iso-value = 0.02) of the model { $Cu_8l_8(L^1)_4$ } (the complex $[Cu_2L^1l_2]_n$)as calculated in Gaussian software at the lowest triplet excited state (T_1) geometry.

Table S19. Orbital energies and characters resulting from Mulliken population analysis calculated at the lowest triplet excited state (T_1) optimized geometry of the model { $Cu_8l_8(L^1)_4$ } (the complex [$Cu_2L^1l_2$]_n).

Orbital	Energy (eV)	Contributions (%)			
	(0)	Cu	l	L	
HOMO-1	-0.1951	41.7	56.5	1.8	
НОМО	-0.1898	43.2	53.9	2.9	
LUMO	-0.1067	2.9	0.5	96.6	
LUMO+1	-0.1067	2.9	0.6	96.5	

Table S20. Excited state properties of the model $\{Cu_8I_8(L^2)_4\}$ (the complex $[Cu_2L^2I_2]_n$) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the lowest triplet excited state (T_1) . Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%) Osci		Character
	(eV)	(nm)		strength	
S1	1.7821	696	HOMO \rightarrow LUMO (68.6 %),	0.0066	
			HOMO-1 → LUMO+1 (28.2 %)		
S2	2.0196	614	HOMO-1 \rightarrow LUMO+1 (49.5 %),	0.0067	
			HOMO \rightarrow LUMO (28.1 %),		XMLCT
			HOMO-2 \rightarrow LUMO (16.2 %)		
S3	2.0829	595	HOMO-3 \rightarrow LUMO+1 (36.3 %),	0.0004	
			HOMO-4 → LUMO (30.1 %),		
			HOMO-5 → LUMO+1 (10.9 %)		

T1	1.7457	710	HOMO → LUMO (62.1 %), HOMO-1 → LUMO+1 (30.5 %)	0.0000	
T2	2.0048	618	HOMO-1 → LUMO+1 (40.2 %), HOMO → LUMO (32.4 %), HOMO-2 → LUMO (19.3 %)	0.0000	XMLCT
T3	2.0709	599	HOMO-4 → LUMO (32.9 %), HOMO-3 → LUMO+1 (31.4 %), HOMO-5 → LUMO+1 (15.6 %)	0.0000	

Table S21.Iso-surface contour plots (iso-value = 0.02) of the model $\{Cu_8l_8(L^2)_4\}$ (the complex $[Cu_2L^2l_2]_n$) as calculated in Gaussian software at the lowest triplet excited state (T_1) geometry.

Table S22. Orbital energies and characters resulting from Mulliken population analysis calculated at the lowest triplet excited state (T₁) optimized geometry of the model {Cu₈I₈(L²)₄} (the complex [Cu₂L²I₂]_n).

Orbital	Energy	Contributions (%)			
	(01)	Cu	I	L	
HOMO-1	-0.1930	41.7	56.2	2.1	
НОМО	-0.1884	42.9	54.1	3.0	
LUMO	-0.1056	2.9	0.5	96.6	
LUMO+1	-0.0739	2.9	0.6	96.5	

Table S23. Excited state properties of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the lowest triplet excited state (T_1) . Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	1.5867	781	HOMO → LUMO (93.2 %)	0.0027	
S2	1.9702	629	HOMO-2 \rightarrow LUMO+1 (57.8 %),	0.0227	
			HOMO-1 \rightarrow LUMO (30.7 %)		XMLCT
S3	2.0117	616	HOMO-1 \rightarrow LUMO (64.9 %),	0.0159	
			HOMO-2 → LUMO+1 (30.9 %)		
T1	1.5593	795	HOMO → LUMO (90.0 %)	0.0000	
T2	1.8684	664	HOMO-1 \rightarrow LUMO (66.0 %),	0.0000	
			HOMO-2 → LUMO+1 (14.8 %)		XMLCT
Т3	1.9780	627	HOMO-2 \rightarrow LUMO+1 (57.3 %),	0.0000	
			HOMO-1 \rightarrow LUMO (16.6 %),		
			HOMO \rightarrow LUMO+3 (12.2 %)		

Table S24. Iso-surface contour plots (iso-value = 0.02) of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) as calculated in Gaussian software at the lowest triplet excited state (T_1) geometry.

Table S25. Orbital energies and characters resulting from Mulliken population analysis calculated at the lowest triplet excited state (T_1) optimized geometry of the model { $Cu_4I_4(L^2)_4$ } (the complex [CuL^2I_1).

Orbital	Energy (eV)	Contributions (%)			
		Cu	I	L	
НОМО	-0.1635	45.4	49.9	4.7	
LUMO	-0.0867	2.3	0.8	96.9	

Table S26. Spin-orbit couplings $\langle S_i | H_{SO} | T_j \rangle$ calculated as root mean squares in ADF for the model $\{Cu_4 I_4 (L^2)_4\}$ (the complex $[CuL^2 I]_n$).

$, cm^{-1}$	T1	T2	Т3	T4	T5
S1	32,13	966,05	313,28	16,69	653,16
S2	678,9	240,35	292,17	21,4	632,32
S3	837,18	178,21	223,65	15,26	507,9
S4	43,5	19	24,52	47,74	23,23
S5	738,09	826,23	445,51	21,95	22,38

Table S27. Excited state properties of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) obtained from TD-DFT calculations in Gaussian software at the relaxed geometry of the lowest singlet excited state (S₁). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	1.6607	747	HOMO → LUMO (90.2 %)	0.0022	
S2	1.9673	630	HOMO-2 \rightarrow LUMO+1 (33.4 %),	0.0176	
			HOMO-1 → LUMO (54.0 %)		XMLCT
S3	2.0547	603	HOMO-1 → LUMO (40.6 %),	0.0085	
			HOMO-2 → LUMO+1 (51.6 %)		
T1	1.6296	761	HOMO → LUMO (85.4 %)	0.0000	
T2	1.8973	653	HOMO-1 \rightarrow LUMO (62.1 %),	0.0000	
			HOMO-2 → LUMO+1 (19.6 %)		XMLCT
Т3	2.0281	611	HOMO-2 \rightarrow LUMO+1 (57.8 %),	0.0000	
			HOMO-1 → LUMO (24.4 %)		

Table S28. Iso-surface contour plots (iso-value = 0.02) of the model $\{Cu_4I_4(L^2)_4\}$ (the complex $[CuL^2I]_n$) as calculated in Gaussian software at the lowest singlet excited state (S₁) geometry.

Table S29.Orbital energies and characters resulting from Mulliken population analysis calculated at the lowest singlet excited state (S_1) optimized geometry of the model { $Cu_4l_4(L^2)_4$ } (the complex [CuL^2l_1).

Orbital	Energy (eV)	Contributions (%)		
		Cu	I	L
НОМО	-0.1662	45.2	50.7	4.1
LUMO	-0.0862	2.4	0.5	97.1

Figure S8. Luminescence properties of the complex $[Cu_2L^2l_2]_n$. Temperature dependence a) of the excitation spectra, $\lambda_{em} = 500$ nm; b) of the luminescence spectra, $\lambda_{ex} = 410$ nm; c) of the photoluminescence decay time; d) of the photoluminescence chromaticity, $\lambda_{ex} = 410$ nm.

С

Figure S9. Luminescence properties of the complex $[CuL^2I]_n$. Temperature dependence a) of the excitation spectra, $\lambda_{em} = 510$ nm; b) of the luminescence spectra, $\lambda_{ex} = 430$ nm; c) of the photoluminescence decay time; d) of the photoluminescence chromaticity, $\lambda_{ex} = 410$ nm.

Table S30. The emission spectra of the complex $[Cu_2L^1I_2]_n$ at T = 77–300 K resolved into four Gauss functions.

Figure S10. Temperature dependence of the maxima of the Gauss functions for the complex $[Cu_2L^1l_2]_n$.

Figure S11. Temperature dependence of the linewidth of the Gauss functions for the complex $[Cu_2L^1l_2]_n$.

Table S31. The emission spectra of the complex $[Cu_2L^2I_2]_n$ at T = 77–300 K resolved into four Gauss functions.

Figure S12. Temperature dependence of the maxima of the Gauss functions for the complex [Cu₂L²I₂]_n.

Figure S13. Temperature dependence of the linewidth of the Gauss functions for the complex $[Cu_2L^2l_2]_n$.

Figure S14. Temperature dependence of the maxima of the Gauss functions for the complex [CuL²I]_n.

Figure S15. Temperature dependence of the linewidth of the Gauss functions for the complex [CuL²I]_n.

Figure S16. Dependence of the photoluminescence of the complex $[Cu_2L^1I_2]_n$ on the excitation wavelength.

Figure S17. Dependence of the photoluminescence of the complex $[Cu_2L^2I_2]_n$ on the excitation wavelength.

Figure S18. Dependence of the photoluminescence of the complex $[CuL^2I]_n$ on the excitation wavelength.

Figure S19. Absorption, excitation and emission spectra of L¹ and L² in CH₂Cl₂.

Free ligands in CH_2Cl_2 solutions absorb at *ca*. 255, 290 and 360 nm (a weak absorption band). In the excitation spectra there are two bands near 300 nm and 370 nm. The ligands luminesce in the blue region of the spectrum with the maximum near 470 nm and a shoulder in the 400 – 440 nm range.

Figure S20. Reproducibility of emission spectra of the complexes.

Figure S21. Reproducibility of X-rya powder diffraction patterns of the complexes.

Figure S22. TGA data for the complexes.