Electronic Supplementary Information

Conversion pseudocapacitance-featured cost-effective perovskite fluoride KCuF₃ for advanced lithium-ion capacitors and lithium-dual-

ion batteries

Yuxi Huang^a, Rui Ding^{a,*}, Qilei Xu^a, Wei Shi^a, Danfeng Ying^a, Yongfa Huang^a, Tong Yan^a, Caini Tan^a, Xiujuan Sun^a, Enhui Liu^a

^aKey Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China

*Corresponding Author

Emails: drm8122@163.com; drm8122@xtu.edu.cn (Rui Ding)

	Table of Contents	
Experimental	Synthesis of materials; Characterizations; Electrochemical	P4
section	measurements; Methods: calculations for C_m , E_m , P_m	
Fig S1.	The crystalline structure of KCF sample.	P6
Fig S2.	Nitrogen sorption isotherms (a), pore volumes (b) and pore	P6
	size distributions (c) of KCF sample.	
Fig S3.	GCD curves for the respective 5 th cycle at 0.1-3.2 A g ⁻¹ of	P7
	KCF electrode with A electrolytes.	
Fig. S4	Nyquist plots (the insert is the enlarged high frequency	P7
	region) of KCF electrode.	
Fig. S5	The equivalent circuits used to fit the experimental Nyquist	P7
	plots before (a) and after (b) cycling of KCF electrode.	
Fig S6.	CV plots for the first three cycles at 0.1 mV s ⁻¹ (a), rate	P8
	performance and coulombic efficiency at 0.1~3.2~0.1 A g ⁻¹	
	(b), GCD curves for the first to fifth cycles at 0.1 A g^{-1} (c),	
	cycling stability for 1000 cycles at 1 A g ⁻¹ (d), CV plots for	
	the respective third cycle at 0.1, 0.2, 0.3 mV s ⁻¹ (e), the	
	corresponding relationship of $\lg i vs. \lg v(f)$, pseudocapacitive	
	contribution (orange region) to the total current contribution	
	at 0.1-0.3 mV s ⁻¹ (g) and the normalized contribution ratio	
	values of diffusion and pseudocapacitance controlled	
	fractions at 0.1-0.3 mV s ⁻¹ (h) of the KCF electrode with B	
	electrolytes.	
Fig S7.	GCD curves for the respective 5^{th} cycle at 0.1-3.2 A g ⁻¹ of	P9
	KCF electrode with B electrolytes.	
Fig S8.	Ex-situ XPS spectra of KCF electrode in pristine, discharged-	P9
	0.01 V/charged-3.0 V states: O1s-fitted (a) and C1s-fitted	
	(b).	
Fig S9.	Crystalline structure information of KCuF ₃ , Cu, CuF ₂ , LiF	P9
	and Li ₂ CO ₃ phases.	
Fig S10.	The ex-situ TEM, HRTEM and SEAD pattern of KCF	P10
	sample in the 1 st discharge/charge (0.1 A g ⁻¹) state with A	
	electrolytes.	
Fig S11.	Ex-XRD patterns of KCF electrode in pristine, the 1 st	P11
	discharge/charge (0.1 A g ⁻¹) processes with A electrolytes.	
Fig S12.	CV plots for the first three cycles at 0.3 mV s ⁻¹ (a), GCD	P11
	curves for the first five cycles at 0.1 A g^{-1} (b), CV plots for	
	the respective 3 rd cycle at 0.3-160 mV s ⁻¹ (c), GCD curves for	
	the respective 3^{rd} at 0.1~3.2 A g ⁻¹ (d), rate performance and	
	coulombic efficiency at $0.1 \sim 3.2 \sim 0.1$ A g ⁻¹ (e) and cycling	
	stability and coulombic efficiency at 1 A g ⁻¹ for 1000 cycles	

	(f) of AC electrode with A electrolytes.	
Fig. S13.	CV plots for the first three cycles at 0.3 mV s ⁻¹ (a), GCD	P12
	curves for the first five cycles at 0.1 A g ⁻¹ (b), CV plots for	
	the respective 3 rd cycle at 0.3-160 mV s ⁻¹ (c), GCD curves for	
	the respective 3^{rd} at 0.1~3.2 A g ⁻¹ (d), rate performance and	
	coulombic efficiency at 0.1~3.2~0.1 A g ⁻¹ (e) and cycling	
	stability and coulombic efficiency at 1 A g ⁻¹ for 1000 cycles	
	(f) of graphite (918) electrode with B electrolytes.	
Fig S14.	CV windows of KCF//AC LIC with A electrolytes: CV	P12
	windows at 30 mV s ⁻¹ under the working voltage of 0-5 V (a),	
	CV plots at 10~160 mV s ⁻¹ in 4.0 V (b), 4.3 V(c), 4.5 V (d).	
Fig S15.	GCD curves of KCF//AC LIC with A electrolytes at 0.5-16.0	P13
	A g ⁻¹ in 4.0 V (a), 4.3 V (b), 4.5 V (c).	
Fig S16.	KCF//918 Li-DIB with B electrolytes: CV window at 20 mV	P13
	s ⁻¹ under the working voltage of 0-6.0 V (a); CV plots at 10-	
	160 mV s ⁻¹ (b), GCD curves at 0.5-8.0 A g ⁻¹ (c) in 1.5-5.2 V.	
Table S1.	Materials, chemicals and reagents used in this study.	P14
Table S2.	Specific capacity and cycling stability of anode and cathode	P15
	and m ₊ /m ₋ ratio for KCF//AC LIC and KCF//918 Li-DIB.	
Table S3.	EIS parameters of KCF electrode before (a); 1 st	P16
	diacharging/charging and after cycling (b).	
Table S4.	Performance summary of the KCF//AC LIC and KCF//918	P17
	Li-DIB in the study.	
Table S5.	A comparison for the performance of the KCF//AC LIC in	P18
	the study with some reported LICs in literature.	
Table S6.	A comparison for the performance of the KCF//918 Li-DIB	P19
	in the study with some reported Li-DIBs in literature.	
References	References in Table S5-6.	P20

Experimental section

Synthesis of materials

The chemicals in the experiment are of analytical level (A.R.) and directedly used without further treatment (**Table S1**). The KCF sample is synthesized via a facile onepot solvothermal route. Firstly, 2.0 mmol CuCl₂·2H₂O and 5.0 mmol KF·2H₂O are dissolved in 35 mL ethylene glycol (EG), the mixture is magnetically stirred and dispersed thoroughly in an ultrasonic bath at 100 W for 30 minutes. Next, the resulting mixture is transferred to a 50 mL reactor, placed in an oven at 180 °C for 12 h. Finally, washed the yielded precipitates after absolute alcohol centrifugation and obtained sample. (The above-mentioned chemicals, agents and materials are listed in the **Table S1**.)

Characterizations

The phases and crystalline properties are determined by X-ray diffraction (XRD). The surface chemical compositions and electronic structures are checked by X-ray photoelectron spectra (XPS). The morphology and size of particles are analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystalline microstructures are resolved by the highresolution TEM (HRTEM) and selected area electron diffraction (SAED). The specific surface area, pore volume and size distribution are examined by nitrogen sorption isothermals with Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.

Electrochemical measurements

The electrodes are prepared by the following two steps: firstly, a well-dispersed mixture of 70 wt% active materials (as-synthesized KCF) or commercial AC or 918, 20 wt% acetylene black (AB) conductive agent and 10 wt% polyvinylidene fluoride binder (PVDF, which is dissolved in into the N-methyl-2-pyrrolidone (NMP)) are casted onto the current collectors (Cu foil and carbon-coated Al foil are used for the collectors of anode and cathode respectively.), and followed by drying in a vacuum oven at $110 \,^{\circ}\text{C}$ for 12 h; secondly, the electrodes are pounched into disks with diameter of 12 mm, and the mass loading of active materials was about $1.2 \sim 2.5 \text{ mg cm}^{-2}$. The electrochemical performances are examined via CHI660E electrochemical working stations and Neware-CT-4008 testers. Tests for electrodes (KCF, AC, 918) are conducted in halfcells by using the type 2032 coin cells. Tests for LIC (KCF//AC) and Li-DIB (KCF//918) are conducted via full-cells with type 2032 coin cells, with certain mass ratios of anode and cathode active materials. (More detailed information can be seen in Table S2-3.) The electrolytes used for KCF and AC electrodes, LIC are 1 M LiPF₆ dissolved in the mixed solvents of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) (1:1:1 in volume) with 1% vinylene carbonate (VC) additives (LBC-305-01, CAPCHEM, marked A electrolytes). The electrolytes used for KCF and 918 electrodes, Li-DIB are 1 M LiPF₆ dissolving in the mixed solvents of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) (1:1:1 in volume) with the main fluoroethylene carbonate (FEC) additives (LBC-3045I, CAPCHEM, marked B electrolytes). All cell assemblies are performed in a high pure Arfilled dry glovebox (MIKROUNA, O₂ and H₂O<0.1 ppm) and all tests are carried

out at room temperature (about 25 °C). (The more detailed information of the abovementioned chemicals, agents and materials can be seen the **Table S1**; the calculations for the m_+/m_- , *Cm*, *Em* and *Pm* can be seen in the Methods.)

Methods: calculations for C_m , E_m , P_m

The specific capacity (C_m , mAh g⁻¹), energy density ($E_{m,1}$, Wh kg⁻¹) for LIC, energy density ($E_{m,2}$, Wh kg⁻¹) for Li-DIB, and power density (P_m , kW kg⁻¹) are calculated according to the equations **S(1)-S(4)**.

$$C_{\rm m} = Q_{\rm m} / 3.6$$
 S(1)
 $E_{\rm m,1}$ (Capacitor) = 0.5 ($C_{\rm m} \Delta V$) S(2)

$$E_{m,1} (Capacitor) = (C_m V)$$

$$S(2)$$

$$S(3)$$

$$P_{\rm m} = 3.6 E_{\rm m} / td$$
 S(4)

Where m, Q_m , ΔV , V, and td refer to the mass of active materials (mg, for half cells, it means the mass of active materials of anode or cathode; for LIC and Li-DIB full-cells, it means the total masses of active materials of anode and cathode), specific charge or discharge capacity (C g⁻¹, for anode, it means the charge capacity; for cathode and full-cells, it refers to the discharge part), potential window (V), potential of the discharging plateaus (V), and discharging time (s), respectively.

Supplemental figures

Fig S1. The crystalline structure of KCF sample.

Fig S2. Nitrogen sorption isotherms (a), pore volumes (b) and pore size distributions (c) of KCF sample.

Fig S3. GCD curves for the respective 5^{th} cycle at 0.1-3.2 A g⁻¹ of KCF electrode with A electrolytes.

Fig S4. Nyquist plots (the insert is the enlarged high frequency region) of KCF electrode.

Fig. S5 The equivalent circuits used to fit the experimental Nyquist plots before (a) and after (b) cycling of KCF electrode.

Fig S6. CV plots for the first three cycles at 0.1 mV s⁻¹ (a), rate performance and coulombic efficiency at $0.1 \sim 3.2 \sim 0.1$ A g⁻¹ (b), GCD curves for the first to fifth cycles at 0.1 A g⁻¹ (c), cycling stability for 1000 cycles at 1 A g⁻¹ (d), CV plots for the respective third cycle at 0.1, 0.2, 0.3 mV s⁻¹ (e), the corresponding relationship of lg*i* vs. lgv (f), pseudocapacitive contribution (orange region) to the total current contribution at 0.1-0.3 mV s⁻¹ (g) and the normalized contribution ratio values of diffusion and pseudocapacitance controlled fractions at 0.1-0.3 mV s⁻¹ (h) of the KCF electrode with B electrolytes.

Fig S7. GCD curves for the respective 5^{th} cycle at 0.1-3.2 A g⁻¹ of KCF electrode with B electrolytes.

Fig S8. Ex-situ XPS spectra of KCF electrode in pristine, discharged-0.01 V/charged-3.0 V states: O1s-fitted (a) and C1s-fitted (b).

Sample	ICCD-PDF	Crystal system	Space group	Cell (a x b x c) / Å ³
KCuF ₃	18-1005	Tetragonal	P4mm (99)	4.1429×4.1429×3.926
Cu	04-0836	Cubic	Fm-3m (225)	3.615×3.615×3.615
CuF ₂	42-1244	Monoclinic	P21/n (14)	3.2973×4.5624×4.6157
LiF	45-1460	Cubic	Fm-3m	4.027×4.027×4.027
KF	36-1458	Cubic	Fm-3m	5.348×5.348×5.348
Li ₂ CO ₃	22-1141	Monoclinic	C2/c	8.359×4.977×6.194

Fig S9. Crystalline structure information of KCuF₃, Cu, CuF₂, LiF and Li₂CO₃ phases.

Fig S10. The ex-situ TEM, HRTEM and SEAD pattern of KCF sample in the 1st discharge/charge (0.1 A g^{-1}) state with A electrolytes.

Fig S11. Ex-XRD patterns of KCF electrode in pristine, the 1^{st} discharge/charge (0.1 A g⁻¹) processes with A electrolytes (a); the enlarged region (b).

Fig S12. CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves for the first five cycles at 0.1 A g⁻¹ (b), CV plots for the respective 3^{rd} cycle at 0.3-160 mV s⁻¹ (c), GCD curves for the respective 3^{rd} at 0.1~3.2 A g⁻¹ (d), rate performance and coulombic efficiency at 0.1~3.2~0.1 A g⁻¹ (e) and cycling stability and coulombic efficiency at 1 A g⁻¹ for 1000 cycles (f) of AC electrode with A electrolytes.

Fig S13. CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves for the first five cycles at 0.1 A g⁻¹ (b), CV plots for the respective 3^{rd} cycle at 0.3-160 mV s⁻¹ (c), GCD curves for the respective 3^{rd} at 0.1~3.2 A g⁻¹ (d), rate performance and coulombic efficiency at 0.1~3.2~0.1 A g⁻¹ (e) and cycling stability and coulombic efficiency at 1 A g⁻¹ for 1000 cycles (f) of graphite (918) electrode with B electrolytes.

Fig S14. CV windows of KCF//AC LIC with A electrolytes: CV windows at 30 mV s⁻¹ under the working voltage of 0-5 V (a), CV plots at 10~160 mV s⁻¹ in 4.0 V (b), 4.3 V(c), 4.5 V (d).

Fig S15. GCD curves of KCF//AC LIC with A electrolytes at 0.5-16.0 A g^{-1} in 4.0 V (a), 4.3 V (b), 4.5 V (c).

Fig S16. KCF//918 Li-DIB with B electrolytes: CV window at 20 mV s⁻¹ under the working voltage of 0-6.0 V (a); CV plots at 10-160 mV s⁻¹ (b), GCD curves at 0.5-8.0 A g⁻¹ (c) in 1.5-5.2 V.

Supplemental tables

Chemials, Agents and Materials	Туре	Company	Characteristics
CuCl ₂ •2H ₂ O	AR	SinoPharm	purity≥99.0%
KF•2H ₂ O	AR	SinoPharm	purity≥99.0%
EG	AR	SinoPharm	purity≥99.0%
AC	YEC 8b	FuZhou YiHuan	D50: ~10 μm; Density:> 0.4 g cm ⁻³ ; SSA:2000~2500 m ² g ⁻¹ D50: 17-20 μm;
Graphite	918	BTR	Tab: $0.95-1.2 \text{ g cm}^{-3}$; SSA: $3.0-4.0 \text{ m}^2 \text{ g}^{-1}$
acetylene black	Battery grade	#	#
NMP	AR	Kermel	purity≥99.0%
PVDF	Battery grade	#	#
A electrolytes	LBC-305-01	CAPCHEM	1 M LiPF ₆ /EC:EMC:DMC (1:1:1) /1% VC
B electrolytes	LBC-3045I	CAPCHEM	1 M LiPF ₆ /EC: EMC: DEC (1:1:1)/FEC, etc.
Li plate	15.6*0.45 mm	China Energy	15.6*0.45 mm
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μ m; weight: 87 g m ⁻²
Carbon coated-Al foil	222*0.015	GuagZhou NaNuo	Total thickness: 17 µm; Strength: 192 Mpa
Glass	GF/D 2.7 μm;	Whaters	Diameter: 25 mm;
microfiber filters	1823-025	Whatman	Thickness: $6/5 \ \mu m$; weight: 121 g m ⁻²
Cell components	CR-2032	ShenZhen TianChenHe	#

Table S1. Materials, chemicals and reagents used in this study.

Specific capacity of electrodes / (mAh g ⁻¹)						
Current density / (A g ⁻¹)	Anode KCF (0.01-3.0V) with A electrolytes	Anode KCF (0.01-3.0 V) with B electrolytes	Cathode AC (2.0-4.7 V) with A electrolytes	Cathode Graphite (2.5-5.2 V) with B electrolytes		
0.1	65.6	61.1	95.0	75.1		
0.2	62.8	58.4	85.1	71.2		
0.4	56.1	53.0	72.1	69.0		
0.8	55.6	45.8	62.7	66.8		
1.6	48.4	39.1	54.0	63.1		
3.2	48.1	31.1	45.3	52.5		
Cycling behavior Retention% / 1 A g ⁻¹ / 1000 cycles	191%	97%	46%	81%		
m+/m- ratio for KCF//AC LIC based on the Q_m of anode and cathode at 0.1 A g ⁻¹ with A electrolytes	1:1.5					
m+/m- ratio for KCF//918 Li-DIB based on the Q_m of anode and cathode at 0.1 A g ⁻¹ with B electrolytes	1:1.2					

Table S2. Specific capacity and cycling stability of anode and cathode and m_+/m_- ratio for KCF//AC LIC and KCF//918 Li-DIB.

EIS parameters (Before cycling)				
Model	R(QR)W(CR)			
$\mathbf{R}_{s}\left(\Omega ight)$	4.834			
Q (S·sec ⁿ)	1.885×10 ⁻⁵			
n	0.8112			
$R_{ct}(\Omega)$	93.62			
W (S·sec ^{0.5})	0.002383			
C _{dl} (F)	6.809×10 ⁻⁴			
$\mathbf{R}_{\mathrm{e}}\left(\Omega ight)$	3.513×10 ⁵			
x ²	3.69×10 ⁻³			

Table S3. EIS parameters of KCF electrode before (a); 1st diacharging/charging and after cycling (b).

a

b

EIS parameters						
KCF	1 st diacharging 1 st charging After cycling					
Model	R(R(CR)(CR)(C(RW))C				
$\mathbf{R}_{s}\left(\Omega ight)$	4.966	4.866	4.055			
Cdl, 1 (F)	1.604×10 ⁻⁶	7.954×10 ⁻⁶	1.65×10 ⁻⁵			
RSEI (Ω)	39.71	26.49	12.29			
Cdl, 2 (F)	6.896×10 ⁻⁵	1.984×10 ⁻⁶	3.028×10 ⁻⁶			
Rct, 1 (Ω)	36.08	14.12	5.417			
Cdl, 3 (F)	4.772×10 ⁻⁸	6.589×10 ⁻⁴	8.755×10 ⁻⁵			
Rct, 2 (Ω)	0.1455	16.21	18.97			
W (S·sec ^{0.5})	3.632×10 ⁻¹¹	0.09549	0.0226			
Cint (F)	0.4548	0.1779	0.009038			
x ²	1.675×10 ⁻²	1.765×10 ⁻³	1.776×10 ⁻³			

Туре	Capacitor or Cell system	Working voltage / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density
LIC	KCF//AC with A electrolytes	0.01-4.0	38.4-34.3 28.6-20.6 11.2-7.0	0.7-1.4 2.7-5.0 8.6-19.3	100%/1000/4 A g ⁻¹ 100%/2000/4 A g ⁻¹ 100%/3000/4 A g ⁻¹ 93%/4000/4 A g ⁻¹ 89%/5000/4 A g ⁻¹
		0.01-4.3	55.7-49.2 40.6-29.9 20.5-13.7	0.7-1.5 2.8-5.0 10.0-19.7	91%/1000/4 A g ⁻¹ 84%/2000/4 A g ⁻¹ 78%/3000/4 A g ⁻¹ 71%/4000/4 A g ⁻¹ 62%/5000/4 A g ⁻¹
		0.01-4.5	70.0-63.6 54.7-41.8 28.3-14.2	0.8-1.6 3.1-5.7 10.4-22.2	85%/1000/4 A g ⁻¹ 63%/2000/4 A g ⁻¹ 60%/3000/4 A g ⁻¹ 50%/4000/4 A g ⁻¹ 48%/5000/4 A g ⁻¹
Li- DIB	KCF//918 with B electrolytes	1.5-5.2	70.5-51.5 38.1-22.3-6.4	1.0-2.0 3.9-7.1-9.2	90%/200/4 A g ⁻¹ 84%/300/4 A g ⁻¹ 78%/500/4 A g ⁻¹ 72%/1000/4 A g ⁻¹ 65%/2000/4 A g ⁻¹ 48%/5000/4 A g ⁻¹

Table S4. Performance summary of the KCF//AC LIC and KCF//918 Li-DIB in the study.

LICs	Working voltage / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density	Refs.
LiNi _{0.5} Mn _{1.5} O ₄ //AC	1.5-3.25	19-8	0.13-3.5	81%/3000/1 A g ⁻¹	1
TiO ₂ -B//CNT	0.0-2.8	23-7	0.14-2.8	73%/1200/1.5 A g ⁻¹	2
F-Fe ₂ O ₃ //AC	0-3	28	2.5	$90\%/5000/2.25 \text{ Ag}^{-1}$	3
H-TiO ₂ /PPy/SWCNTs//AC	1.0-3.0	31.3-1.9	0.2-4.0	77.8%/3000/0.5 A g ⁻¹	4
TiO ₂ /graphene//AC	1.0-3.0	42-8.9	0.8-8	100%/6500/4 A g ⁻¹	5
T-Nb ₂ O ₅ /Graphene paper//AC	0.5-3.0	47-15	0.39-18	93%/2000/0.25 A g ⁻¹	6
TiS ₂ //AC	0–2.6	49	0.1	$76\%/2000/1 \text{ Ag}^{-1}$	7
NBC//LiMn ₂ O ₄	0-2.3	50-17	0.57-6.9	88%/5000/3 A g ⁻¹	8
FeS ₂ /C//AC	0-3.2	63-5	0.15-4	100%/2500/2 A g ⁻¹	9
AC/TiO2@PCNF-12	0.0-3.0	67.4-27.5	0.075-5	$85\%/10000/10 \mathrm{A g}^{-1}$	10
	0.01-4.0	38.4-34.3 28.6-20.6 11.2-7.0	0.7-1.4 2.7-5.0 8.6-19.3	100%/1000/4 A g ⁻¹ 100%/2000/4 A g ⁻¹ 100%/3000/4 A g ⁻¹ 93%/4000/4 A g ⁻¹ 89%/5000/4 A g ⁻¹	
KCF//AC	0.01-4.3	55.7-49.2 40.6-29.9 20.5-13.7	0.7-1.5 2.8-5.0 10.0-19.7	91%/1000/4 A g ⁻¹ 84%/2000/4 A g ⁻¹ 78%/3000/4 A g ⁻¹ 71%/4000/4 A g ⁻¹ 62%/5000/4 A g ⁻¹ 85%/1000/4 A g ⁻¹	This work
	0.01-4.5	70.0-63.6 54.7-41.8 28.3-14.2	0.8-1.6 3.1-5.7 10.4-22.2	63%/2000/4 A g ⁻¹ 60%/3000/4 A g ⁻¹ 50%/4000/4 A g ⁻¹ 48%/5000/4 A g ⁻¹	

Table S5. A comparison for the performance of the KCF//AC LIC in the study with some reported LICs in literature.

Working Power Cycling behavior / **Energy density** Li/Na-DIBs voltage density retention%, repeated Refs. / Wh kg-1 / V / kW kg-1 cycles, current density WS₂//Graphite 0-4 36 # 59%/30/0.1 A g⁻¹ 11 TiO₂//Graphite 1.5-3.7 36 # 88%/50/0.1 A g⁻¹ 12 Carbon-coated 40.1 0.2577 0.2-1.4 87%/500/10 C 13 NaTi₂(PO₄)₃//Ni(OH)₂ Ti₃C₂T_x//Graphite 0-3.2 40 1.608 85%/200/0.33 A g⁻¹ 14 Nb₂O₅//Graphite 1.5-3.5 52 # 84%/100/0.1 A g⁻¹ 15 Si-compound//Graphite 0-3 54 # 53%/100/0.1 A g⁻¹ 16 0-4 RGO//Graphite 70 1.33 $74\%/50/1.33 \ A \ g^{-1}$ 17 90%/200/4 A g⁻¹ 84%/300/4 A g⁻¹ $78\%/500/4 \mathrm{A g^{-1}}$ 1.5-5.2 70.5-51.5 1.0-2.0 This KCF//918 38.1-23.3-6.4 3.9-7.1-9.2 $72\%/1000/4 \text{ Ag}^{-1}$ work $65\%/2000/4 \ A \ g^{-1}$ $48\%/5000/4 \ A \ g^{-1}$

Table S6. A comparison for the performance of the KCF//918 Li-DIB in the study with some reported Li/Na-DIBs in literature.

References

In Table S5

- N. Arun, A. Jain, V. Aravindan, S. Jayaraman, W. C. Ling, M. P. Srinivasan, S. Madhavi, *Nano Energy*, 2015, 12, 69-75.
- 2 V. Aravindan, N. Shubha, W. C. Ling, S. Madhavi, J. Mater. Chem. A, 2013, 1, 6145-6151.
- 3 K. Karthikeyan, S. Amaresh, S. N. Lee, V. Aravindan, Y. S. Lee, *Chem. Asian J.*, 2014, **9**, 852-857.
- 4 G. Tang, L. J. Cao, P. Xiao, Y. H. Zhang, H. Liu, J. Power Sources, 2017, 355, 1-7.
- 5 H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K. C. Roh, K. Kang, *Adv. Energy Mater.*, 2013, **3**, 1500-1506.
- 6 L. P. Kong, C. F. Zhang, J. T. Wang, W. M. Qiao, L. C. Ling, D. H. Long, ACS Nano, 2015, 9, 11200-11208.
- A. Chaturvedi, P. Hu, V. Aravindan, C. Kloc, S. Madhavi, J. Mater. Chem. A, 2017, 5, 9177-9181.
- 8 C. Y. Li, W. Z. Wu, S. S. Zhang, L. He, Y. S. Zhu, J. Wang, L. J. Fu, Y. H. Chen, Y. P. Wu and W. Huang, *J. Mater. Chem. A*, 2019, 7, 4110-4118.
- 9 D. T. Pham, J. P. Baboo, J. Song, S. Kim, J. Jo, V. Mathew, M. H. Alfaruqi, B. Sambandam and J. Kim, *Nanoscale*, 2018, **10**, 5938-5949.
- 10 C. Yang, J. L. Lan, W. X. Liu, Y. Liu, Y. H. Yu, X. P. Yang, ACS Appl. Mater. Interfaces, 2017, 9, 18710-18719.

In Table S6

- 11 S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nunez, A. E. Del Rio Castillo, M. Prato, X. Zhuang, V. Pellegrini, X. Feng and F. Bonaccorso, *Nano Lett.*, 2018, 18, 7155-7164.
- 12 A. K. Thapa, G. Park, H. Nakamura, T. Ishihara, N. Moriyama, T. Kawamura, H. Wang, M. Yoshio, *Electrochim. Acta*, 2010, **55**, 7305-7309.
- 13 Q. S. Nian, S. Liu, J. Liu, Q. Zhang, J. Q. Shi, C. Liu, R. Wang, Z. L. Tao, J. Chen, ACS Appl. Energy Mater., 2019, 2, 4370–4378.
- 14 X. Y. Shi, T. Deng, G. S. Zhu, Ceram. Int., 2020, 46, 24887-24892.
- 15 G. Park, N. Gunawardhana, C. Lee, S.-M. Lee, Y.-S. Lee, M. Yoshio, J. Power Sources, 2013, 236, 145-150.
- 16 H. Nakano, Y. Sugiyama, T. Morishita, M. J. S. Spencer, I. K. Snook, Y. Kumai, H. Okamoto, *J. Mater. Chem. A*, 2014, **2**, 7588-7592.
- 17 X. Y. Shi, W. Zhang, J. F. Wang, W. T. Zheng, K. K. Huang, H. B. Zhang, S. H. Feng, H. Chen, *Adv. Energy Mater.*, 2016, **6**, 1601378.