Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

## Supplementary information for

## Temperature sensitivity modulation through vanadium concentration in La2MgTiO6: V5+, Cr3+ double perovskite optical thermometer

D. Stefańska\*1, B. Bondzior1, T. H. Q. Vu1, M. Grodzicki2,3, P.J. Dereń1

 <sup>1</sup>W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Wroclaw, Poland
<sup>2</sup> Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stablowicka 147, Wrocław, Poland
<sup>3</sup> Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, Wrocław, Poland
\*corresponding author: D.Stefanska@intibs.pl

Table S1. The calculated molar of precursors used in the syntheses.

| Sample (0.5 | La(CH <sub>3</sub> COO) <sub>3</sub> | $Mg(NO_3)_2$ | Ti(C <sub>3</sub> H <sub>7</sub> O) <sub>4</sub> | NH <sub>4</sub> VO <sub>3</sub> | Cr(NO <sub>3</sub> ) <sub>3</sub> |
|-------------|--------------------------------------|--------------|--------------------------------------------------|---------------------------------|-----------------------------------|
| g)          |                                      |              |                                                  |                                 |                                   |
| LMT         | 2.24E-03                             | 1.23E-03     | 1.1212E-03                                       | 0.00E+00                        | 0                                 |
| LMT:0.05V   | 2.24E-03                             | 1.23E-03     | 1.1206E-03                                       | 5.61E-07                        | 0                                 |
| LMT:0.1V    | 2.24E-03                             | 1.23E-03     | 1.1201E-03                                       | 1.12E-06                        | 0                                 |
| LMT:0.5V    | 2.24E-03                             | 1.23E-03     | 1.1156E-03                                       | 5.61E-06                        | 0                                 |
| LMT:1V      | 2.24E-03                             | 1.23E-03     | 1.1100E-03                                       | 1.12E-05                        | 0                                 |
| LMT:2V      | 2.24E-03                             | 1.23E-03     | 1.0988E-03                                       | 2.24E-05                        | 0                                 |
| LMT:0.1Cr   | 2.24E-03                             | 1.23E-03     | 1.1201E-03                                       | 0                               | 1.12E-06                          |
| LMT:0.1V,   |                                      |              |                                                  |                                 |                                   |
| 0.1Cr       | 2.24E-03                             | 1.23E-03     | 1.1189E-03                                       | 1.12E-06                        | 1.12E-06                          |
| LMT:2V, 2Cr | 2.24E-03                             | 1.23E-03     | 1.0768E-03                                       | 2.24E-05                        | 2.24E-05                          |



Fig. S1 Unit cell *a*, *b*, *c*, parameters of the La<sub>2</sub>MgTiO<sub>6</sub> in the function of vanadium concentration.



Fig. S2 Unit cell volume of the  $La_2MgTiO_6$  in the function of vanadium concentration.



Fig. S3 Broad XPS spectrum for  $La_2MgTiO_6$ : V with core level lines of La  $3d_{5/2}$ , O 1s, Ti  $2p_{3/2}$ , Mg 2s.

Table S2 Positions and full width at half maxima (FWHM) of main core level lines.

| State                      | Position (eV) | FWHM (eV) |
|----------------------------|---------------|-----------|
| La 3d <sub>5/2</sub>       | 833.95        | 6.6       |
| O 1s                       | 529.35        | 2.75      |
| Ti 2p <sub>3/2</sub>       | 458.05        | 1.85      |
| Mg 2s                      | 87.65         | 2.2       |
| $V 2p_{3/2} V(V)$          | 516.7         | 1.7       |
| V 2p <sub>3/2</sub> V(III) | 515.25        | 2.0       |



Fig. S4 Shift of maximum emission band with vanadium concentration.



Fig. S5 Normalized emission spectra of La<sub>2</sub>MgTiO<sub>6</sub>:0.1% V, 0.1% Cr and La<sub>2</sub>MgTiO<sub>6</sub>:0.1% Cr.



Fig. S6 Absorption (strait line) and emission (dashed line) of investigated samples.



Fig. S7 Emission Decay curve of La2MgTiO6 and samples doped with vanadium ions monitored at 465 nm.



Fig. S8 Emission Decay curves of  $La_2MgTiO_6$  and samples doped with vanadium ions monitored at 565 nm.

| LMT: xV | mon 465 nm      |        | mon 565 nm          |                     |
|---------|-----------------|--------|---------------------|---------------------|
|         | $\tau_1[\mu s]$ | τ₂[µs] | τ <sub>1</sub> [μs] | τ <sub>2</sub> [μs] |
| 0       | 1.78            | 10.93  | -                   | -                   |
| 0.05    | 1.57            | 8.33   | 0.98                | 5.95                |

Table S3 Emission decay times of investigated samples.

| 0.1 | 2.02 | 11.13 | 1.27 | 8.51 |
|-----|------|-------|------|------|
| 0.5 | 0.91 | 4.75  | 0.66 | 3.53 |
| 1.0 | 1.13 | 6.55  | 0.87 | 5.37 |
| 2.0 | 0.83 | 4.23  | 0.63 | 3.61 |
|     |      |       |      |      |



Fig. S9 Activation energies (E<sub>a</sub>) for thermal quenching of  $V^{5+}$  emission in La<sub>2</sub>MgTiO<sub>6</sub>, calculated from a function of ln(I<sub>0</sub>/I-1) versus 1/kT.



Fig. S10 Activation energies (E<sub>a</sub>) for thermal quenching of  $Cr^{3+}$  emission in La<sub>2</sub>MgTiO<sub>6</sub>, calculated from a function of ln(I<sub>0</sub>/I-1) versus 1/kT.



Fig. S11 Integration areas of representative sample  $La_2MgTiO_6$ : 0.1% V.



Fig. S12 Absolute sensitivity of  $La_2MgTiO_6:x\% V$ .



Fig. S13 Repeatability of  $\Delta$  temperature parameter of  $I_1/I_2$  emission evaluated at 80 K and 150 K during 10 heating/cooling cycles.