Electronic Supplementary Material

A new amido-phosphane as ligand for copper and silver complexes. Synthesis, characterization and catalytic application for azide-alkyne cycloaddition in glycerol

Abdallah G. Mahmoud,*^{a,b} M. Fátima C. Guedes da Silva,^b Armando J. L. Pombeiro^{b,c}

^a Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt.

^b Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

^c Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.

* abdallah.mahmoud@tecnico.ulisboa.pt

1. X-ray data

Figure S1. The H-bond 1D chain of compound **1** spreading along the crystallographic *a* axis.

Empirical formula	C38H42N6O5P
Formula Weight	724.71
Crystal system	monoclinic
Space group	P 21/n
Temperature/K	298(2)
a/Å	9.5691(5)
b/Å	21.4898(12)
$c/{ m \AA}$	10.0298(5)
β/°	116.955(2)
$V(Å^3)$	1819.0(5)
Z	2
D_{calc} (g cm ⁻³)	1.309
F000	764
μ (Mo K α) (mm ⁻¹)	0.170
Rfls. collected/unique/observed	26254 / 4024 / 2779
Rint	0.0533
Final $R1^{a}$, $wR2^{b}$ $(I \ge 2\sigma)$	0.1226, 0.3516
Goodness-of-fit on F^2	1.209
$\mathbf{R} = \Sigma F_o - F_c / \Sigma F_o ; {}^{b} \mathbf{w} \mathbf{R}(\mathbf{F}^2) = [\Sigma \mathbf{w} (F_o ^2 - F_c ^2)^2 / \Sigma \mathbf{w} F_o ^4]^{\frac{1}{2}}$	

 Table S1. Crystallographic data and structure refinement details for 1.

2. NMR spectra of DBPTA (1) and its complexes 2-12.

Figure S7. HSQC spectrum of DBPTA (1) in CDCl₃ (400 MHz).

Figure S13. HSQC spectrum of DBPTA (1) in DMSO-d₆ (400 MHz).

Figure S15. ³¹P NMR spectrum of complex [Cu(DBPTA)4]BF4 (2) in DMSO-d6 (300 MHz).

MHz).

Figure S18. COSY spectrum of complex [Cu(DBPTA)4]BF4 (2) in DMSO-d6 (300 MHz).

Page 12 of 63

Figure S23. DEPT NMR spectrum of complex [CuBr(DBPTA)₃] (3) in CDCl₃ (400 MHz).

Figure S24. COSY spectrum of complex [CuBr(DBPTA)₃] (3) in CDCl₃ (400 MHz).

Figure S25. HSQC spectrum of complex [CuBr(DBPTA)₃] (3) in CDCl₃ (400 MHz).

Figure S27. ³¹P NMR spectrum of complex [CuBr(DBPTA)₃] (3) in DMSO-*d*₆ (400 MHz).

MHz).

Figure S30. COSY spectrum of complex [CuBr(DBPTA)₃] (3) in DMSO-*d*₆ (300 MHz).

Page 19 of 63

Figure S35. DEPT NMR spectrum of complex [CuI(DBPTA)₃] (4) in CDCl₃ (300 MHz).

Figure S36. COSY spectrum of complex [CuI(DBPTA)₃] (4) in CDCl₃ (300 MHz).

Figure S42. COSY spectrum of complex [CuI(DBPTA)₃] (4) in DMSO- d_6 (400 MHz).

Figure S44. ¹H NMR spectrum of complex $[Cu(\mu-Br)(DBPTA)_2]_2$ (5) in CDCl₃ (400 MHz).

Figure S45. ³¹P NMR spectrum of complex [Cu(µ-Br)(DBPTA)2]2 (5) in CDCl₃ (400 MHz).

MHz).

Figure S50. COSY spectrum of complex [Cu(µ-Br)(DBPTA)₂]₂ (5) in DMSO-*d*₆ (400 MHz).

Figure S51. HSQC spectrum of complex [Cu(µ-Br)(DBPTA)2]2 (5) in DMSO-d₆ (400 MHz).

Figure S56. COSY spectrum of complex $[Cu(\mu-I)(DBPTA)_2]_2$ (6) in DMSO- d_6 (400 MHz).

Figure S57. HSQC spectrum of complex [Cu(μ-I)(DBPTA)₂]₂ (6) in DMSO-*d*₆ (400 MHz).

Figure S62. COSY spectrum of complex [Cu(bpy)(DBPTA)₂]BF₄ (**7**) in DMSO-*d*₆ (300 MHz).

MHz).

MHz).

MHz).

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 **Figure S70.** ¹H NMR spectrum of complex [Ag(DBPTA)4]NO₃ (**9**) in DMSO-*d*₆ (300 MHz).

Figure S71. ³¹P NMR spectrum of complex [Ag(DBPTA)4]NO₃ (9) in DMSO-*d*₆ (300 MHz).

Figure S74. COSY spectrum of complex [Ag(DBPTA)₄]NO₃ (9) in DMSO-d₆ (300 MHz).

Figure S75. HSQC spectrum of complex [Ag(DBPTA)4]NO3 (9) in DMSO-d6 (300 MHz).

MHz).

Figure S80. ¹³C{¹H} NMR spectrum of complex [Ag(TPM*)(DBPTA)]NO₃ (10) in DMSO d_6 (300 MHz).

Figure S85. ³¹P NMR spectrum of complex [Ag(Tpms)(DBPTA)] (11) in DMSO- d_6 (400 MHz).

MHz).

MHz).

Figure S90. ¹H NMR spectra of DBPTA (1) and the copper complexes 7 and 8 in DMSO-*d*₆.

DMSO-d₆.

Figure S92. ³¹P{¹H} NMR spectra of DBPTA (1) and the silver complexes **9-11** in DMSO- d_6 .

Figure S93. ¹H NMR spectra of DBPTA (1) and the silver complexes 9-11 in DMSO-*d*₆.

Figure S94. ¹H NMR spectra of Tpm* (Top) and the silver complexes **10** (Bottom) in DMSO-*d*₆.

3. Characterization data of triazoles

1-benzyl-4-phenyl-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₅H₁₃N₃: C 76.57, H 5.57, N 17.86; found: C 76.77, H 5.49, N 17.92. ¹H NMR (300 MHz, DMSO-d6, δ): 8.63 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.45-7.32 (m, 8H), 5.65 (s, 2H).

1-benzyl-4-(4-ethylphenyl)-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₇H₁₇N₃: C 77.54, H 6.51, N 15.96; found: C 77.35, H 6.42, N 16.05. ¹H NMR (300 MHz, CDCl₃, δ): 7.68 (m, 2H, Ar-H), 7.61 (s, 1H, Ar-H), 7.40–7.34 (m, 3H, Ar-H), 7.31–7.25 (m, 4H, Ar-H), 5.49 (s, 2H, PhC*H*₂N), 2.61 (q, *J* = 7.9 Hz, 2H, C*H*₂CH₃), 1.28 (t, *J* = 7.9 Hz, 3H, CH₂CH₃).

1-benzyl-4-(3-methoxyphenyl)-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for $C_{16}H_{15}N_3O$: C 72.43, H 5.70, N 15.84; found: C 72.25, H 5.64, N 15.72. ¹H NMR (300 MHz, CDCl₃, δ): 7.60 (s, 1H, Ar-H), 7.41–7.22 (m, 8H, Ar-H), 7.74 (m, 1H, Ar-H), 5.48 (s, 2H, PhC*H*₂N), 3.81 (s, 3H, C*H*₃).

1-benzyl-4-(p-tolyl)-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₆H₁₅N₃: C 77.08, H 6.06, N 16.85; found: C 77.13, H 6.11, N 16.77. ¹H NMR (300 MHz, CDCl₃, δ): 7.63 (d, *J* =

7.9, 2H, Ar-H), 7.54 (s, 1H, Ar-H), 7.30–7.15 (m, 7H, Ar-H), 5.48 (s, 2H, PhC*H*₂N), 2.31 (s, 3H, C*H*₃).

1-benzyl-4-(m-tolyl)-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₆H₁₅N₃: C 77.08, H 6.06, N 16.85; found: C 76.91, H 6.01, N 16.67. ¹H NMR (300 MHz, CDCl₃, *δ*): 7.61 (br s, 2H, Ar-H), 7.52–7.49 (m, 1H, Ar-H), 7.43–7.27 (m, 6H, Ar-H), 7.14 (m, 1H, Ar-H), 5.49 (s, 2H, PhC*H*₂N), 2.34 (s, 3H, C*H*₃).

1-benzyl-4-(4-fluorophenyl)-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₅H₁₂FN₃: C 71.13, H 4.78, N 16.59; found: C 70.98, H 4.66, N 16.43. ¹H NMR (300 MHz, CDCl₃, *δ*): 7.78 – 7.69 (m, 2H, Ar-H), 7.61 (s, 1H, Ar-H), 7.39–7.22 (m, 5H, Ar-H), 7.16–7.07 (m, 2H, Ar-H), 5.43 (s, 2H, PhC*H*₂N).

1-benzyl-4-(4-(tert-butyl)phenyl)-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₉H₂₁N₃: C 78.32, H 7.26, N 14.42; found: C 78.25, H 7.22, N 14.37. ¹H NMR (300 MHz, CDCl₃, δ): 7.71 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.63 (m, 1H, Ar-H), 7.40 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.34–7.28 (m, 4H, Ar-H), 5.52 (s, 2H, PhCH₂N), 1.35 (s, 9H, CH₃).

4-(1-benzyl-1*H*-1,2,3-triazol-4-yl)aniline: Elemental analysis calcd (%) for C₁₅H₁₄N₄: C 71.98, H 5.64, N 22.38; found: C 72.09, H 5.57, N 22.52. ¹H NMR (300 MHz, CDCl₃, *δ*): 7.63–7.55 (m, 3H, Ar-H), 7.39–7.25 (m, 5H, Ar-H), 6.81–6.74 (m, 2H, Ar-H), 5.58 (s, 2H, PhC*H*₂N), 3.67 (br s, 2H, N*H*₂).

1-(4-nitrobenzyl)-4-phenyl-1*H*-1,2,3-triazole: Elemental analysis calcd (%) for C₁₅H₁₂N₄O₂: C 64.28, H 4.32, N 19.99; found: C 64.16, H 4.28, N 20.05. ¹H NMR (400 MHz, DMSO- d_6 , δ): 8.70 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.34 (m, 1H), 5.85 (s, 2H).

1-(3-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole: Elemental analysis calcd (%) for C₁₅H₁₂N₄O₂: C 64.28, H 4.32, N 19.99; found: C 64.34, H 4.26, N 20.09. ¹H NMR (400 MHz, DMSO- d_6 , δ): 8.70 (s, 1H), 8.27 (s, 1H), 8.21 (d, J = 8 Hz, 1H), 7.79-7.86 (m, 3H), 7.69 (t, J = 8 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.32 (m, 1H), 5.84 (s, 2H).

1-(2-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole: Elemental analysis calcd (%) for C₁₅H₁₂N₄O₂: C 64.28, H 4.32, N 19.99; found: C 64.21, H 4.38, N 20.15. ¹H NMR (400 MHz, DMSO- d_6 , δ): 8.62 (s, 1H), 8.17 (d, J = 8 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.77 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.34 (m, 1H), 7.15 (d, J = 7.6 Hz, 1H), 6.02 (s, 2H).

Page 62 of 63

1-(2-bromobenzyl)-4-phenyl-1H-1,2,3-triazole: Elemental analysis calcd (%) for C₁₅H₁₂BrN₃: C 57.34, H 3.85, N 13.37; found: C 57.15, H 3.66, N 13.19. ¹H NMR (400 MHz, DMSO- d_6 , δ): 8.61 (s, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.70 (d, J = 8 Hz, 1H), 7.46-7.33 (m, 5H), 7.22 (d, J = 7.6 Hz, 1H), 5.73 (s, 2H).