Dinuclear Cobalt Complexes with Redox Active Biphenyl Bridging Ligand $[Co_2(BP)(tqa)_2](PF_6)_2$ (H₄BP = 4,4'-*bis*(3-*tert*-butyl-1,2-catechol), tqa = *tris*(2-quinolylmethyl)amine): Structure and Magnetic Properties

Yusaku Suenaga,*¹ Takuto Mibu,¹ Takashi Okubo,^{1,2} Masahiko Maekawa², Takayoshi Kuroda-Sowa¹, Kunihisa Sugimoto³

¹Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan, E-mail: <u>suenagay@chem.kindai.ac.jp</u>

²Research Institute of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
 ³Diffraction & Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan

³Institute for Integrated Cell-Material Sciences (iCeMS) Institute for Advance Study (KUIAS), Kyoto University

Experimental

Synthesis H₄BP:

Scheme S1 Synthesis of H₄BP

Synthesis of 4,4'-bis(3-tert-butyl-1,2-catechol) (H₄BP)

*Bis*catechol (H₄BP) was synthesized according to Scheme S1. Toluene (40 mL) solution of *tetrakis*(triphenylphosphine)palladium(0) (1 mol%, 58.69 mg) and compound 5^1 (1.693 g, 5.08 mmol) was added to the water/ethanol (10/40 mL)

solution of sodium carbonate (21.0 mmol, 2.226 g) and compound **6** (1.281 g, 4.29 mmol) under an Ar atmosphere. The resultant solution was stirred and refluxed at 110°C overnight. The reaction mixture was cooled to room temperature and filtered. The obtained solution was extracted by toluene (50 mL×3) and washed by brine solution (100 mL×1). The obtained organic layer was dried over with sodium sulfate and concentrated under vacuum. The resultant crude product was purified by column chromatography (silica gel: 250 mL, hexane: ethyl acetate = $10:1 \rightarrow 3:1$) and compound **7** was obtained as orange oil (1.444 g, 2.85 mmol, yields 68%).

Compound 7 (1.444 g, 2.85 mmol) was dissolved in methanol (30 mL) in a 100 mL flask. Conc. HCl (2 mL) was added and stirred for 3 hours at room temperature. After that, saturated NaHCO₃ aq. (50 mL) was added. This solution was extracted with diethyl ether (50 mL). This obtained water phase was neutralized used 1M-HCl and extracted with diethyl ether 50 mL and combined former obtained organic phase. The combined organic phase was washed with brine solution (100 mL) and dried over with Na₂SO₄ and concentrated under reduced pressure. Obtained brown powder washed with hexane (100 mL), so H₄BP was obtained as pale brown powder without further purification (0.641 g, 1.96 mmol, yields 69%). ¹H-NMR (400 MHz, CD₃OD, ppm, Figure S1) 1.41(s, 9H), 6.82(d, 1H), 6.84(d, 1H).

(Reference)

1. Y. Suenaga, Y. Umehata, Y. Hirano, T. Minematsu, C. G. Pierpont, *Inorg. Chim. Acta*, 2008, **361**, 2941-2949.

Figure S1. ¹H-NMR spectrum in CD₃OD of H₄BP

ESI-MS of [Co₂(BP)(tpa)₂](PF₆)₂(1):

ESI-MS of [Co₂(BP)(tpa)₂](PF₆)₃ (**2**):

Figure S3. ESI-MS spectrum of [Co₂(BP)(tpa)₂](PF₆)₃(**2**)

ESI-MS of [Co₂(BP)(bpqa)₂](PF₆)₂ (**3**):

ESI-MS of $[Co_2(BP)(pbqa)_2](PF_6)_2(4)$:

Figure S5. ESI-MS spectrum of [Co₂(BP)(pbqa)₂](PF₆)₂(4)

ESI-MS of [Co₂(BP)(tqa)₂](PF₆)₂(**5**):

Figure S6. ESI-MS spectrum of $[Co_2(BP)(tqa)_2](PF_6)_2(5)$

IR spectra

Figure S7. IR spectra of dinuclear Co comolexes.

UV-Vis-NIR spectra

Figure S8. UV-Vis-NIR spectra of dinuclear Co complexes. blue line: $[Co_2(BP)(tpa)_2](PF_6)_2(1)$, yellow line: $[Co_2(BP)(tpa)_2](PF_6)_3(2)$ in acetonitrile solution at room temperature.

EPR spectrum for complex (2)

Figure S9. EPR spectrum of $[Co_2(BP)(tpa)_2](PF_6)_3$ (2) at room temperature.

IVCT parameters

Table S1.	Mixed-v	alence and	IVCT paran	neters for con	mplex (2)		
$\Delta diox$	H _{AB1}	H _{AB2}	H _{AB3} limit	$2H_{\rm AB1}/v_{\rm max}$	$2H_{\rm AB2}/v_{\rm max}$	Г	MV Class
mV	cm ⁻¹	cm ⁻¹	cm ⁻¹				
377	1218	362	3645	0.33	0.10	0.47	II-III
175	184	1990	2820	0.07	0.71	-0.85	II-III
365	1530	3290	3710	>0.41	0.89	0.52	II-III
G. K. Gr	ansbury, et	t al., J. Am. C	Chem. Soc., 202	0, 142 ,			
	Δdiox mV 377 175 365 G. K. Gr	Table S1. Mixed-v $\Delta diox$ H_{AB1} mV cm ⁻¹ 377 1218 175 184 365 1530 G. K. Gransbury, et	Table S1. Mixed-valence and $\Delta diox$ H_{AB1} H_{AB2} mV cm ⁻¹ cm ⁻¹ 377 1218 362 175 184 1990 365 1530 3290 G. K. Gransbury, et al., J. Am. C	Table S1. Mixed-valence and IVCT paran $\Delta diox$ H_{AB1} H_{AB2} H_{AB3} limit mV cm ⁻¹ cm ⁻¹ 377 1218 362 3645 175 184 1990 2820 365 1530 3290 3710 G. K. Gransbury, et al., J. Am. Chem. Soc., 2021 362 362	Table S1. Mixed-valence and IVCT parameters for contrast of the second	Table S1. Mixed-valence and IVCT parameters for complex (2) $\Delta diox$ H_{AB1} H_{AB2} H_{AB3} limit $2H_{AB1}/v_{max}$ $2H_{AB2}/v_{max}$ mV cm ⁻¹ cm ⁻¹ cm ⁻¹ cm ⁻¹ cm ⁻¹ cm ⁻¹ 377 1218 362 3645 0.33 0.10 175 184 1990 2820 0.07 0.71 365 1530 3290 3710 >0.41 0.89 G. K. Gransbury, et al., J. Am. Chem. Soc., 2020, 142, 142, 142,	Table S1. Mixed-valence and IVCT parameters for complex (2) $\Delta diox$ H_{AB1} H_{AB2} H_{AB3} limit $2H_{AB1}/\nu_{max}$ $2H_{AB2}/\nu_{max}$ Γ mV cm ⁻¹ cm ⁻¹ cm ⁻¹ 377 1218 362 3645 0.33 0.10 0.47 175 184 1990 2820 0.07 0.71 -0.85 365 1530 3290 3710 >0.41 0.89 0.52 G. K. Gransbury, et al., J. Am. Chem. Soc., 2020, 142,

**) A. L. Poddel'sky, et al., Russ. J. Coord. Chem., 2012, 38, 284-294.

Analysis of verious temperatute in UV-Vis-NIR spectra

The thermal variation of the fraction of $hsCo^{II}(Sq)$ species determined by spectral deconvolution appears to sigmoidal profile (Figure S10).

Figure S10. Temperature dependence of the molar fraction of hsCo^{II}-Sq for [Co₂(BP)(bpqa)₂](PF₆)₂ (3).

Cyclic voltammetry

Figure S11. Cyclic voltammogram of complex(1) and (2) in acetonitrile solution at room temperature.

Complex	Rest		(mV)		
	potential	I/I'	II/II'	III'	IV'
	/V				
(1)	-0.25	-0.194 (73)	0.169 (54)	~-0.8	~-1.3
(2)	0.108	-0.203 (68)	0.174 (85)	_	_

Table S2. Cyclic voltammetry for dinuclear Co complexes in CH₃CN

Figure S12. Cyclic voltammerty of these complexes in acetonitrile at room temperature.

Crystallography

	$[Co_2(BP)(tqa)_2](PF_6)_2(5)$	$[Co_2(BP)(pbqa)_2](PF_6)_2(4)$
Chemical formula	$C_{80}H_{70}Co_2N_8O_4F_{12}P_2$ ·	$C_{72}H_{66}Co_2N_8O_4F_{12}P_2$ ·
	3(C ₃ H ₆ O)	$2(C_{3}H_{6}O)$
Formula weight	1963.70	1863.59
Crystal system	monoclinic	monoclinic
Space group	P 21/m	P 21/m
Lattice Parameters		
$a/ m \AA$	9.2480(3)	9.1110(4)
b/Å	41.0134(12)	41.1206(10)
$c/{ m \AA}$	12.2659(5)	12.1350(3)
$\beta^{\prime \circ}$	103.376(4)	102.590(3)
Unit Cell Volume		
$V/\text{\AA}^3$	4526.2(3)	4437.1(3)
Ζ	2	2
μ (Mo-K α)/cm ⁻¹	0.71073	0.71073
No. reflections measured	10397	10309
No. observed reflections	6921	8386
$[I > 2\sigma(I)]$		
RI	0.0636	0.1069
WR2	0.1717	0.2344
T/K	100	100
GOF	1.009	1.128
Max/Min residual electron densities	0.562/-0.529	0.709/-0.428
Measurement	Rigaku XtaLAB P200	Rigaku XtaLAB P200
Programs systems	SHELXL 2018	SHELXL 2018
Structure determination	Olex 2	Olex 2
CCDC deposition number	2067474	2067516

Table S3. Crystallographic data for $[Co_2(BP)(tqa)_2](PF_6)_2$ (5) and $[Co_2(BP)(pbqa)_2](PF_6)_2$ (4)

 $R=\Sigma||Fo|-|Fc||/\Sigma|Fo|, Rw=[\Sigma\omega(Fo^2-Fc^2)^{2}/\Sigma\omega(Fo^2)^2]^{1/2}$

Bond	Distances (Å)	Bond	Distances (Å)
Co1-O1	2.145(3)	Co1-O2	1.973(3)
Co1-N1	2.141(4)	Co1-N2	2.166(5)
Co1-N3	2.164(5)	Co1-N4	2.139(3)
C1-O2	1.300(6)	C6-O1	1.256(5)
C1-C2	1.380(6)	C2-C3	1.400(6)
C3-C4	1.436(6)	C4-C5	1.359(6)
C5-C6	1.446(6)	C6-C1	1.467(6)
Bond	Angles (°)	Bond	Angles (°)
O1-Co1-O2	79.3(1)	O2-Co1-N4	104.5 (1)
N4-Co1-N1	82.8(1)	N1-Co1-O1	93.3(1)
N2-Co1-N3	156.1(2)		

Table S4. Selected distances (Å) and angles ($^{\circ}$) for [Co₂(BP)(pbqa)₂](PF₆)₂ (4)

Figure S13. Perspective view of the complex cation in $[Co_2(BP)(pbqa)_2](PF_6)_2$ (4) showing 50% thermal ellipsoids. Hydrogen atoms and the PF₆ anions are omitted for the sake of clarity. Right: drawing the disorder axal quinoline rings (C12~C15 and C32~C35) due to structual rearrengement of complex.

Figure S14. Crystal structure of $[Co_2(BP)(pbqa)_2](PF_6)_2$ (4). Hydrogen atoms and the PF₆ anions are omitted for the sake of clarity. (a) top view (b) side view.

Figure S15. Compared of $[Co_2(BP)(tqa)_2](PF_6)_2$ (5) (left) and $[Co_2(BP)(pbqa)_2](PF_6)_2$ (4) (right).

Figure S16. Crystal packing structure of $[Co_2(BP)(tqa)_2](PF_6)_2$ (5). The upper and lower bent di-nuclear cobalt complexes's structure layers are alternative arranged, and acetone and PF_6^- counter anions are pretend between the layers.

Metrical oxidation state (MOS) calculation

For complex (4), dioxolene C-C and C-O bond lengths are correlated to the ligand oxidation state, such that a least-squares fit enables assignment of an apparent metrical oxidation state (MOS, Brown). Catecholate ligands have a MOS of around -0.947 and are characterized as having shorter C-O bonds and longer C-C bonds. Complex (4) is assigned Co^{II}-[Sq-Sq]-Co^{II} in the solid state. To determine the Co oxidation state, we used the Co-O, Co-N_{amine}, and Co-N_{qn} bond lengths and octahedral distortion parameter. The calculated Σ

$$\sum |90 - \alpha_i|$$

index (98.3, $\Sigma = i = 1$ where α_i are the 12 *cis*-O/N-Co-O/N angles about the cobalt atom.) represents the distortion of a coordination environment from an ideal polyhedron. Co(II) has long metal-ligand bonds and distorted octahedral geometries compared to Co(III).

Table S5.	MOS va	lues for	complex	(4)
-----------	--------	----------	---------	-----

			insouch	ions for Lis	of the Meth	car Usidation s	cate Carba	ator:									
C4		M	Enter th The two Then an and use in colum	e measure C-O distan ter a guess Solver to n te I, and its	d bond dista ices are ave i for the osis ninimize the ord in colur	inces in the app raged in cell C, t fation state of t value in colum mn Q.	napriate co the C2-C3 o the ligand in n O by war	olumns C-G a and C3-C5 d nto column i ying the valu	according to the m latances are avera I. Copy the formu- ve in column I. The	ambering scheme ped in cell E, and t as from line 12, o metrical calidatic	at left. he CB-C4 and C5 slumns J-Q, in state will be	-CE distances an	aweraged in ce	IF.			
Compound	Wetal	C-O average	c1-c2	a	-Cl ang	C3-C4 avg	c4-c5		Calc. MOS	Calc C-D	Cale C1-C2	Cale 12-13	Calle C3+C4	Calk C4-C5	sum of up	mud	esd
BEFRUF	Call	1.2	78	1.467	1.41	a 1.37	25	1.436	-0.9465	M9 1.282092	3 1.4627244	1 1.42736454	1.3674292	1.4110142	0.0004040	0.00896897	0.08586416
pbqa	C1-0	1															
	0-01	11	18 14														
	C4-C5	1.4	16														
	CS-C6	1.3	59														
	C1-C2	1.4	67														
	CL-05	5.44	48.														

Table S6. MOS values for complex (5)

C5 (C4	C6 C1 C2 C3	M	Instruction Enter the r The two C- Then enter and use So in column (a for using th neasured bor O distances a r a guess for t iver to minim I, and its end	e Metri el dista re sier he cxid los the in colur	cal Ouidation St nces in the appr aged in cell C, t ation state of th value in column m Q.	ropriate o he C2-C3 he Igand h O by var	dator: solumns C-G a and C1-C5 di into column I rying the valu	according to the nur stances are averages . Copy the formulas te in column I. The n	ibering scherne : d in cell E, and th from line 12, co retrical oxidation	et left. er CI-CI and CS lumms J-Q, natate will be	-C6 distances an	e averaged in ce	UF.			
Compound	Metal	C-D average	CI-C2	G2-G3 #	HE .	C3-C4 avg	C4-C5		Calc. MDS	Calc C-O	Calc C3-C2	Calc C2-C3	Calc C3-C4	Calz C4-E5	sum of sqs	ernad o	nd
MERKUF	Coll	1.26		1.491	1.41	1 1.365	a	1.437	-0.7799543	1.27052882	1.4749021	3 1.433179	5 1.3636219	5 1.43963213	0.0011533	0.01518754	0.14100985
1q.a	0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0	1.39 1.34 1.37 1.4 1.43 1.35 1.49 1.45	a 5 2 7 1 1 4														
	1.10	145		3 -													

Figure S17. Magnetic susceptibility of $[Co_2(BP)(bpqa)_2](PF_6)_2$ (3). Repeated data for heating and cooling for samples.