Supplementary Files

Insights into the Structural Variations in SmNb_{1-x}Ta_xO₄ and HoNb_{1-x}Ta_xO₄ a combined Experimental and Computational Studies

Bryce Mullens¹, Maxim Avdeev^{1,2}, Helen E. A. Brand³, S. Mondal⁴, G. Vaitheeswaran^{5*} and Brendan J. Kennedy^{1*}

1. School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia

2. Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia

3. Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

4. Advanced Centre of Research in High Energy Materials (ACRHEM), University of

Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana, India.

5. School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli,

Hyderabad 500 046, Telangana, India.

* corresponding Authors: G. Vaitheeswaran (<u>vaithee@uohyd.ac.in</u>) and Brendan J. Kennedy (<u>Brendan.Kennedy@Sydney.edu.au</u>)

Figure S1. Composition dependence of the unit cell volume for the two series $LnNb_{1-x}Ta_xO_4$. The values for Ln = Sm are from refinements against S-XRD data and those from Ln = Ho from PND data. The closed symbols are from refinements in I2/a and the open symbols are the values for the structure refined in P2/c multiplied by 2.

Figure S2. Examples of the Rietveld refinements for $SmTaO_4$ and $SmNbO_4$. The data are represented by the black spheres, the red line is the calculated profile and the lower blue line the difference between the observed and calculated profiles. The short vertical markers show the positions of the space group allowed Bragg reflections. The insets highlight the fits to the regions illustrated in Figure 1.

Table S1. Refined Structural parameters for SmNbO₄:

Space group *I*2/*a*

 $a = 5.420642(6), b = 11.175430(14), c = 5.119937(6) Å, \beta = 94.67780(10)^{0},$

Cell volume = 309.1225(6) Å³

Name	x	У	Z	Ui*100 Å ²
Sm1	1/4	0.12078(4)	0	0.284(6)
Nb1	1/4	0.64619(4)	0	1.219(14)
01	0.0076(4)	0.71551(20)	0.2029(5)	1.21(6)
02	0.9039(4)	0.45567(20)	0.2463(4)	0.91(5)

Atomic positions in SmNbO₄ obtained from theoretical calculations:

	PBE	PBEsol	
Sm1	(1/4 0.1220 0.0)	(1/4 0.1204 0.0)	
Nb1	(1/4 0.6414 0.0)	(1/4 0.6466 0.0)	
01	(0.0025 0.7168 0.1957)	(0.0067 0.7190 0.2114)	
02	(0.9060 0.4586 0.2477)	(0.9053 0.4597 0.2458)	

 Table S2. Refined Structural parameters for SmTaO₄:

Space group *I*2/*a*

 $a = 5.458786(9) b = 11.141779(17) c = 5.093315(9) Å, \beta = 95.75670(10)^{0}$

Name	x	У	Ζ	Ui*100 Å ²
Sm1	1/4	0.11816(4)	0	0.231(8)
Ta1	1/4	0.650607(24)	0	0.171(7)
01	0.0168(6)	0.71626(24)	0.2161(7)	0.54(7)
02	0.9011(6)	0.45393(25)	0.2411(7)	0.75(8)

Cell volume = 308.2161(9) Å³

Atomic positions in SmTaO₄ obtained from theoretical calculations:

	PBE	PBEsol
Sm1	(1/4 0.1183 0.0)	(1/4 0.1177 0.0)
Ta1	(1/4 0.6504 0.0)	(1/4 0.6517 0.0)
01	(0.0105 0.7184 0.2167)	(0.0118 0.7195 0.2218)
O2	(0.9022 0.4570 0.2435)	(0.9027 0.4587 0.2435)

 Table S3. Refined Structural parameters for HoNbO4:

Space group I2/a

a = 5.30221(8), b = 10.95710(20), c = 5.07411(9) Å, $\beta = 94.5622(13)^{0}$

Cell volume = $293.856(9) \text{ Å}^3$

Name	x	У	Ζ	Ui*100 Å ²
Ho1	1/4	0.12099(12)	0	0.042(24)
Nb1	1/4	0.64372(13)	0	0.314(35)
01	0.00398(26)	0.71807(11)	0.20964(25)	0.533(25)
O2	0.90787(26)	0.46015(12)	0.24747(25)	0.623(26)

Atomic positions in HoNbO₄ obtained from theoretical calculations:

	PBE	PBEsol
Ho1	(1/4 0.1218 0.0)	(1/4 0.1211 0.0)
Nb1	(1/4 0.6417 0.0)	(1/4 0.6431 0.0)
01	(0.9990 0.7176 0.2051)	(0.0010 0.7193 0.2120)
02	(0.9111 0.4608 0.2521)	(0.9130 0.4630 0.2512)

Table S4a. Refined Structural parameters for *P2/c* phase of HoTaO₄:

Space Group *P2/c*

a = 5.11450(15), b = 5.45546(16), c = 5.30199(13) Å, $\beta = 96.4704(21)^{0}$

Cell volume = $146.994(7) \text{ Å}^3$

Atom	x	У	Z	Ui*100 Å ²
Ho1	1/2	0.73345(32)	1/4	-0.10(4)
Ta1	0	0.1945(4)	1/4	0.78(6)
01	0.2491(4)	0.4171(4)	0.3987(4)	0.72(4)
02	0.2316(4)	0.0617(4)	0.0041(4)	0.74(4)

Atomic positions in P2/c phase of HoTaO₄ obtained from theoretical calculations:

	PBE	PBEsol
Ho1	$(\frac{1}{2} 0.7328 \frac{1}{4})$	(1/2 0.7349 1/4)
Tal	(0.0 0.1943 ¼)	(0.0 0.1964 1/4)
01	(0.2510 0.4161 0.4008)	(0.2509 0.4223 0.4027)
02	(0.2326 0.0640 0.0051)	(0.2349 0.0597 0.0097)

Table S4b. Refined Structural parameters for *I2/a* phase of HoTaO₄:

Space Group *I*2/*a*

$$a = 5.33007(6), b = 10.93577(16), c = 5.05479(8)$$
 Å, $\beta = 95.5415(11)$ ^o

Cell volume = $293.259(7) Å^3$

Atom	x	У	Z	Ui*100 Å ²
Ho1	1/4	0.11879(12	0	-0.02(2)
Ta1	1/4	0.64805(12)	0	0.21(3)
01	0.0077(3)	0.71852(10)	0.2205(3)	0.51(3)
02	0.9078(2)	0.46072(13)	0.2463(3)	0.52(3)

Atomic positions in I2/a phase of HoTaO₄ obtained from theoretical calculations:

	PBE	PBEsol
Ho1	(1/4 0.1184 0.0)	(1/4 0.1180 0.0)
Ta1	(1/4 0.6483 0.0)	(1/4 0.6490 0.0)
01	(0.0052 0.7185 0.2200)	(0.0060 0.7198 0.2239)
02	(0.9081 0.4598 0.2487)	(0.9085 0.4619 0.2488)

(a)

(b)

(c)

Figure S3. Electron charge density plot of $SmTaO_4$ in 100 (a), 001 (b) and 010 (c) planes.

Figure S4. Electron charge density plot of HoNbO₄ in 100 (a), 001 (b) and 010 (c) planes.

Figure S5. Electron charge density plot of P2/c phase of HoTaO₄ in 100 (a), 001 (b) and 010 (c) planes.

	Z ₁₁	Z ₁₂	Z ₁₃	Z ₂₁	Z ₂₂	Z ₂₃	Z ₃₁	Z ₃₂	Z ₃₃
	SmNbO ₄								
Sm	4.81	0.00	0.36	0.00	4.04	0.00	-0.19	0.00	4.41
Nb	4.54	0.00	-0.23	0.00	5.32	0.00	0.34	0.00	6.67
01	-2.70	0.39	0.83	0.43	-2.11	-0.46	0.86	-0.56	-2.67
02	-1.98	0.34	-0.89	0.26	-2.57	1.16	-0.94	1.12	-2.87
	SmTaO ₄								
Sm	4.74	0.00	0.33	0.00	3.99	0.00	-0.06	0.00	4.19
Та	4.38	0.00	-0.03	0.00	5.42	0.00	0.39	0.00	6.82
01	-2.58	0.26	0.68	0.21	-2.09	-0.47	0.71	-0.56	-2.70
02	-1.98	0.27	-0.83	0.20	-2.61	1.11	-0.87	1.11	-2.80
	HoNbO ₄								
Но	4.68	0.00	0.35	0.00	3.94	0.00	-0.22	0.00	4.40
Nb	4.66	0.00	-0.25	0.00	5.39	0.00	0.36	0.00	6.58
01	-2.65	0.38	0.80	0.44	-2.14	-0.47	0.83	-0.59	-2.64
02	-2.02	0.37	-0.85	0.28	-2.53	1.10	-0.90	1.00	-2.86
	HoTaO ₄ (<i>l</i>	<i>12/a</i> #15)							
Но	4.62	0.00	0.30	0.00	3.89	0.00	-0.07	0.00	4.19
Та	4.43	0.00	-0.06	0.00	5.30	0.00	0.36	0.00	6.64
01	-2.55	0.26	0.69	0.24	-2.08	-0.45	0.72	-0.57	-2.65
02	-1.97	0.30	-0.81	0.24	-2.52	1.05	-0.86	0.98	-2.77
-	HoTaO ₄ (<i>P2/c</i> #13)								
Но	4.72	0.00	0.15	0.00	3.88	0.00	0.17	0.00	4.13
Та	5.49	0.00	0.38	0.00	5.48	0.00	0.47	0.00	5.40
01	-2.58	-1.07	-0.85	-1.15	-2.59	-0.31	-0.93	-0.28	-2.16
02	-2.53	0.05	0.58	-0.03	-2.10	-0.51	0.61	-0.51	-2.60

 Table S5. Calculated Born effective charge (BEC) of the studied materials.

Table S6. Calculated Theoretical IR frequencies (cm⁻¹) of both phases of HoTaO₄.

	P2/c (#13)			I2/a (#15)		
Mode	Assignment	IR Frequency		Assignment	t IR Frequency	
		Calc			Calc	
1	B _u	121.56194		A _u	125.17394	
2	A _u	126.98389		B _u	150.48888	
3	B _u	147.06390		B _u	156.95743	
4	B _u	195.36492		B _u	163.10587	
5	B _u	250.17932		B _u	182.86437	
6	A _u	261.49906		A _u	249.35075	
7	B _u	293.03075		A _u	278.86244	
8	A _u	305.56532		B _u	323.48339	
9	A _u	366.78297		B _u	375.90099	
10	B _u	395.72693		A _u	419.14108	

11	B_{u}	513.69592	A_u	526.76985	
12	A _u	523.38975	B_{u}	529.39155	
13	A _u	596.08742	A _u	622.71795	
14	B_u	638.07138	B_{u}	644.51443	
15	Au	769.40085	A _u	774.41647	

Table S7. Calculated and experimentally obtained atomic positions of SmNbO4, SmTaO4,HoNbO4 and P2/c and I2/a phases of HoTaO4:

SmNbO₄:

	Expt.	PBE	PBEsol
Sm	(0.25 0.12078 0.00)	(0.25 0.12199 0.00)	(0.25 0.12041 0.00)
Nb	(0.25 0.64619 0.00)	(0.25 0.64136 0.00)	(0.25 0.6466 0.00)
01	(0.00760 0.71551 0.20290)	(0.00251 0.71679 0.19574)	(0.00665 0.71901 0.21137)
02	(0.90390 0.45567 0.24630)	(0.90600 0.45862 0.24770)	(0.90531 0.45972 0.24575)

SmTaO₄:

	Expt.	PBE	PBEsol
Sm	(0.25 0.11816 0.00)	(0.25 0.11832 0.00)	(0.25 0.11767 0.00)
Та	(0.25 0.65061 0.00)	(0.25 0.65043 0.00)	(0.25 0.65165 0.00)
01	(0.01680 0.71626 0.21610)	(0.01046 0.71842 0.21665)	(0.0118 0.71952 0.2218)
02	(0.90110 0.45393 0.24110)	(0.90216 0.45701 0.24348)	(0.90265 0.45868 0.24347)

HoNbO₄:

	Expt.	PBE	PBEsol
Но	(0.25 0.12099 0.00)	(0.25 0.12184 0.00)	(0.25 0.12117 0.00)
Nb	(0.25 0.64372 0.00)	(0.25 0.64177 0.00)	(0.25 0.6431 0.00)
01	(0.00398 0.71807 0.20964)	(0.99897 0.71762 0.20505)	(0.00096 0.7193 0.21201)
02	(0.90787 0.46015 0.24747)	(0.91111 0.46078 0.25212)	(0.91298 0.46301 0.25119)

HoTaO₄ (P2/c):

	Expt.	PBE	PBEsol
Но	(0.50 0.73345 0.25)	(0.50 0.73282 0.25)	(0.50 0.73487 0.25)
Та	(0.00 0.19450 0.25)	(0.00 0.19426 0.25)	(0.00 0.19644 0.25)
01	(0.2491 0.4171 0.3987)	(0.25101 0.41611 0.40080)	(0.2509 0.4223 0.40273)
02	(0.2316 0.0617 0.0041)	(0.23255 0.06397 0.00513)	(0.23487 0.05969 0.0097)

HoTaO₄(I2/a):

	Expt.	PBE	PBEsol
Но	(0.25 0.11879 0.00)	(0.25 0.11841 0.00)	(0.25 0.11803 0.00)
Та	(0.25 0.64805 0.00)	(0.25 0.64831 0.00)	(0.25 0.64899 0.00)
01	(0.0077 0.71852 0.2205)	(0.0052 0.71848 0.21996)	(0.00598 0.71975 0.22393)
02	(0.9078 0.46072 0.24072)	(0.9081 0.45984 0.24871)	(0.90851 0.46191 0.2488)