## Supporting Information

## The anionic oxoborane and thioxoborane molecules supported by

# a 1,2-bis(imino)acenaphthene ligand

Rui Liu,<sup>+</sup> Fangfang Gao,<sup>+</sup> Jingjing Liu, Jing Wei, Lei Hou, Gang Xie, Sanping Chen, Fanlong Zeng, Anyang Li,\* and Wenyuan Wang\*

A. General remarks (2)

**B.** Chemical equations (3)

C. Experimental sections (3)

D. Crystal and structure refinement data for compounds 1, 3 and 4 (6)

**E. NMR spectra of 1, 3 and 4 (19)** 

F. UV-Vis and IR spectra of 3 and 4 (23)

G. Computational details (28)

H. References (28)

#### A. General remarks

All manipulations were carried out under inert atmosphere (N<sub>2</sub>) using standard Schlenk techniques. Glass wares were heat-dried and cooled down under vacuum prior to use. Hexane was deoxygenated and then refluxed over NaH, another solvents were refluxed over sodium/benzophenone, distilled and deoxidized prior to use. CS<sub>2</sub> was dried by P<sub>2</sub>O<sub>5</sub>. The solid reactants were weighed in the glove box, and liquid reagents were added with syringe or drip funnel under inert atmosphere. BBr<sub>3</sub> and Na were purchased from Arcos.  $KC_8^1$ , Dip-BIAN<sup>2</sup> and NHC<sup>3</sup> were synthesized according to the literature procedures. The solution <sup>1</sup>H, <sup>13</sup>C {<sup>1</sup>H} and <sup>11</sup>B {<sup>1</sup>H} NMR spectra were recorded on Bruker AVANCE IIIIII 400 and ECZ 400R. Chemical shift of the deuterated solvents in <sup>1</sup>H NMR data: C<sub>6</sub>D<sub>6</sub>, 7.16 ppm; CDCl<sub>3</sub>, 7.26 ppm. <sup>13</sup>C {<sup>1</sup>H} NMR: C<sub>6</sub>D<sub>6</sub>, 128.06 ppm; CDCl<sub>3</sub>, 77.16 ppm. Elemental analysis (C, H, N) was performed with 0.05 mL tin-capsules on a Perkin-Elmer 2400 CHN elemental analyze. The UV/visible spectrum was recorded on a SP-756P spectrometer. IR spectra were recorded in KBr pellets on a Bruker TENSOR27 spectrometer and the flaky sample was prepared in the glove box.

The single-crystal X-ray diffractions were performed on Agilent Technologies SuperNova Single Crystal Diffractometer (compound 1) and Bruker D8 Quest detector (compound 3) at 150 K with a Mo-K $\alpha$  X-ray source ( $\lambda = 0.71073$  Å). Compound 4 was measured on a Bruker D8 VENTURE PHOTON II detector at 150 K with a Ga-target Liquid X-ray source ( $\lambda = 1.34139$  Å). All structures were solved by direct methods and refined by full matrix least squares on  $F^2$  with the SHELXL-2014 or Olex2 program. All thermal displacement parameters were refined anisotropically for non-hydrogen atoms and isotropically for H atoms. The graphical representation of the molecular structures was carried out using Ortep3. Crystal data, details of data collections and refinement can be showed in Table S1-S3.

### **B.** Chemical equations



Scheme S1 Synthesis of compounds 1-4. NHC = :C(<sup>*t*</sup>Bu-NCH)<sub>2</sub>.

### **C. Experimental Sections**

#### Synthesis of compound 1

To the solution of Dip-BIAN (612 mg, 1.22 mmol) in toluene (20 mL) at -40 °C were added BBr<sub>3</sub> (306 mg, 1.22 mmol) and sodium metal (28.1 mg, 1.22 mmol) under vigorous stirring, then the mixture was stirred at room temperature overnight. Hereafter, the mixture was stirred at 80 °C till the sodium dissolved completely. The solvent was removed under reduced pressure and the residue was extracted with hexane (20 mL), the precipitated NaBr

was filtered off. Compound 1 crystallized as red crystals (452 mg, 0.675 mmol, 54%) by cooling the solution at 0 °C for 3 days. The crystal was measured by the single-crystal X-ray diffraction analysis. Additionally, compound 2 has also been found as one of the side products in the observation of <sup>1</sup>H NMR of the hexane solution.

**M.p.** 288-290 °C. <sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ (ppm) = 1.09 (d, 12H,  ${}^{3}J_{HH} = 7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 1.35 (m, 12H,  ${}^{3}J_{HH} = 7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 3.43 (m, 4H,  ${}^{3}J_{HH} = 7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 6.30 (d, 1H,  ${}^{3}J_{HH} = 7$  Hz, *o*-*H*-acenaphthene), 6.57 (d, 1H,  ${}^{3}J_{HH} = 7$  Hz, *o*-*H*-acenaphthene), 6.73 (d, 1H,  ${}^{3}J_{HH} = 7$  Hz, *m*-*H*-acenaphthene), 6.90 (t, 1H,  ${}^{3}J_{HH} = 7$  Hz, *m*-*H*-acenaphthene), 7.24 (m, 4H,  ${}^{3}J_{HH} = 7$  Hz, *m*-*H*-Ar), 7.31 (m, 2H,  ${}^{3}J_{HH} = 7$  Hz, *p*-*H*-Ar), 7.57 (d, 1H,  ${}^{3}J_{HH} = 8$  Hz, *p*-*H*-acenaphthene). <sup>13</sup>C{<sup>1</sup>H} **NMR** (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ (ppm) = 24.0 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 24.2 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 29.2 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 119.0 (s, *p*-CH-acenaphthene), 124.2 (s, *m*-CH-Ar), 125.6 (s, *p*-CH-acenaphthene), 126.7 (s, *m*-CH-acenaphthene), 127.5 (s, *m*-CH-acenaphthene), 129.0 (s, *p*-CH-Ar), 130.2 (s, *o*-C-acenaphthene), 130.8 (s, *i*-C-acenaphthene), 134.4 (s, C<sub>2</sub>N<sub>2</sub>), 135.5 (s, *i*-C-Ar), 146.3 (s, *o*-C-Ar), 146.4 (s, *o*-C-Ar). <sup>11</sup>B{<sup>1</sup>H} **NMR** (128.3 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ (ppm) = 22 (s). Anal. Calcd for C<sub>36</sub>H<sub>39</sub>BBr<sub>2</sub>N<sub>2</sub>: C, 64.51; H, 5.86; N, 4.18. Found: C, 65.03; H, 5.90; N, 4.34%.

### Synthesis of compound 2

To the solution of Dip-BIAN (1.01 g, 2.01 mmol) in toluene (40 mL) was added KC<sub>8</sub> (761 mg, 5.63 mmol) under vigorous stirring. After stirring for 12 h, a solution of BBr<sub>3</sub> (604 mg, 2.41 mmol) in hexane was added to the flask at -40 °C and stirred at room temperature overnight. Removal of the solvent under reduced pressure afforded red solid. Toluene (20 mL) was added to the residue, and the resulting suspension was filtered. This operation was repeated for three times. Subsequently, the clear filtrate was concentrated. Compound **2** crystallized as red crystals (999 mg, 1.69 mmol, 84%) by cooling the solution at -20 °C for 2 days. All spectroscopic data matches those of the reported compound.<sup>4,5</sup>

#### Synthesis of compound 3

To the solution of **2** (600 mg, 1.01 mmol) in toluene (25 mL) was dropped a solution of water (18.2 mg, 1.01 mmol) and NHC (457 mg, 2.54 mmol) in toluene (15 mL) under vigorous stirring. After stirring for 12 h, the color of the reaction mixture changed from red to blue. Volatiles were removed under reduced pressure and the green solid crude was washed with hexane (20 mL). Toluene (40 mL) was added to the residue, the resulting suspension was filtered, and the clear filtrate was concentrated. The product **3** crystallized as blue crystals (459 mg, 0.648 mmol, 64%) by cooling the solution at -20 °C for 24 h.

**M.p.** >188 °C decomp. <sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ (ppm) = 1.04 (s, 18H, C(CH<sub>3</sub>)<sub>3</sub>), 1.37 (d, 12H,  ${}^{3}J_{HH} = 7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 1.51 (d, 12H,  ${}^{3}J_{HH} = 7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 4.16 (sept, 4H,  ${}^{3}J_{HH} = 7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 5.84 (s, 2H, NCH=CHN), 6.72 (d, 2H,  ${}^{3}J_{HH} = 7$  Hz, *o*-*H*-acenaphthene), 6.95 (t, 2H,  ${}^{3}J_{HH} = 8$  Hz, *m*-*H*-acenaphthene), 7.10 (d, 2H,  ${}^{3}J_{HH} = 8$  Hz, *p*-*H*-acenaphthene), 7.39 (m, 6H, *H*-Ar), 13.80 (s, 1H, N<sub>2</sub>CH).  ${}^{13}$ C{<sup>1</sup>H} **NMR** (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ (ppm) = 24.0 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 24.6 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 28.9 (s, C(CH<sub>3</sub>)<sub>3</sub>), 29.7 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 59.5 (s, C(CH<sub>3</sub>)<sub>3</sub>), 115.7 (s, NCHN), 116.3 (s, *p*-CH-acenaphthene), 127.3 (s, *p*-CH-Ar), 129.6 (s, *o*-C-acenaphthene), 131.6 (s, i-C-acenaphthene), 134.7 (s, C<sub>2</sub>N<sub>2</sub>), 142.5 (s, *i*-C-Ar), 147.8 (s, *o*-C-Ar).  ${}^{11}$ B{<sup>1</sup>H} **NMR** (128.3MHz, C<sub>6</sub>D<sub>6</sub>, 298K): δ = 21 (s). Anal. Calcd for C<sub>47</sub>H<sub>61</sub>BON<sub>4</sub>: C, 79.64; H, 8.67; N, 7.90. Found: C, 81.04; H, 8.77; N, 7.16%. There was a slight inaccuracy in the EA data, possibly due to the small amount of toluene in the sample.

#### Synthesis of compound 4

To the solution of **3** (559 mg, 0.789 mmol) in toluene (25 mL) was added anhydrous  $CS_2$  (900 mg, 11.8 mmol) under vigorous stirring. After stirring for 12 h, volatiles were removed under reduced pressure and the blue solid crude was washed with hexane (20 mL). Toluene (40 mL) was added to the residue, the resulting suspension was filtered, and

the clear filtrate was concentrated. The compound **4** crystallized as blue crystals by cooling the solution at -20 °C for 1 day, and the crystals were suitable for X-ray diffraction measurement. The supernate was further concentrated and crystallized at -20 °C, 422 mg **4** (0.582 mmol, 74%) as the combined yield.

**M.p.** >236 °C decomp. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, 298 K): δ (ppm) = 1.06 (d, 12H,  ${}^{3}J_{HH}$  = 7 Hz, CH(*CH*<sub>3</sub>)<sub>2</sub>), 1.29 (d, 12H,  ${}^{3}J_{HH}$  = 7 Hz, CH(*CH*<sub>3</sub>)<sub>2</sub>), 1.55 (s, 18H, C(*CH*<sub>3</sub>)<sub>3</sub>), 3.62 (sept, 4H,  ${}^{3}J_{HH}$  = 7 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 6.17 (d, 2H,  ${}^{3}J_{HH}$  = 7 Hz, NC*H*=C*H*N), 6.96 (t, 2H,  ${}^{3}J_{HH}$  = 8 Hz, *m*-*H*-acenaphthene), 7.14 (d, 2H,  ${}^{3}J_{HH}$  = 8 Hz, *p*-*H*-acenaphthene), 7.19 (d, 2H,  ${}^{3}J_{HH}$  = 7 Hz, *o*-*H*-acenaphthene), 7.22 (m, 6H, *H*-Ar), 7.24 (s, 1H, N<sub>2</sub>C*H*). <sup>13</sup>C{1H} **NMR** (100 MHz, CDCl<sub>3</sub>, 298 K): δ (ppm) = 23.8 (s, CH(*C*H<sub>3</sub>)<sub>2</sub>), 24.5 (s, CH(*C*H<sub>3</sub>)<sub>2</sub>), 28.6 (s, *C*H(CH<sub>3</sub>)<sub>2</sub>), 30.2 (s, CH(*C*H<sub>3</sub>)<sub>3</sub>), 60.9 (s, *C*(CH<sub>3</sub>)<sub>3</sub>), 116.4 (s, NCHN), 118.9 (s, *p*-CH-acenaphthene), 122.7 (s, imidazolium *C*H=*C*H), 123.3 (s, *m*-CH-Ar), 125.8 (s, *m*-CH-acenaphthene), 127.1 (s, *p*-CH-Ar), 129.1 (s, *o*-C-acenaphthene), 123.6 (s, *i*-C-acenaphthene), 133.8 (s, *C*<sub>2</sub>N<sub>2</sub>), 141.0 (s, *i*-C-Ar), 147.2 (s, *o*-C-Ar). <sup>11</sup>B{<sup>1</sup>H} **NMR** (128.3 MHz, CDCl<sub>3</sub>, 298 K): δ = 36 (s). Anal. Calcd for C<sub>47</sub>H<sub>61</sub>BSN<sub>4</sub>: C, 77.88; H, 8.48; N, 7.73. Found: C, 78.22; H, 8.41; N, 7.52%.

### D. Crystal and structure refinement data for compounds 1, 3 and 4

#### **Crystallographic data for compound 1**

| Identification code | Compound 1             |
|---------------------|------------------------|
| Empirical formula   | $C_{36}H_{39}BBr_2N_2$ |
| Formula weight      | 670.32                 |
| Temperature/K       | 293(2)                 |
| Crystal system      | monoclinic             |
| Space group         | $P2_1/n$               |
| a/Å                 | 14.0533(6)             |
| b/Å                 | 13.0296(9)             |
| c/Å                 | 18.3019(12)            |
| α/°                 | 90                     |
| β/°                 | 99.056(5)              |
|                     |                        |

| $\gamma/^{\circ}$                           | 90                                                                            |
|---------------------------------------------|-------------------------------------------------------------------------------|
| Volume/Å <sup>3</sup>                       | 3309.5(3)                                                                     |
| Ζ                                           | 4                                                                             |
| $\rho_{calc}g/cm^3$                         | 1.345                                                                         |
| µ/mm <sup>-1</sup>                          | 2.476                                                                         |
| F(000)                                      | 1376.0                                                                        |
| Crystal size/mm <sup>3</sup>                | $0.14 \times 0.13 \times 0.12$                                                |
| Radiation                                   | MoKα ( $\lambda$ = 0.71073)                                                   |
| $2\Theta$ range for data collection/°       | 5.872 to 50.052                                                               |
| Index ranges                                | $\text{-16} \le h \le 15,  \text{-15} \le k \le 10,  \text{-20} \le l \le 21$ |
| Reflections collected                       | 14690                                                                         |
| Independent reflections                     | 5818 [ $R_{int} = 0.1113$ , $R_{sigma} = 0.1900$ ]                            |
| Data/restraints/parameters                  | 5831/883/388                                                                  |
| Goodness-of-fit on F <sup>2</sup>           | 1.034                                                                         |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0923, wR_2 = 0.2072$                                                 |
| Final R indexes [all data]                  | $R_1 = 0.1955, wR_2 = 0.2646$                                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.54/-0.89                                                                    |

Table S1. Bond lengths [Å] and angles  $[\circ]$  for compound 1

| Br(1)-B(1)  | 1.904(11) | C(13)-N(2)-B(1)   | 129.6(7) |
|-------------|-----------|-------------------|----------|
| Br(2)-C(6)  | 1.908(10) | C(2)-N(2)-C(13)   | 124.0(7) |
| Br(2')-C(8) | 1.787(15) | C(2)-N(2)-B(1)    | 106.2(7) |
| N(2)-C(13)  | 1.443(10) | C(1)-N(1)-C(25)   | 121.6(6) |
| N(2)-C(2)   | 1.403(10) | C(1)-N(1)-B(1)    | 107.7(7) |
| N(2)-B(1)   | 1.437(13) | B(1)-N(1)-C(25)   | 130.5(8) |
| N(1)-C(25)  | 1.467(11) | C(30)-C(25)-N(1)  | 120.1(8) |
| N(1)-C(1)   | 1.383(10) | C(30)-C(25)-C(26) | 122.4(9) |
| N(1)-B(1)   | 1.410(11) | C(26)-C(25)-N(1)  | 117.5(8) |
| C(25)-C(30) | 1.389(12) | C(12)-C(11)-C(1)  | 105.0(7) |
| C(25)-C(26) | 1.428(11) | C(10)-C(11)-C(12) | 118.6(8) |
| C(11)-C(12) | 1.416(12) | C(10)-C(11)-C(1)  | 136.5(9) |
| C(11)-C(1)  | 1.462(11) | C(25)-C(30)-C(31) | 121.1(9) |
| C(11)-C(10) | 1.375(11) | C(29)-C(30)-C(25) | 117.5(9) |
| C(30)-C(29) | 1.374(13) | C(29)-C(30)-C(31) | 121.3(9) |
| C(30)-C(31) | 1.513(13) | C(11)-C(12)-C(3)  | 111.3(8) |
| C(12)-C(7)  | 1.364(12) | C(7)-C(12)-C(11)  | 125.0(9) |
| C(12)-C(3)  | 1.436(12) | C(7)-C(12)-C(3)   | 123.7(9) |
| C(1)-C(2)   | 1.359(11) | N(1)-C(1)-C(11)   | 141.2(8) |
| C(13)-C(14) | 1.402(12) | C(2)-C(1)-N(1)    | 109.7(7) |
| C(13)-C(18) | 1.383(17) | C(2)-C(1)-C(11)   | 109.1(8) |

| C(14)-C(22)       | 1.508(13) | C(14)-C(13)-N(2)  | 119.7(8)  |
|-------------------|-----------|-------------------|-----------|
| C(14)-C(15)       | 1.362(13) | C(18)-C(13)-N(2)  | 118.3(8)  |
| C(2)-C(3)         | 1.452(13) | C(18)-C(13)-C(14) | 122.0(9)  |
| C(29)-C(28)       | 1.402(13) | C(13)-C(14)-C(22) | 121.6(8)  |
| C(26)-C(34)       | 1.508(12) | C(15)-C(14)-C(13) | 117.1(9)  |
| C(26)-C(27)       | 1.402(12) | C(15)-C(14)-C(22) | 121.3(9)  |
| C(7)-C(6)         | 1.416(13) | N(2)-C(2)-C(3)    | 139.8(8)  |
| C(7)-C(8)         | 1.408(12) | C(1)-C(2)-N(2)    | 109.3(8)  |
| C(34)-C(35)       | 1.526(12) | C(1)-C(2)-C(3)    | 110.8(8)  |
| C(34)-C(36)       | 1.541(12) | C(30)-C(29)-C(28) | 122.6(10) |
| C(3)-C(4)         | 1.369(13) | C(25)-C(26)-C(34) | 121.8(8)  |
| C(28)-C(27)       | 1.373(13) | C(25)-C(26)-C(27) | 116.8(9)  |
| C(22)-C(23)       | 1.534(13) | C(27)-C(26)-C(34) | 121.3(8)  |
| C(22)-C(24)       | 1.545(14) | C(12)-C(7)-C(6)   | 116.5(9)  |
| C(10)-C(9)        | 1.431(12) | C(12)-C(7)-C(8)   | 116.3(9)  |
| C(6)-C(5)         | 1.380(13) | C(8)-C(7)-C(6)    | 127.1(9)  |
| C(8)-C(9)         | 1.391(14) | C(26)-C(34)-C(35) | 110.7(8)  |
| C(4)-C(5)         | 1.398(13) | C(26)-C(34)-C(36) | 113.7(8)  |
| C(31)-C(33)       | 1.551(15) | C(35)-C(34)-C(36) | 110.2(7)  |
| C(31)-C(32)       | 1.519(13) | C(12)-C(3)-C(2)   | 103.9(8)  |
| C(18)-C(19)       | 1.543(14) | C(4)-C(3)-C(12)   | 117.7(9)  |
| C(18)-C(17)       | 1.404(13) | C(4)-C(3)-C(2)    | 138.4(9)  |
| C(15)-C(16)       | 1.349(14) | C(27)-C(28)-C(29) | 118.9(9)  |
| C(19)-C(20)       | 1.472(17) | C(14)-C(22)-C(23) | 111.2(9)  |
| C(19)-C(21)       | 1.488(15) | C(14)-C(22)-C(24) | 110.5(9)  |
| C(16)-C(17)       | 1.364(14) | C(24)-C(22)-C(23) | 112.4(9)  |
| C(13)-C(18)-C(17) | 117.7(10) | C(11)-C(10)-C(9)  | 117.9(9)  |
| C(17)-C(18)-C(19) | 120.2(10) | C(28)-C(27)-C(26) | 121.8(9)  |
| C(14)-C(15)-C(16) | 120.2(10) | C(7)-C(6)-Br(2)   | 121.4(7)  |
| C(6)-C(5)-C(4)    | 121.0(10) | C(5)-C(6)-Br(2)   | 117.6(8)  |
| N(2)-B(1)-Br(1)   | 125.5(6)  | C(5)-C(6)-C(7)    | 121.0(9)  |
| N(1)-B(1)-Br(1)   | 127.4(8)  | C(9)-C(8)-C(7)    | 120.6(9)  |
| N(1)-B(1)-N(2)    | 107.1(8)  | C(3)-C(4)-C(5)    | 120.1(9)  |
| C(20)-C(19)-C(18) | 114.4(11) | C(30)-C(31)-C(33) | 111.9(9)  |
| C(20)-C(19)-C(21) | 114.4(11) | C(32)-C(31)-C(30) | 111.3(8)  |
| C(21)-C(19)-C(18) | 111.0(11) | C(32)-C(31)-C(33) | 110.9(9)  |
| C(15)-C(16)-C(17) | 121.7(10) | C(8)-C(9)-C(10)   | 121.6(9)  |
| C(16)-C(17)-C(18) | 119.3(10) | C(13)-C(18)-C(19) | 122.0(9)  |
| C(9)-C(8)-Br(2')  | 116.6(11) | C(7)-C(8)-Br(2')  | 122.5(11) |

# Crystallographic data for compound 3

| Identification code                |                           | Compound 3                           |                         |
|------------------------------------|---------------------------|--------------------------------------|-------------------------|
| Empirical formula                  |                           | $C_{155}H_{199}B_3N_{12}O_3$         |                         |
| Formula weight                     |                           | 2310.68                              |                         |
| Temperature/K                      |                           | 153.15                               |                         |
| Crystal system                     |                           | triclinic                            |                         |
| Space group                        |                           | P-1                                  |                         |
| a/Å                                |                           | 19.0151(12)                          |                         |
| b/Å                                |                           | 19.0592(13)                          |                         |
| c/Å                                |                           | 24.0200(16)                          |                         |
| α/°                                |                           | 82.716(3)                            |                         |
| β/°                                |                           | 68.186(3)                            |                         |
| γ/°                                |                           | 60.437(3)                            |                         |
| Volume/Å <sup>3</sup>              |                           | 7012.4(8)                            |                         |
| Ζ                                  |                           | 2                                    |                         |
| $\rho_{calc}g/cm^3$                |                           | 1.094                                |                         |
| µ/mm <sup>-1</sup>                 |                           | 0.490                                |                         |
| F(000)                             |                           | 2504.0                               |                         |
| Crystal size/mm <sup>3</sup>       |                           | $0.14 \times 0.13 \times 0.12$       |                         |
| Radiation                          |                           | CuKa ( $\lambda$ = 1.54178)          |                         |
| 20 range for data collectio        | n/°                       | 5.628 to 136.618                     |                         |
| Index ranges                       |                           | $-20 \le h \le 22, -22 \le k \le 22$ | 2, $-28 \le l \le 28$   |
| Reflections collected              |                           | 124361                               |                         |
| Independent reflections            |                           | 25511 [ $R_{int} = 0.0747, R_{sig}$  | $_{\rm gma} = 0.0496$ ] |
| Data/restraints/parameters         |                           | 25511/48/1693                        |                         |
| Goodness-of-fit on F <sup>2</sup>  |                           | 1.093                                |                         |
| Final R indexes [I>= $2\sigma$ (I) | ]                         | $R_1 = 0.0689, wR_2 = 0.1942$        |                         |
| Final R indexes [all data]         |                           | $R_1 = 0.0831, wR_2 = 0.20^{\circ}$  | 73                      |
| Largest diff. peak/hole / e        | Å-3                       | 0.94/-0.62                           |                         |
| Table S2. Bond lengths [Å          | ] and angles [°] for comp | ound 3                               |                         |
| N(1)-C(1)                          | 1.378(3)                  | C(1)-N(1)-C(25)                      | 124.44(16)              |
| N(1)-C(25)                         | 1.423(3)                  | C(1)-N(1)-B(1)                       | 108.79(16)              |

| N(1)-C(1)  | 1.378(3) | C(1)-N(1)-C(25)  | 124.44(10) |  |
|------------|----------|------------------|------------|--|
| N(1)-C(25) | 1.423(3) | C(1)-N(1)-B(1)   | 108.79(16) |  |
| N(1)-B(1)  | 1.505(3) | C(25)-N(1)-B(1)  | 126.76(17) |  |
| N(2)-C(2)  | 1.386(2) | C(2)-N(2)-C(13)  | 124.26(16) |  |
| N(2)-C(13) | 1.429(2) | C(2)-N(2)-B(1)   | 108.73(15) |  |
| N(2)-B(1)  | 1.499(3) | C(13)-N(2)-B(1)  | 126.33(16) |  |
| N(3)-C(37) | 1.332(3) | C(37)-N(3)-C(39) | 108.2(2)   |  |

| N(2) C(20)                   | 1 280(2)             | C(37) N(3) C(40)                      | 125.0(2)                 |
|------------------------------|----------------------|---------------------------------------|--------------------------|
| N(3)-C(39)<br>N(3)-C(40)     | 1.380(3)<br>1.492(4) | C(37) - N(3) - C(40)                  | 125.9(2)<br>125.9(2)     |
| N(4)-C(37)                   | 1 332(3)             | C(37)-N(4)-C(38)                      | 125.9(2)<br>108 4(2)     |
| N(4)-C(38)                   | 1.332(3)             | C(37)-N(4)-C(44)                      | 100.4(2)<br>124 27(18)   |
| N(4) - C(38)                 | 1.383(3)             | C(37) - N(4) - C(44)                  | 124.27(10)<br>127.10(10) |
| N(4) - C(44)<br>N(5) C(51)   | 1.499(3)<br>1.380(2) | C(50)-N(4)- $C(44)$                   | 127.19(19)<br>122.14(15) |
| N(5) - C(51)<br>N(5) - C(75) | 1.380(2)<br>1.422(2) | C(51)-N(5)-C(73)                      | 123.14(13)<br>108 74(14) |
| N(5) = C(75)<br>N(5) = R(2)  | 1.422(2)<br>1.503(3) | C(31)-N(3)-D(2)<br>C(75) N(5) P(2)    | 100.74(14)<br>128.06(15) |
| N(5)-D(2)<br>N(6) C(52)      | 1.303(3)<br>1.370(2) | C(73)-N(3)-D(2)<br>C(52) N(6) $C(63)$ | 128.00(15)<br>123.10(15) |
| N(0)-C(52)                   | 1.379(2)             | C(52) - N(0) - C(03)                  | 123.19(13)<br>109.75(14) |
| N(0)-C(03)                   | 1.420(2)             | C(52)-N(0)-B(2)<br>C(62) N(6) P(2)    | 106.73(14)<br>127.01(15) |
| N(0)-D(2)<br>N(7) C(90)      | 1.310(2)             | C(03)-N(0)-D(2)<br>C(20) N(7) C(01)   | 127.91(13)<br>107.8(2)   |
| N(7) - C(89)                 | 1.337(3)             | C(89) - N(7) - C(91)                  | 107.0(2)                 |
| N(7)-C(91)                   | 1.374(3)             | C(89)-N(7)-C(96)                      | 125.45(18)               |
| N(7)-C(96)                   | 1.490(3)             | C(91)-N(7)-C(96)                      | 126.7(2)                 |
| N(8)-C(89)                   | 1.322(3)             | C(89)-N(8)-C(90)                      | 107.8(2)                 |
| N(8)-C(90)                   | 1.378(4)             | C(89)-N(8)-C(92)                      | 124.6(2)                 |
| N(8)-C(92)                   | 1.501(3)             | C(90)-N(8)-C(92)                      | 127.6(2)                 |
| N(9)-C(104)                  | 1.377(3)             | C(104)-N(9)-C(115)                    | 123.86(15)               |
| N(9)-C(115)                  | 1.427(2)             | C(104)-N(9)-B(3)                      | 108.59(15)               |
| N(9)-B(3)                    | 1.498(3)             | C(115)-N(9)-B(3)                      | 127.37(16)               |
| N(10)-C(103)                 | 1.382(3)             | C(103)-N(10)-C(127)                   | 124.18(16)               |
| N(10)-C(127)                 | 1.427(2)             | C(103)-N(10)-B(3)                     | 108.72(15)               |
| N(10)-B(3)                   | 1.504(3)             | C(127)-N(10)-B(3)                     | 127.03(16)               |
| N(11)-C(139)                 | 1.332(3)             | C(139)-N(11)-C(141)                   | 107.8(2)                 |
| N(11)-C(141)                 | 1.376(3)             | C(139)-N(11)-C(142)                   | 123.35(18)               |
| N(11)-C(142)                 | 1.500(3)             | C(141)-N(11)-C(142)                   | 128.8(2)                 |
| N(12)-C(139)                 | 1.332(3)             | C(139)-N(12)-C(140)                   | 107.4(2)                 |
| N(12)-C(140)                 | 1.380(4)             | C(139)-N(12)-C(146)                   | 125.1(2)                 |
| N(12)-C(146)                 | 1.496(3)             | C(140)-N(12)-C(146)                   | 127.5(2)                 |
| O(1)-B(1)                    | 1.293(3)             | N(1)-C(1)-C(11)                       | 139.79(18)               |
| O(2)-B(2)                    | 1.291(3)             | C(2)-C(1)-N(1)                        | 110.46(16)               |
| O(3)-B(3)                    | 1.288(3)             | C(2)-C(1)-C(11)                       | 109.74(18)               |
| C(1)-C(2)                    | 1.367(3)             | N(2)-C(2)-C(3)                        | 139.60(17)               |
| C(1)-C(11)                   | 1.453(3)             | C(1)-C(2)-N(2)                        | 110.30(17)               |
| C(2)-C(3)                    | 1.451(3)             | C(1)-C(2)-C(3)                        | 110.10(17)               |
| C(3)-C(4)                    | 1.366(3)             | C(4)-C(3)-C(2)                        | 137.93(19)               |
| C(3)-C(12)                   | 1.430(3)             | C(4)-C(3)-C(12)                       | 117.73(19)               |
| C(4)-C(5)                    | 1.427(3)             | C(12)-C(3)-C(2)                       | 104.33(17)               |
| C(5)-C(6)                    | 1.369(4)             | C(3)-C(4)-C(5)                        | 118.8(2)                 |
| C(6)-C(7)                    | 1.419(4)             | C(6)-C(5)-C(4)                        | 122.8(2)                 |
| C(7)-C(8)                    | 1.423(3)             | C(5)-C(6)-C(7)                        | 120.0(2)                 |

| C(7)-C(12)  | 1.389(3)  | C(6)-C(7)-C(8)    | 127.1(2)   |
|-------------|-----------|-------------------|------------|
| C(8)-C(9)   | 1.363(4)  | C(12)-C(7)-C(6)   | 116.3(2)   |
| C(9)-C(10)  | 1.426(4)  | C(12)-C(7)-C(8)   | 116.6(2)   |
| C(10)-C(11) | 1.381(3)  | C(9)-C(8)-C(7)    | 119.8(2)   |
| C(11)-C(12) | 1.425(3)  | C(8)-C(9)-C(10)   | 123.1(2)   |
| C(13)-C(14) | 1.400(3)  | C(11)-C(10)-C(9)  | 118.5(2)   |
| C(13)-C(18) | 1.403(3)  | C(10)-C(11)-C(1)  | 137.8(2)   |
| C(14)-C(15) | 1.395(3)  | C(10)-C(11)-C(12) | 117.6(2)   |
| C(14)-C(23) | 1.517(3)  | C(12)-C(11)-C(1)  | 104.58(17) |
| C(15)-C(16) | 1.378(3)  | C(7)-C(12)-C(3)   | 124.4(2)   |
| C(16)-C(17) | 1.379(3)  | C(7)-C(12)-C(11)  | 124.4(2)   |
| C(17)-C(18) | 1.399(3)  | C(11)-C(12)-C(3)  | 111.25(18) |
| C(18)-C(19) | 1.518(3)  | C(14)-C(13)-N(2)  | 118.83(17) |
| C(19)-C(20) | 1.523(3)  | C(14)-C(13)-C(18) | 121.31(17) |
| C(19)-C(21) | 1.529(3)  | C(18)-C(13)-N(2)  | 119.84(17) |
| C(22)-C(23) | 1.541(4)  | C(13)-C(14)-C(23) | 121.75(17) |
| C(23)-C(24) | 1.515(4)  | C(15)-C(14)-C(13) | 118.22(18) |
| C(25)-C(26) | 1.397(3)  | C(15)-C(14)-C(23) | 120.03(19) |
| C(25)-C(30) | 1.396(3)  | C(16)-C(15)-C(14) | 121.1(2)   |
| C(26)-C(27) | 1.389(3)  | C(15)-C(16)-C(17) | 119.99(19) |
| C(26)-C(34) | 1.522(3)  | C(16)-C(17)-C(18) | 121.14(19) |
| C(27)-C(28) | 1.381(4)  | C(13)-C(18)-C(19) | 120.34(17) |
| C(28)-C(29) | 1.376(4)  | C(17)-C(18)-C(13) | 118.01(19) |
| C(29)-C(30) | 1.393(4)  | C(17)-C(18)-C(19) | 121.64(18) |
| C(30)-C(31) | 1.525(5)  | C(18)-C(19)-C(20) | 110.71(18) |
| C(31)-C(32) | 1.481(7)  | C(18)-C(19)-C(21) | 113.42(18) |
| C(31)-C(33) | 1.429(8)  | C(20)-C(19)-C(21) | 110.3(2)   |
| C(34)-C(35) | 1.517(4)  | C(14)-C(23)-C(22) | 111.76(19) |
| C(34)-C(36) | 1.528(4)  | C(24)-C(23)-C(14) | 111.5(2)   |
| C(38)-C(39) | 1.331(4)  | C(24)-C(23)-C(22) | 109.9(2)   |
| C(40)-C(41) | 1.503(4)  | C(26)-C(25)-N(1)  | 120.46(18) |
| C(40)-C(42) | 1.472(8)  | C(30)-C(25)-N(1)  | 118.78(19) |
| C(40)-C(43) | 1.530(8)  | C(30)-C(25)-C(26) | 120.7(2)   |
| C(44)-C(45) | 1.616(6)  | C(25)-C(26)-C(34) | 120.55(18) |
| C(44)-C(47) | 1.481(6)  | C(27)-C(26)-C(25) | 119.0(2)   |
| C(44)-C(49) | 1.477(8)  | C(27)-C(26)-C(34) | 120.5(2)   |
| C(44)-C(46) | 1.285(12) | C(28)-C(27)-C(26) | 120.8(2)   |
| C(44)-C(48) | 1.817(17) | C(29)-C(28)-C(27) | 119.6(2)   |
| C(44)-C(50) | 1.49(3)   | C(28)-C(29)-C(30) | 121.4(2)   |
| C(51)-C(52) | 1.367(2)  | C(25)-C(30)-C(31) | 120.2(2)   |
| C(51)-C(61) | 1.455(3)  | C(29)-C(30)-C(25) | 118.4(2)   |

| C(52)-C(53) | 1.460(3) | C(29)-C(30)-C(31) | 121.3(2)   |
|-------------|----------|-------------------|------------|
| C(53)-C(54) | 1.375(3) | C(32)-C(31)-C(30) | 112.8(3)   |
| C(53)-C(62) | 1.426(3) | C(33)-C(31)-C(30) | 113.4(5)   |
| C(54)-C(55) | 1.428(3) | C(33)-C(31)-C(32) | 112.2(4)   |
| C(55)-C(56) | 1.364(4) | C(26)-C(34)-C(36) | 111.8(2)   |
| C(56)-C(57) | 1.432(3) | C(35)-C(34)-C(26) | 111.1(2)   |
| C(57)-C(58) | 1.424(3) | C(35)-C(34)-C(36) | 111.0(2)   |
| C(57)-C(62) | 1.386(3) | N(4)-C(37)-N(3)   | 108.42(19) |
| C(58)-C(59) | 1.373(3) | C(39)-C(38)-N(4)  | 107.1(2)   |
| C(59)-C(60) | 1.425(3) | C(38)-C(39)-N(3)  | 107.8(2)   |
| C(60)-C(61) | 1.372(3) | N(3)-C(40)-C(41)  | 110.1(2)   |
| C(61)-C(62) | 1.431(3) | N(3)-C(40)-C(43)  | 106.1(3)   |
| C(63)-C(64) | 1.399(3) | C(41)-C(40)-C(43) | 108.4(4)   |
| C(63)-C(68) | 1.404(3) | C(42)-C(40)-N(3)  | 108.0(4)   |
| C(64)-C(65) | 1.396(3) | C(42)-C(40)-C(41) | 110.2(4)   |
| C(64)-C(72) | 1.519(3) | C(42)-C(40)-C(43) | 113.9(6)   |
| C(65)-C(66) | 1.370(4) | N(4)-C(44)-C(45)  | 104.6(3)   |
| C(66)-C(67) | 1.377(3) | N(4)-C(44)-C(48)  | 93.5(5)    |
| C(67)-C(68) | 1.394(3) | C(47)-C(44)-N(4)  | 111.8(3)   |
| C(68)-C(69) | 1.518(3) | C(47)-C(44)-C(45) | 109.0(4)   |
| C(69)-C(70) | 1.525(3) | C(49)-C(44)-N(4)  | 111.8(4)   |
| C(69)-C(71) | 1.521(3) | C(49)-C(44)-C(45) | 105.8(6)   |
| C(72)-C(73) | 1.517(5) | C(49)-C(44)-C(47) | 113.3(6)   |
| C(72)-C(74) | 1.535(4) | C(46)-C(44)-N(4)  | 113.9(5)   |
| C(75)-C(76) | 1.399(3) | C(46)-C(44)-C(48) | 105.7(16)  |
| C(75)-C(80) | 1.402(3) | C(46)-C(44)-C(50) | 134.0(13)  |
| C(76)-C(77) | 1.390(3) | C(50)-C(44)-N(4)  | 107.0(10)  |
| C(76)-C(81) | 1.524(4) | C(50)-C(44)-C(48) | 92(2)      |
| C(77)-C(78) | 1.389(4) | N(5)-C(51)-C(61)  | 139.10(16) |
| C(78)-C(79) | 1.368(4) | C(52)-C(51)-N(5)  | 110.61(16) |
| C(79)-C(80) | 1.391(3) | C(52)-C(51)-C(61) | 110.27(16) |
| C(80)-C(84) | 1.506(3) | N(6)-C(52)-C(53)  | 139.92(16) |
| C(81)-C(82) | 1.511(5) | C(51)-C(52)-N(6)  | 110.36(16) |
| C(81)-C(83) | 1.530(4) | C(51)-C(52)-C(53) | 109.71(16) |
| C(84)-C(86) | 1.638(6) | C(54)-C(53)-C(52) | 137.69(19) |
| C(84)-C(87) | 1.386(7) | C(54)-C(53)-C(62) | 118.01(18) |
| C(84)-C(85) | 1.377(5) | C(62)-C(53)-C(52) | 104.29(15) |
| C(84)-C(88) | 1.601(6) | C(53)-C(54)-C(55) | 118.4(2)   |
| C(90)-C(91) | 1.323(5) | C(56)-C(55)-C(54) | 122.86(19) |
| C(92)-C(93) | 1.526(7) | C(55)-C(56)-C(57) | 120.18(19) |
| C(92)-C(94) | 1.479(5) | C(58)-C(57)-C(56) | 127.21(19) |

\_

| C(92)-C(95)   | 1.485(5)  | C(62)-C(57)-C(56) | 115.9(2)   |
|---------------|-----------|-------------------|------------|
| C(96)-C(97)   | 1.553(7)  | C(62)-C(57)-C(58) | 116.83(19) |
| C(96)-C(99)   | 1.484(6)  | C(59)-C(58)-C(57) | 119.63(19) |
| C(96)-C(101)  | 1.453(8)  | C(58)-C(59)-C(60) | 123.0(2)   |
| C(96)-C(98)   | 1.473(8)  | C(61)-C(60)-C(59) | 118.42(19) |
| C(96)-C(100)  | 1.567(6)  | C(60)-C(61)-C(51) | 137.62(18) |
| C(96)-C(102)  | 1.545(13) | C(60)-C(61)-C(62) | 118.30(17) |
| C(103)-C(104) | 1.371(3)  | C(62)-C(61)-C(51) | 104.05(15) |
| C(103)-C(113) | 1.453(3)  | C(53)-C(62)-C(61) | 111.64(16) |
| C(104)-C(105) | 1.448(3)  | C(57)-C(62)-C(53) | 124.57(18) |
| C(105)-C(106) | 1.372(3)  | C(57)-C(62)-C(61) | 123.79(18) |
| C(105)-C(114) | 1.428(3)  | C(64)-C(63)-N(6)  | 119.96(17) |
| C(106)-C(107) | 1.422(3)  | C(64)-C(63)-C(68) | 121.24(17) |
| C(107)-C(108) | 1.364(4)  | C(68)-C(63)-N(6)  | 118.80(16) |
| C(108)-C(109) | 1.424(3)  | C(63)-C(64)-C(72) | 121.79(18) |
| C(109)-C(110) | 1.425(3)  | C(65)-C(64)-C(63) | 118.16(19) |
| C(109)-C(114) | 1.387(3)  | C(65)-C(64)-C(72) | 120.04(19) |
| C(110)-C(111) | 1.369(4)  | C(66)-C(65)-C(64) | 121.1(2)   |
| C(111)-C(112) | 1.420(3)  | C(65)-C(66)-C(67) | 120.19(19) |
| C(112)-C(113) | 1.376(3)  | C(66)-C(67)-C(68) | 121.2(2)   |
| C(113)-C(114) | 1.426(3)  | C(63)-C(68)-C(69) | 120.72(17) |
| C(115)-C(116) | 1.401(3)  | C(67)-C(68)-C(63) | 117.94(19) |
| C(115)-C(120) | 1.399(3)  | C(67)-C(68)-C(69) | 121.32(18) |
| C(116)-C(117) | 1.397(3)  | C(68)-C(69)-C(70) | 110.59(19) |
| C(116)-C(124) | 1.523(4)  | C(68)-C(69)-C(71) | 113.25(18) |
| C(117)-C(118) | 1.369(4)  | C(71)-C(69)-C(70) | 110.4(2)   |
| C(118)-C(119) | 1.386(3)  | C(64)-C(72)-C(74) | 111.2(2)   |
| C(119)-C(120) | 1.393(3)  | C(73)-C(72)-C(64) | 112.0(3)   |
| C(120)-C(121) | 1.525(3)  | C(73)-C(72)-C(74) | 110.7(3)   |
| C(121)-C(122) | 1.526(3)  | C(76)-C(75)-N(5)  | 118.60(18) |
| C(121)-C(123) | 1.519(4)  | C(76)-C(75)-C(80) | 121.68(18) |
| C(124)-C(125) | 1.513(4)  | C(80)-C(75)-N(5)  | 119.72(17) |
| C(124)-C(126) | 1.480(6)  | C(75)-C(76)-C(81) | 119.94(18) |
| C(127)-C(128) | 1.405(3)  | C(77)-C(76)-C(75) | 117.7(2)   |
| C(127)-C(132) | 1.408(3)  | C(77)-C(76)-C(81) | 122.4(2)   |
| C(128)-C(129) | 1.389(3)  | C(78)-C(77)-C(76) | 121.0(2)   |
| C(128)-C(136) | 1.523(3)  | C(79)-C(78)-C(77) | 120.6(2)   |
| C(129)-C(130) | 1.376(4)  | C(78)-C(79)-C(80) | 120.5(2)   |
| C(130)-C(131) | 1.379(4)  | C(75)-C(80)-C(84) | 120.94(17) |
| C(131)-C(132) | 1.396(3)  | C(79)-C(80)-C(75) | 118.5(2)   |
| C(132)-C(133) | 1.516(3)  | C(79)-C(80)-C(84) | 120.5(2)   |

| C(133)-C(135) $1.526(4)$ $C(82)-C(81)-C(76)$ $110.1(3)$ $C(136)-C(137)$ $1.510(5)$ $C(82)-C(81)-C(83)$ $112.0(3)$ $C(136)-C(138)$ $1.524(4)$ $C(80)-C(84)-C(88)$ $111.6(3)$ $C(140)-C(141)$ $1.324(5)$ $C(80)-C(84)-C(88)$ $111.6(3)$ $C(142)-C(143)$ $1.533(4)$ $C(87)-C(84)-C(80)$ $122.4(4)$ $C(142)-C(143)$ $1.505(4)$ $C(85)-C(84)-C(80)$ $122.4(4)$ $C(146)-C(147)$ $1.529(4)$ $C(85)-C(84)-C(88)$ $111.3(4)$ $C(146)-C(147)$ $1.529(4)$ $C(85)-C(84)-C(88)$ $111.3(4)$ $C(146)-C(151)$ $1.475(4)$ $C(91)-C(90)-N(8)$ $108.0(2)$ $C(146)-C(150)$ $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $105.8(3)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $106.7(4)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(97)$ $104.1(4)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(97)$ $104.1(4)$ $C(158)-C(159)$ $1.381(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(158)-C(159)$ $1.381(6)$ $N(7)-C(96)-C(77)$ $109.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(99)-C(96)-N(7)$ $109.4(3)$ $C(161)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $109.5(3)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$                                                                                                    | C(133)-C(134)        | 1.517(4)   | C(76)-C(81)-C(83)    | 112.9(2)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------|------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(133)-C(135)        | 1.526(4)   | C(82)-C(81)-C(76)    | 110.1(3)   |
| C(136)-C(138)1.524(4) $C(80)-C(84)-C(86)$ $105.6(3)$ $C(140)-C(141)$ $1.324(5)$ $C(80)-C(84)-C(88)$ $111.6(3)$ $C(142)-C(143)$ $1.533(4)$ $C(87)-C(84)-C(80)$ $120.1(4)$ $C(142)-C(144)$ $1.493(4)$ $C(87)-C(84)-C(80)$ $122.4(4)$ $C(142)-C(147)$ $1.529(4)$ $C(85)-C(84)-C(80)$ $122.4(4)$ $C(146)-C(147)$ $1.529(4)$ $C(85)-C(84)-C(88)$ $111.3(4)$ $C(146)-C(147)$ $1.475(4)$ $C(91)-C(90)-N(8)$ $108.0(2)$ $C(146)-C(151)$ $1.475(4)$ $C(91)-C(90)-N(8)$ $108.0(2)$ $C(146)-C(151)$ $1.475(4)$ $C(94)-C(92)-C(93)$ $105.8(3)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $110.8(3)$ $C(145)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $110.8(3)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $110.8(3)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $106.7(4)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(156)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(156)-C(157)$ $1.351(6)$ $N(7)-C(96)-C(102)$ $107.0(5)$ $C(160)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(101)-C(96)-C(97)$ $109.6(6)$ $C(161)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $105.3(4)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $105.3(6)$ $C(131)-C(132)-C(133)$ $119.9(2)$                                                                                                       | C(136)-C(137)        | 1.510(5)   | C(82)-C(81)-C(83)    | 112.0(3)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(136)-C(138)        | 1.524(4)   | C(80)-C(84)-C(86)    | 105.6(3)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(140)-C(141)        | 1.324(5)   | C(80)-C(84)-C(88)    | 111.6(3)   |
| C(142)-C(144) $1.493(4)$ $C(87)-C(84)-C(86)$ $110.8(6)$ $C(142)-C(145)$ $1.505(4)$ $C(85)-C(84)-C(80)$ $122.4(4)$ $C(146)-C(147)$ $1.529(4)$ $C(85)-C(84)-C(88)$ $111.3(4)$ $C(146)-C(147)$ $1.487(5)$ $N(8)-C(89)-N(7)$ $108.87(19)$ $C(146)-C(151)$ $1.475(4)$ $C(91)-C(90)-N(8)$ $108.0(2)$ $C(146)-C(150)$ $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(148)$ $1.496(12)$ $N(8)-C(92)-C(93)$ $115.8(3)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-N(8)$ $110.8(3)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $106.7(4)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(156)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(158)-C(159)$ $1.381(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(97)$ $109.0(6)$ $C(161)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(162)-C(163)$ $1.455(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(163)-C(164)$ $1.283(10)$ $C(98)-C(96)-C(100)$ $108.6(6)$ $C(131)-C(132)-C(127)$ $17.7(2)$ $C(98)-C(96)-C(100)$ $108.6(6)$ $C(164)-C(165)$ $1.347(12)$ <t< td=""><td>C(142)-C(143)</td><td>1.533(4)</td><td>C(87)-C(84)-C(80)</td><td>120.1(4)</td></t<> | C(142)-C(143)        | 1.533(4)   | C(87)-C(84)-C(80)    | 120.1(4)   |
| C(142)-C(145) $1.505(4)$ $C(85)-C(84)-C(80)$ $122.4(4)$ $C(146)-C(147)$ $1.529(4)$ $C(85)-C(84)-C(88)$ $111.3(4)$ $C(146)-C(147)$ $1.487(5)$ $N(8)-C(89)-N(7)$ $108.87(19)$ $C(146)-C(150)$ $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(150)$ $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(151)$ $1.496(12)$ $N(8)-C(92)-C(93)$ $110.8(3)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $113.2(4)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $106.7(4)$ $C(154)-C(155)$ $1.372(5)$ $C(95)-C(92)-N(8)$ $108.8(2)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(158)-C(159)$ $1.381(6)$ $N(7)-C(96)-C(102)$ $107.0(5)$ $C(161)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $115.3(4)$ $C(165)-C(164)$ $1.283(10)$ $C(98)-C(96)-C(100)$ $108.6(6)$ $C(131)-C(132)-C(135)$ $110.9(2)$ $N(10)-C(103)-N(10)$ $109.2(17)$ $C(152)-C(166)$ $1.288(10)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(135)$ $110.9(2)$ $C(104)-C(103)-N(10)$ $109.2(17)$ $C(132)-C(133)-C(134)$                                                                                              | C(142)-C(144)        | 1.493(4)   | C(87)-C(84)-C(86)    | 110.8(6)   |
| C(146)-C(147) $1.529(4)$ $C(85)-C(84)-C(88)$ $111.3(4)$ $C(146)-C(149)$ $1.487(5)$ $N(8)-C(89)-N(7)$ $108.87(19)$ $C(146)-C(151)$ $1.475(4)$ $C(91)-C(90)-N(8)$ $108.0(2)$ $C(146)-C(150)$ $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-N(8)$ $110.8(3)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $106.7(4)$ $C(154)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(156)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(158)-C(159)$ $1.381(6)$ $N(7)-C(96)-C(102)$ $107.0(5)$ $C(160)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(166)$ $1.476(10)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $115.3(4)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(127)$ $117.7(2)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(133)$ $119.9(2)$ $C(104)-C(103)-N(110)$ $109.92(17)$ $C(132)-C(133)-C(133)$ $119.9(2)$ $C(104)-C(103)-N(113)$ $110.1(71)$ $C(132)-C(133)-C(133)$ $119.2(2)$ $C(104)-C(103)-N(113)$ $110.1(71)$ $C(133$                                                                                   | C(142)-C(145)        | 1.505(4)   | C(85)-C(84)-C(80)    | 122.4(4)   |
| C(146)-C(149) $1.487(5)$ $N(8)-C(89)-N(7)$ $108.87(19)$ $C(146)-C(151)$ $1.475(4)$ $C(91)-C(90)-N(8)$ $108.0(2)$ $C(146)-C(150)$ $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $115.8(3)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $113.2(4)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(93)$ $106.7(4)$ $C(154)-C(156)$ $1.372(5)$ $C(95)-C(92)-N(8)$ $108.8(2)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(155)-C(156)$ $1.357(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(102)$ $107.0(5)$ $C(160)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(166)$ $1.476(10)$ $C(101)-C(96)-C(97)$ $110.(5)$ $C(161)-C(166)$ $1.475(8)$ $C(101)-C(96)-C(97)$ $110.(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $115.3(4)$ $C(164)-C(166)$ $1.288(10)$ $C(98)-C(96)-C(102)$ $111.5(9)$ $C(131)-C(132)-C(133)$ $119.9(2)$ $C(102)-C(103)-C(113)$ $139.47(17)$ $C(132)-C(133)-C(134)$ $110.9(2)$ $N(10)-C(103)-C(113)$ $139.3(16)$ $C(131)-C(132)-C(133)$ $119.4(2)$ $N(10)-C(103)-C(113)$ $139.3(16)$ $C(131)-C(133)-C(138)$ $110.8(2)$ $C(104)-C(105)$ $139.33(16)$ $C(133)-C(13$                                                                                   | C(146)-C(147)        | 1.529(4)   | C(85)-C(84)-C(88)    | 111.3(4)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(146)-C(149)        | 1.487(5)   | N(8)-C(89)-N(7)      | 108.87(19) |
| C(146)-C(150) $1.705(12)$ $C(90)-C(91)-N(7)$ $107.5(2)$ $C(146)-C(148)$ $1.496(12)$ $N(8)-C(92)-C(93)$ $105.8(3)$ $C(146)-C(152)$ $1.569(12)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(95)$ $113.2(4)$ $C(154)-C(159)$ $1.386(5)$ $C(95)-C(92)-N(8)$ $108.8(2)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-N(8)$ $106.7(4)$ $C(156)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(161)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(166)$ $1.476(10)$ $C(101)-C(96)-N(7)$ $109.5(3)$ $C(162)-C(163)$ $1.455(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(163)-C(164)$ $1.263(9)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(127)$ $117.7(2)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(133)$ $119.9(2)$ $C(104)-C(103)-C(113)$ $119.7(7)$ $C(132)-C(133)-C(134)$ $110.9(2)$ $N(10)-C(103)-C(113)$ $110.7(7)$ $C(134)-C(133)-C(138)$ $110.4(2)$ $N(9)-C(104)-C(105)$ $139.33(16)$ $C(137)-C(136)-C(138)$ $110.4(2)$ $C(103)-C(104)-N(10)$ $109.5(3)$ $C$                                                                                   | C(146)-C(151)        | 1.475(4)   | C(91)-C(90)-N(8)     | 108.0(2)   |
| C(146)-C(148) 1.496(12) N(8)-C(92)-C(93) 105.8(3)   C(146)-C(152) 1.569(12) C(94)-C(92)-N(8) 110.8(3)   C(153)-C(154) 1.474(5) C(94)-C(92)-C(93) 111.1(5)   C(154)-C(155) 1.379(4) C(94)-C(92)-C(95) 113.2(4)   C(154)-C(155) 1.379(4) C(94)-C(92)-C(95) 108.8(2)   C(155)-C(156) 1.372(5) C(95)-C(92)-C(93) 106.7(4)   C(155)-C(156) 1.372(5) C(95)-C(92)-C(93) 106.7(4)   C(156)-C(157) 1.355(6) N(7)-C(96)-C(100) 109.6(3)   C(161) 1.421(8) C(99)-C(96)-N(7) 105.4(3)   C(161)-C(161) 1.421(8) C(99)-C(96)-N(7) 109.0(6)   C(161)-C(166) 1.476(10) C(101)-C(96)-C(97) 110.1(5)   C(161)-C(166) 1.455(8) C(101)-C(96)-C(97) 110.1(5)   C(163)-C(164) 1.263(9) C(101)-C(96)-C(100) 108.3(6)   C(131)-C(132)-C(127) 117.7(2) C(98)-C(96)-C(100) 108.3(6)   C(131)-C(132)-C(123) 119.9(2) C(102)-C(103)-N(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(146)-C(150)        | 1.705(12)  | C(90)-C(91)-N(7)     | 107.5(2)   |
| C(146)-C(152) $1.569(12)$ $C(94)-C(92)-N(8)$ $110.8(3)$ $C(153)-C(154)$ $1.474(5)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(95)$ $113.2(4)$ $C(154)-C(159)$ $1.386(5)$ $C(95)-C(92)-N(8)$ $108.8(2)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(156)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(102)$ $107.0(5)$ $C(160)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(99)-C(96)-N(7)$ $109.0(6)$ $C(161)-C(166)$ $1.476(10)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(162)-C(163)$ $1.455(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-N(7)$ $115.3(4)$ $C(165)-C(166)$ $1.288(10)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(127)$ $117.7(2)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(133)$ $119.9(2)$ $C(102)-C(96)-C(100)$ $104.6(7)$ $C(132)-C(133)-C(135)$ $110.2(2)$ $C(104)-C(103)-N(10)$ $109.92(17)$ $C(134)-C(135)-C(128)$ $110.9(2)$ $N(10)-C(103)-C(113)$ $110.17(17)$ $C(132)-C(133)-C(138)$ $114.0(2)$ $N(9)-C(104)-C(105)$ $139.33(16)$ $C(137)-C(136)-C(128)$ $110.8(2)$ $C(103)-C(104)-P(105)$ $109.53(17)$ $N(12)-C(139)-N(11)$ $109.06(19)$ $C(106)-C(107)-C(104)$ $137.$                                                                  | C(146)-C(148)        | 1.496(12)  | N(8)-C(92)-C(93)     | 105.8(3)   |
| C(153)-C(154) $1.474(5)$ $C(94)-C(92)-C(93)$ $111.1(5)$ $C(154)-C(155)$ $1.379(4)$ $C(94)-C(92)-C(95)$ $113.2(4)$ $C(154)-C(159)$ $1.386(5)$ $C(95)-C(92)-N(8)$ $108.8(2)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(155)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(160)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(99)-C(96)-C(97)$ $109.0(6)$ $C(161)-C(166)$ $1.476(10)$ $C(101)-C(96)-C(97)$ $109.5(3)$ $C(162)-C(163)$ $1.455(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(163)-C(164)$ $1.263(9)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(127)$ $117.7(2)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(133)$ $119.9(2)$ $C(102)-C(96)-C(100)$ $104.6(7)$ $C(132)-C(133)-C(134)$ $110.9(2)$ $N(10)-C(103)-C(113)$ $139.47(17)$ $C(132)-C(133)-C(135)$ $112.9(2)$ $C(104)-C(103)-N(10)$ $109.92(17)$ $C(134)-C(133)-C(138)$ $114.0(2)$ $N(9)-C(104)-C(105)$ $139.33(16)$ $C(137)-C(136)-C(128)$ $110.8(2)$ $C(103)-C(104)-C(105)$ $139.33(16)$ $C(137)-C(136)-C(138)$ $109.6(3)$ $C(103)-C(104)$ $107.7(19)$ $C(144)-C(140)-N(11)$ $109.6(19)$ $C(106)-C(107)$ $118.4$                                                                  | C(146)-C(152)        | 1.569(12)  | C(94)-C(92)-N(8)     | 110.8(3)   |
| C(154)-C(155) $1.379(4)$ $C(94)-C(92)-C(95)$ $113.2(4)$ $C(154)-C(159)$ $1.386(5)$ $C(95)-C(92)-N(8)$ $108.8(2)$ $C(155)-C(156)$ $1.372(5)$ $C(95)-C(92)-C(93)$ $106.7(4)$ $C(156)-C(157)$ $1.355(6)$ $N(7)-C(96)-C(97)$ $104.1(4)$ $C(157)-C(158)$ $1.357(6)$ $N(7)-C(96)-C(100)$ $109.6(3)$ $C(160)-C(161)$ $1.421(8)$ $C(99)-C(96)-N(7)$ $105.4(3)$ $C(161)-C(162)$ $1.351(8)$ $C(99)-C(96)-C(97)$ $109.0(6)$ $C(161)-C(166)$ $1.476(10)$ $C(101)-C(96)-C(97)$ $109.5(3)$ $C(162)-C(163)$ $1.455(8)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(163)-C(164)$ $1.263(9)$ $C(101)-C(96)-C(97)$ $110.1(5)$ $C(164)-C(165)$ $1.347(12)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(127)$ $117.7(2)$ $C(98)-C(96)-C(100)$ $108.3(6)$ $C(131)-C(132)-C(133)$ $119.9(2)$ $C(102)-C(96)-C(100)$ $104.6(7)$ $C(132)-C(133)-C(134)$ $110.9(2)$ $N(10)-C(103)-C(113)$ $139.47(17)$ $C(132)-C(133)-C(135)$ $112.9(2)$ $C(104)-C(103)-N(10)$ $109.92(17)$ $C(134)-C(133)-C(135)$ $110.2(2)$ $C(104)-C(105)$ $139.33(16)$ $C(137)-C(136)-C(128)$ $110.8(2)$ $C(103)-C(104)-C(105)$ $139.33(16)$ $C(137)-C(136)-C(138)$ $109.6(3)$ $C(103)-C(104)-C(105)$ $109.53(17)$ $N(12)-C(139)-N(11)$ $109.6(19)$ $C(106)-C(107)$ $118.4(2)$ $N(11)-C(142)-C(143)$ $106.9(2)$ $C(105)-C(104)$ $1$                                                                  | C(153)-C(154)        | 1.474(5)   | C(94)-C(92)-C(93)    | 111.1(5)   |
| C(154)-C(159) 1.386(5) C(95)-C(92)-N(8) 108.8(2)   C(155)-C(156) 1.372(5) C(95)-C(92)-C(93) 106.7(4)   C(156)-C(157) 1.355(6) N(7)-C(96)-C(97) 104.1(4)   C(157)-C(158) 1.357(6) N(7)-C(96)-C(100) 109.6(3)   C(158)-C(159) 1.381(6) N(7)-C(96)-C(102) 107.0(5)   C(160)-C(161) 1.421(8) C(99)-C(96)-C(97) 109.0(6)   C(161)-C(162) 1.351(8) C(99)-C(96)-C(97) 109.0(6)   C(161)-C(166) 1.476(10) C(101)-C(96)-N(7) 109.5(3)   C(162)-C(163) 1.455(8) C(101)-C(96)-C(97) 110.1(5)   C(163)-C(164) 1.263(9) C(101)-C(96)-C(97) 115.3(4)   C(164)-C(165) 1.347(12) C(98)-C(96)-C(102) 111.5(9)   C(161)-C(166) 1.288(10) C(98)-C(96)-C(102) 111.5(9)   C(161)-C(132)-C(127) 117.7(2) C(98)-C(96)-C(100) 108.3(6)   C(131)-C(132)-C(133) 119.9(2) C(102)-C(96)-C(100) 104.6(7)   C(131)-C(133)-C(134) 110.9(2) C(104)-C(103)-C(113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(154)-C(155)        | 1.379(4)   | C(94)-C(92)-C(95)    | 113.2(4)   |
| C(155)-C(156) 1.372(5) C(95)-C(92)-C(93) 106.7(4)   C(156)-C(157) 1.355(6) N(7)-C(96)-C(97) 104.1(4)   C(157)-C(158) 1.357(6) N(7)-C(96)-C(100) 109.6(3)   C(158)-C(159) 1.381(6) N(7)-C(96)-C(102) 107.0(5)   C(160)-C(161) 1.421(8) C(99)-C(96)-N(7) 105.4(3)   C(161)-C(162) 1.351(8) C(99)-C(96)-C(97) 109.0(6)   C(161)-C(166) 1.476(10) C(101)-C(96)-N(7) 109.5(3)   C(162)-C(163) 1.455(8) C(101)-C(96)-C(97) 110.1(5)   C(163)-C(164) 1.263(9) C(101)-C(96)-C(97) 115.3(4)   C(165)-C(166) 1.347(12) C(98)-C(96)-C(102) 111.5(9)   C(161)-C(166) 1.288(10) C(98)-C(96)-C(102) 111.5(9)   C(161)-C(132)-C(127) 117.7(2) C(98)-C(96)-C(102) 111.5(9)   C(131)-C(132)-C(133) 119.9(2) C(102)-C(96)-C(100) 104.6(7)   C(132)-C(133)-C(134) 110.9(2) N(10)-C(103)-C(113) 139.47(17)   C(132)-C(133)-C(135) 112.9(2) C(104)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(154)-C(159)        | 1.386(5)   | C(95)-C(92)-N(8)     | 108.8(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(155)-C(156)        | 1.372(5)   | C(95)-C(92)-C(93)    | 106.7(4)   |
| C(157)-C(158)1.357(6)N(7)-C(96)-C(100)109.6(3)C(158)-C(159)1.381(6)N(7)-C(96)-C(102)107.0(5)C(160)-C(161)1.421(8)C(99)-C(96)-N(7)105.4(3)C(161)-C(162)1.351(8)C(99)-C(96)-C(97)109.0(6)C(161)-C(166)1.476(10)C(101)-C(96)-N(7)109.5(3)C(162)-C(163)1.455(8)C(101)-C(96)-C(97)110.1(5)C(163)-C(164)1.263(9)C(101)-C(96)-C(99)117.7(6)C(164)-C(165)1.347(12)C(98)-C(96)-N(7)115.3(4)C(165)-C(166)1.288(10)C(98)-C(96)-C(100)108.3(6)C(131)-C(132)-C(127)117.7(2)C(98)-C(96)-C(100)104.6(7)C(132)-C(133)119.9(2)C(102)-C(96)-C(100)104.6(7)C(132)-C(133)-C(134)110.9(2)N(10)-C(103)-N(10)109.92(17)C(132)-C(133)-C(135)112.9(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(135)-C(135)110.2(2)C(104)-C(103)-C(113)110.17(17)C(128)-C(136)-C(138)114.0(2)N(9)-C(104)-C(105)139.33(16)C(137)-C(136)-C(138)110.8(2)C(103)-C(104)-N(9)110.81(17)C(137)-C(136)-C(138)109.6(3)C(103)-C(104)-105109.53(17)N(12)-C(139)-N(11)109.06(19)C(106)-C(105)-C(104)137.17(19)C(140)-C(141)-N(11)107.6(3)C(114)-C(105)-C(104)104.79(16)N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123.4(2) </td <td>C(156)-C(157)</td> <td>1.355(6)</td> <td>N(7)-C(96)-C(97)</td> <td>104.1(4)</td>                                                                                                                      | C(156)-C(157)        | 1.355(6)   | N(7)-C(96)-C(97)     | 104.1(4)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(157)-C(158)        | 1.357(6)   | N(7)-C(96)-C(100)    | 109.6(3)   |
| C(160)-C(161)1.421(8)C(99)-C(96)-N(7)105.4(3)C(161)-C(162)1.351(8)C(99)-C(96)-C(97)109.0(6)C(161)-C(166)1.476(10)C(101)-C(96)-N(7)109.5(3)C(162)-C(163)1.455(8)C(101)-C(96)-C(97)110.1(5)C(163)-C(164)1.263(9)C(101)-C(96)-C(97)115.3(4)C(164)-C(165)1.347(12)C(98)-C(96)-N(7)115.3(4)C(165)-C(166)1.288(10)C(98)-C(96)-C(100)108.3(6)C(131)-C(132)-C(127)117.7(2)C(98)-C(96)-C(100)108.3(6)C(131)-C(132)-C(133)119.9(2)C(102)-C(96)-C(100)104.6(7)C(132)-C(133)-C(134)110.9(2)N(10)-C(103)-C(113)139.47(17)C(132)-C(133)-C(135)112.9(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(133)-C(135)110.2(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(133)-C(138)110.2(2)C(104)-C(103)-N(10)109.92(17)C(137)-C(136)-C(128)110.8(2)C(103)-C(104)-C(105)139.33(16)C(137)-C(136)-C(138)109.6(3)C(103)-C(104)-N(9)110.81(17)C(137)-C(136)-C(128)110.8(2)C(103)-C(104)-N(9)110.81(17)C(137)-C(136)-C(138)109.6(3)C(103)-C(104)137.17(19)C(141)-C(140)-N(12)108.1(2)C(106)-C(105)-C(104)137.17(19)C(141)-C(140)-N(11)107.6(3)C(114)-C(105)-C(104)104.79(16)N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123                                                                                                                                                                                            | C(158)-C(159)        | 1.381(6)   | N(7)-C(96)-C(102)    | 107.0(5)   |
| C(161)-C(162)1.351(8)C(99)-C(96)-C(97)109.0(6)C(161)-C(166)1.476(10)C(101)-C(96)-N(7)109.5(3)C(162)-C(163)1.455(8)C(101)-C(96)-C(97)110.1(5)C(163)-C(164)1.263(9)C(101)-C(96)-C(99)117.7(6)C(164)-C(165)1.347(12)C(98)-C(96)-N(7)115.3(4)C(165)-C(166)1.288(10)C(98)-C(96)-C(100)108.3(6)C(131)-C(132)-C(127)117.7(2)C(98)-C(96)-C(102)111.5(9)C(131)-C(132)-C(133)119.9(2)C(102)-C(96)-C(100)104.6(7)C(132)-C(133)-C(134)110.9(2)N(10)-C(103)-C(113)139.47(17)C(132)-C(133)-C(135)112.9(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(133)-C(135)110.2(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(133)-C(138)114.0(2)N(9)-C(104)-C(105)139.33(16)C(137)-C(136)-C(128)110.8(2)C(103)-C(104)-N(19)110.81(17)C(137)-C(136)-C(128)110.8(2)C(103)-C(104)-N(19)110.81(17)C(137)-C(136)-C(138)109.6(3)C(103)-C(104)-N(19)110.81(17)C(141)-C(140)-N(12)108.1(2)C(106)-C(105)-C(114)137.17(19)C(141)-C(140)-N(12)108.1(2)C(106)-C(105)-C(104)137.17(19)C(140)-C(141)-N(11)107.6(3)C(114)-C(105)-C(104)104.79(16)N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123.4(2)                                                                                                                                                                                                                              | C(160)-C(161)        | 1.421(8)   | C(99)-C(96)-N(7)     | 105.4(3)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(161)-C(162)        | 1.351(8)   | C(99)-C(96)-C(97)    | 109.0(6)   |
| C(162)-C(163)1.455(8)C(101)-C(96)-C(97)110.1(5)C(163)-C(164)1.263(9)C(101)-C(96)-C(99)117.7(6)C(164)-C(165)1.347(12)C(98)-C(96)-N(7)115.3(4)C(165)-C(166)1.288(10)C(98)-C(96)-C(100)108.3(6)C(131)-C(132)-C(127)117.7(2)C(98)-C(96)-C(102)111.5(9)C(131)-C(132)-C(133)119.9(2)C(102)-C(96)-C(100)104.6(7)C(132)-C(133)-C(134)110.9(2)N(10)-C(103)-C(113)139.47(17)C(132)-C(133)-C(135)112.9(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(133)-C(135)110.2(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(133)-C(135)110.2(2)C(104)-C(103)-N(10)109.92(17)C(134)-C(136)-C(138)114.0(2)N(9)-C(104)-C(105)139.33(16)C(137)-C(136)-C(128)110.8(2)C(103)-C(104)-N(9)110.81(17)C(137)-C(136)-C(138)109.6(3)C(103)-C(104)-N(9)110.81(17)C(137)-C(136)-C(138)109.6(3)C(103)-C(104)-N(9)110.81(17)N(12)-C(139)-N(11)109.06(19)C(106)-C(105)-C(104)137.17(19)C(141)-C(140)-N(12)108.1(2)C(106)-C(105)-C(104)137.17(19)C(141)-C(140)-N(11)107.6(3)C(114)-C(105)-C(104)104.79(16)N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123.4(2)                                                                                                                                                                                                                                                                    | C(161)-C(166)        | 1.476(10)  | C(101)-C(96)-N(7)    | 109.5(3)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(162)-C(163)        | 1.455(8)   | C(101)-C(96)-C(97)   | 110.1(5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(163)-C(164)        | 1.263(9)   | C(101)-C(96)-C(99)   | 117.7(6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(164)-C(165)        | 1.347(12)  | C(98)-C(96)-N(7)     | 115.3(4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(165)-C(166)        | 1.288(10)  | C(98)-C(96)-C(100)   | 108.3(6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(131)-C(132)-C(127) | 117.7(2)   | C(98)-C(96)-C(102)   | 111.5(9)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(131)-C(132)-C(133) | 119.9(2)   | C(102)-C(96)-C(100)  | 104.6(7)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(132)-C(133)-C(134) | 110.9(2)   | N(10)-C(103)-C(113)  | 139.47(17) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(132)-C(133)-C(135) | 112.9(2)   | C(104)-C(103)-N(10)  | 109.92(17) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(134)-C(133)-C(135) | 110.2(2)   | C(104)-C(103)-C(113) | 110.17(17) |
| $\begin{array}{ccccccc} C(137)-C(136)-C(128) & 110.8(2) & C(103)-C(104)-N(9) & 110.81(17) \\ C(137)-C(136)-C(138) & 109.6(3) & C(103)-C(104)-C(105) & 109.53(17) \\ N(12)-C(139)-N(11) & 109.06(19) & C(106)-C(105)-C(104) & 137.17(19) \\ C(141)-C(140)-N(12) & 108.1(2) & C(106)-C(105)-C(114) & 117.95(19) \\ C(140)-C(141)-N(11) & 107.6(3) & C(114)-C(105)-C(104) & 104.79(16) \\ N(11)-C(142)-C(143) & 106.9(2) & C(105)-C(106)-C(107) & 118.4(2) \\ N(11)-C(142)-C(145) & 110.0(2) & C(108)-C(107)-C(106) & 123.4(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(128)-C(136)-C(138) | 114.0(2)   | N(9)-C(104)-C(105)   | 139.33(16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(137)-C(136)-C(128) | 110.8(2)   | C(103)-C(104)-N(9)   | 110.81(17) |
| N(12)-C(139)-N(11) 109.06(19) C(106)-C(105)-C(104) 137.17(19)   C(141)-C(140)-N(12) 108.1(2) C(106)-C(105)-C(114) 117.95(19)   C(140)-C(141)-N(11) 107.6(3) C(114)-C(105)-C(104) 104.79(16)   N(11)-C(142)-C(143) 106.9(2) C(105)-C(106)-C(107) 118.4(2)   N(11)-C(142)-C(145) 110.0(2) C(108)-C(107)-C(106) 123.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(137)-C(136)-C(138) | 109.6(3)   | C(103)-C(104)-C(105) | 109.53(17) |
| C(141)-C(140)-N(12)108.1(2)C(106)-C(105)-C(114)117.95(19)C(140)-C(141)-N(11)107.6(3)C(114)-C(105)-C(104)104.79(16)N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(12)-C(139)-N(11)   | 109.06(19) | C(106)-C(105)-C(104) | 137.17(19) |
| C(140)-C(141)-N(11)107.6(3)C(114)-C(105)-C(104)104.79(16)N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(141)-C(140)-N(12)  | 108.1(2)   | C(106)-C(105)-C(114) | 117.95(19) |
| N(11)-C(142)-C(143)106.9(2)C(105)-C(106)-C(107)118.4(2)N(11)-C(142)-C(145)110.0(2)C(108)-C(107)-C(106)123.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(140)-C(141)-N(11)  | 107.6(3)   | C(114)-C(105)-C(104) | 104.79(16) |
| N(11)-C(142)-C(145) 110.0(2) C(108)-C(107)-C(106) 123.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N(11)-C(142)-C(143)  | 106.9(2)   | C(105)-C(106)-C(107) | 118.4(2)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N(11)-C(142)-C(145)  | 110.0(2)   | C(108)-C(107)-C(106) | 123.4(2)   |

| C(144)-C(142)-N(11)  | 108.16(19) | C(107)-C(108)-C(109) | 119.7(2)   |
|----------------------|------------|----------------------|------------|
| C(144)-C(142)-C(143) | 108.9(2)   | C(108)-C(109)-C(110) | 127.2(2)   |
| C(144)-C(142)-C(145) | 112.2(2)   | C(114)-C(109)-C(108) | 116.4(2)   |
| C(145)-C(142)-C(143) | 110.5(3)   | C(114)-C(109)-C(110) | 116.4(2)   |
| N(12)-C(146)-C(147)  | 106.4(3)   | C(111)-C(110)-C(109) | 119.7(2)   |
| N(12)-C(146)-C(150)  | 114.5(4)   | C(110)-C(111)-C(112) | 123.0(2)   |
| N(12)-C(146)-C(152)  | 111.8(6)   | C(113)-C(112)-C(111) | 118.8(2)   |
| C(149)-C(146)-N(12)  | 105.0(2)   | C(112)-C(113)-C(103) | 138.10(19) |
| C(149)-C(146)-C(147) | 110.2(3)   | C(112)-C(113)-C(114) | 117.65(19) |
| C(151)-C(146)-N(12)  | 106.9(2)   | C(114)-C(113)-C(103) | 104.24(16) |
| C(151)-C(146)-C(147) | 111.6(3)   | C(109)-C(114)-C(105) | 124.23(19) |
| C(151)-C(146)-C(149) | 116.0(4)   | C(109)-C(114)-C(113) | 124.44(19) |
| C(148)-C(146)-N(12)  | 120.3(6)   | C(113)-C(114)-C(105) | 111.26(17) |
| C(148)-C(146)-C(150) | 99.7(8)    | C(116)-C(115)-N(9)   | 119.37(18) |
| C(148)-C(146)-C(152) | 109.4(9)   | C(120)-C(115)-N(9)   | 119.10(17) |
| C(152)-C(146)-C(150) | 98.4(9)    | C(120)-C(115)-C(116) | 121.52(17) |
| C(155)-C(154)-C(153) | 122.3(4)   | C(115)-C(116)-C(124) | 120.33(19) |
| C(155)-C(154)-C(159) | 117.2(3)   | C(117)-C(116)-C(115) | 118.1(2)   |
| C(159)-C(154)-C(153) | 120.5(3)   | C(117)-C(116)-C(124) | 121.5(2)   |
| C(156)-C(155)-C(154) | 121.3(3)   | C(118)-C(117)-C(116) | 121.1(2)   |
| C(157)-C(156)-C(155) | 121.8(3)   | C(117)-C(118)-C(119) | 120.19(18) |
| C(156)-C(157)-C(158) | 117.1(4)   | C(118)-C(119)-C(120) | 120.9(2)   |
| C(157)-C(158)-C(159) | 123.0(4)   | C(115)-C(120)-C(121) | 120.86(16) |
| C(158)-C(159)-C(154) | 119.5(3)   | C(119)-C(120)-C(115) | 118.07(18) |
| C(160)-C(161)-C(166) | 107.5(8)   | C(119)-C(120)-C(121) | 121.07(19) |
| C(162)-C(161)-C(160) | 131.1(8)   | C(120)-C(121)-C(122) | 112.95(18) |
| C(162)-C(161)-C(166) | 120.5(6)   | C(123)-C(121)-C(120) | 110.79(19) |
| C(161)-C(162)-C(163) | 118.9(5)   | C(123)-C(121)-C(122) | 110.6(2)   |
| C(164)-C(163)-C(162) | 120.6(8)   | C(125)-C(124)-C(116) | 113.1(2)   |
| C(163)-C(164)-C(165) | 116.2(9)   | C(126)-C(124)-C(116) | 110.9(3)   |
| C(166)-C(165)-C(164) | 133.8(7)   | C(126)-C(124)-C(125) | 112.9(3)   |
| C(165)-C(166)-C(161) | 109.9(6)   | C(128)-C(127)-N(10)  | 119.13(18) |
| N(2)-B(1)-N(1)       | 101.72(16) | C(128)-C(127)-C(132) | 121.47(17) |
| O(1)-B(1)-N(1)       | 129.22(19) | C(132)-C(127)-N(10)  | 119.37(18) |
| O(1)-B(1)-N(2)       | 129.07(18) | C(127)-C(128)-C(136) | 120.97(19) |
| N(5)-B(2)-N(6)       | 101.49(15) | C(129)-C(128)-C(127) | 118.2(2)   |
| O(2)-B(2)-N(5)       | 128.59(17) | C(129)-C(128)-C(136) | 120.9(2)   |
| O(2)-B(2)-N(6)       | 129.92(17) | C(130)-C(129)-C(128) | 121.1(2)   |
| N(9)-B(3)-N(10)      | 101.90(16) | C(129)-C(130)-C(131) | 120.5(2)   |
| O(3)-B(3)-N(9)       | 128.96(18) | C(130)-C(131)-C(132) | 121.0(2)   |
| O(3)-B(3)-N(10)      | 129.12(18) | C(127)-C(132)-C(133) | 122.30(17) |

## Crystallographic data for compound 4

N(1)-B(1)

| Identification code          |                            | Compound 4                           | Compound 4                                                                          |  |  |  |
|------------------------------|----------------------------|--------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| Empirical formula            |                            | $C_{47}H_{61}BN_4S$                  | $C_{47}H_{61}BN_4S$                                                                 |  |  |  |
| Formula weight               |                            | 724.86                               | 724.86                                                                              |  |  |  |
| Temperature/K                |                            | 150(2)                               |                                                                                     |  |  |  |
| Crystal system               |                            | monoclinic                           |                                                                                     |  |  |  |
| Space group                  |                            | $P2_1/n$                             |                                                                                     |  |  |  |
| a/Å                          |                            | 12.7222(8)                           |                                                                                     |  |  |  |
| b/Å                          |                            | 19.6535(12)                          |                                                                                     |  |  |  |
| c/Å                          |                            | 17.2812(10)                          |                                                                                     |  |  |  |
| α/°                          |                            | 90                                   |                                                                                     |  |  |  |
| β/°                          |                            | 96.436(2)                            |                                                                                     |  |  |  |
| γ/°                          |                            | 90                                   |                                                                                     |  |  |  |
| Volume/Å <sup>3</sup>        |                            | 4293.7(5)                            |                                                                                     |  |  |  |
| Ζ                            |                            | 4                                    |                                                                                     |  |  |  |
| $\rho_{calc}g/cm^3$          |                            | 1.121                                |                                                                                     |  |  |  |
| µ/mm <sup>-1</sup>           |                            | 0.111                                | 0.111                                                                               |  |  |  |
| F(000)                       |                            | 1568.0                               | 1568.0                                                                              |  |  |  |
| Crystal size/mm <sup>3</sup> |                            | $0.200 \times 0.200 \times 0.100$    | $0.200\times0.200\times0.100$                                                       |  |  |  |
| Radiation                    |                            | MoK $\alpha$ ( $\lambda = 0.71073$ ) | MoKa ( $\lambda = 0.71073$ )                                                        |  |  |  |
| 20 range for data co         | llection/°                 | 3.15 to 51.396                       |                                                                                     |  |  |  |
| Index ranges                 |                            | $-14 \le h \le 15, -21 \le k$        | $\text{-}14 \leq h \leq 15,  \text{-}21 \leq k \leq 23,  \text{-}20 \leq l \leq 21$ |  |  |  |
| Reflections collected        | 1                          | 40925                                | 40925                                                                               |  |  |  |
| Independent reflection       | ons                        | $8130 [R_{int} = 0.0465, H]$         | 8130 [ $R_{int} = 0.0465, R_{sigma} = 0.0318$ ]                                     |  |  |  |
| Data/restraints/param        | neters                     | 8130/0/504                           | 8130/0/504                                                                          |  |  |  |
| Goodness-of-fit on H         | 22                         | 1.024                                | 1.024                                                                               |  |  |  |
| Final R indexes [I>=         | 2σ (I)]                    | $R_1 = 0.0425, wR_2 = 0$             | $R_1 = 0.0425$ , $wR_2 = 0.1077$                                                    |  |  |  |
| Final R indexes [all         | data]                      | $R_1 = 0.0545, wR_2 = 0$             | $R_1 = 0.0545$ , $wR_2 = 0.1163$                                                    |  |  |  |
| Largest diff. peak/hc        | ble / e Å <sup>-3</sup>    | 0.32/-0.21                           | 0.32/-0.21                                                                          |  |  |  |
| Table S3. Bond leng          | ths [Å] and angles [°] for | compound 4                           |                                                                                     |  |  |  |
| S(1)-B(1)                    | 1.7682(17)                 | C(37)-N(3)-C(38)                     | 108.08(13)                                                                          |  |  |  |
| N(3)-C(37)                   | 1.3389(19)                 | C(37)-N(3)-C(44)                     | 124.64(12)                                                                          |  |  |  |
| N(3)-C(38)                   | 1.376(2)                   | C(38)-N(3)-C(44)                     | 127.26(13)                                                                          |  |  |  |
| N(3)-C(44)                   | 1.5073(18)                 | C(1)-N(1)-C(25)                      | 121.58(12)                                                                          |  |  |  |
| N(1)-C(1)                    | 1.3860(19)                 | C(1)-N(1)-B(1)                       | 108.42(12)                                                                          |  |  |  |
| N(1)-C(25)                   | 1.4265(19)                 | C(25)-N(1)-B(1)                      | 129.30(12)                                                                          |  |  |  |

C(37)-N(4)-C(39)

107.78(13)

1.477(2)

| N(4)-C(37)  | 1.327(2)   | C(37)-N(4)-C(40)  | 126.20(14) |
|-------------|------------|-------------------|------------|
| N(4)-C(39)  | 1.369(2)   | C(39)-N(4)-C(40)  | 126.01(14) |
| N(4)-C(40)  | 1.507(2)   | C(2)-N(2)-C(13)   | 121.87(12) |
| N(2)-C(2)   | 1.3965(18) | C(2)-N(2)-B(1)    | 108.44(12) |
| N(2)-C(13)  | 1.4305(19) | C(13)-N(2)-B(1)   | 129.68(12) |
| N(2)-B(1)   | 1.477(2)   | C(11)-C(12)-C(3)  | 111.62(13) |
| C(12)-C(3)  | 1.432(2)   | C(7)-C(12)-C(3)   | 124.43(15) |
| C(12)-C(11) | 1.427(2)   | C(7)-C(12)-C(11)  | 123.94(15) |
| C(12)-C(7)  | 1.385(2)   | N(1)-C(1)-C(11)   | 139.17(14) |
| C(1)-C(2)   | 1.359(2)   | C(2)-C(1)-N(1)    | 110.48(13) |
| C(1)-C(11)  | 1.460(2)   | C(2)-C(1)-C(11)   | 110.34(14) |
| C(2)-C(3)   | 1.462(2)   | N(2)-C(2)-C(3)    | 140.39(14) |
| C(3)-C(4)   | 1.375(2)   | C(1)-C(2)-N(2)    | 109.61(13) |
| C(25)-C(26) | 1.406(2)   | C(1)-C(2)-C(3)    | 109.91(13) |
| C(25)-C(30) | 1.404(2)   | C(12)-C(3)-C(2)   | 104.06(13) |
| C(11)-C(10) | 1.376(2)   | C(4)-C(3)-C(12)   | 117.95(14) |
| C(26)-C(34) | 1.520(3)   | C(4)-C(3)-C(2)    | 137.99(15) |
| C(26)-C(27) | 1.391(2)   | C(26)-C(25)-N(1)  | 118.18(14) |
| C(7)-C(8)   | 1.421(2)   | C(30)-C(25)-N(1)  | 119.10(14) |
| C(7)-C(6)   | 1.430(3)   | C(30)-C(25)-C(26) | 122.66(15) |
| C(30)-C(29) | 1.394(2)   | C(12)-C(11)-C(1)  | 104.07(13) |
| C(30)-C(32) | 1.526(3)   | C(10)-C(11)-C(12) | 118.48(14) |
| C(39)-C(38) | 1.355(2)   | C(10)-C(11)-C(1)  | 137.45(16) |
| C(4)-C(5)   | 1.428(2)   | C(25)-C(26)-C(34) | 120.71(15) |
| C(8)-C(9)   | 1.369(3)   | C(27)-C(26)-C(25) | 117.32(16) |
| C(29)-(C28) | 1.386(3)   | C(27)-C(26)-C(34) | 121.89(16) |
| C(10)-C(9)  | 1.425(2)   | C(12)-C(7)-C(8)   | 116.37(16) |
| C(14)-C(13) | 1.404(2)   | C(12)-C(7)-C(6)   | 116.12(15) |
| C(14)-C(22) | 1.522(3)   | C(8)-C(7)-C(6)    | 127.51(15) |
| C(14)-C(15) | 1.396(2)   | N(4)-C(37)-N(3)   | 109.35(14) |
| C(5)-C(6)   | 1.366(3)   | C(25)-C(30)-C(32) | 120.16(14) |
| C(13)-C(18) | 1.400(2)   | C(29)-C(30)-C(25) | 117.41(16) |
| C(22)-C(24) | 1.533(3)   | C(29)-C(30)-C(32) | 122.43(16) |
| C(22)-C(23) | 1.535(3)   | C(38)-C(39)-N(4)  | 108.19(15) |
| C(44)-C(46) | 1.520(2)   | C(3)-C(4)-C(5)    | 118.39(16) |
| C(44)-C(45) | 1.516(2)   | C(9)-C(8)-C(7)    | 120.33(15) |
| C(44)-C(47) | 1.521(2)   | C(28)-C(29)-C(30) | 120.70(18) |
| C(18)-C(19) | 1.521(3)   | C(39)-C(38)-N(3)  | 106.58(15) |
| C(18)-C(17) | 1.401(3)   | C(11)-C(10)-C(9)  | 118.13(16) |
| C(40)-C(43) | 1.519(3)   | C(13)-C(14)-C(22) | 120.31(15) |
| C(40)-C(41) | 1.530(3)   | C(15)-C(14)-C(13) | 117.60(17) |

| C(40)-C(42)       | 1.499(3)   | C(15)-C(14)-C(22) | 122.09(17) |
|-------------------|------------|-------------------|------------|
| C(31)-C(32)       | 1.528(2)   | C(6)-C(5)-C(4)    | 122.97(16) |
| C(34)-C(35)       | 1.519(3)   | C(14)-C(13)-N(2)  | 119.23(14) |
| C(34)-C(36)       | 1.528(3)   | C(18)-C(13)-N(2)  | 118.71(15) |
| C(27)-C(28)       | 1.378(3)   | C(18)-C(13)-C(14) | 122.06(15) |
| C(32)-C(33)       | 1.530(3)   | C(14)-C(22)-C(24) | 111.12(15) |
| C(15)-C(16)       | 1.374(3)   | C(14)-C(22)-C(23) | 114.52(17) |
| C(16)-C(17)       | 1.374(3)   | C(24)-C(22)-C(23) | 109.03(15) |
| C(19)-C(21)       | 1.534(3)   | N(3)-C(44)-C(46)  | 108.05(12) |
| C(19)-C(20)       | 1.521(3)   | N(3)-C(44)-C(45)  | 108.48(13) |
| N(1)-B(1)-S(1)    | 128.55(12) | N(3)-C(44)-C(47)  | 107.87(13) |
| N(1)-B(1)-N(2)    | 103.03(12) | C(46)-C(44)-C(47) | 110.86(14) |
| N(2)-B(1)-S(1)    | 128.42(12) | C(45)-C(44)-C(46) | 110.53(14) |
| C(28)-C(27)-C(26) | 121.08(18) | C(45)-C(44)-C(47) | 110.92(14) |
| C(8)-C(9)-C(10)   | 122.73(16) | C(13)-C(18)-C(19) | 120.25(15) |
| C(30)-C(32)-C(31) | 110.72(14) | C(13)-C(18)-C(17) | 117.56(18) |
| C(30)-C(32)-C(33) | 113.98(16) | C(17)-C(18)-C(19) | 122.11(17) |
| C(31)-C(32)-C(33) | 109.98(16) | N(4)-C(40)-C(43)  | 109.22(13) |
| C(16)-C(15)-C(14) | 121.08(19) | N(4)-C(40)-C(41)  | 106.81(15) |
| C(15)-C(16)-C(17) | 120.64(18) | C(43)-C(40)-C(41) | 109.42(16) |
| C(27)-C(28)-C(29) | 120.77(17) | C(42)-C(40)-N(4)  | 107.73(14) |
| C(18)-C(19)-C(21) | 110.07(15) | C(42)-C(40)-C(43) | 110.27(19) |
| C(18)-C(19)-C(20) | 114.15(19) | C(42)-C(40)-C(41) | 113.3(2)   |
| C(20-C(19)-C(21)  | 111.0(2)   | C(5)-C(6)-C(7)    | 120.09(15) |
| C(16)-C(17)-C(18) | 120.99(19) | C(26)-C(34)-C(36) | 113.38(17) |
| C(35)-C(34)-C(36) | 109.82(16) | C(35)-C(34)-C(26) | 110.60(15) |

## E. NMR spectra of 1, 3 and 4.

Compound 1



Figure S2 <sup>13</sup>C-NMR (100 MHz) spectrum of 1 in  $C_6D_6$ .



Figure S4 <sup>1</sup>H-NMR (400 MHz) spectrum of 3 in C<sub>6</sub>D<sub>6</sub>.



Figure S6 <sup>11</sup>B-NMR (128.3 MHz) spectrum of 3 in C<sub>6</sub>D<sub>6</sub>.



Figure S7 <sup>1</sup>H-NMR (400 MHz) spectrum of 4 in CDCl<sub>3</sub>.



Figure S8 <sup>13</sup>C-NMR (100 MHz) spectrum of 4 in CDCl<sub>3</sub>.



Figure S9<sup>11</sup>B-NMR (128.3 MHz) spectrum of 4 in CDCl<sub>3</sub>.

## F. UV-Vis and IR spectra of 3 and 4



Figure S10 UV-Vis spectrum of 3 in toluene  $(1.81 \times 10^{-4} \text{ mol/L})$ .



Figure S11 Calculated UV-Vis spectrum of 3



Figure S12 UV-Vis spectrum of 4 in toluene  $(1.77 \times 10^{-4} \text{ mol/L})$ .



Figure S13 Calculated UV-Vis spectrum of 4

| Compounds | peaks/     | nm     | oporgy/oV | orbit           |
|-----------|------------|--------|-----------|-----------------|
| Compounds | experiment | theory | energy/ev | oron            |
| 3         | 579        | 575.07 | 2.1560    | HOMO→LUMO 95.4% |
| 4         | 605        | 524.09 | 2.3657    | HOMO→LUMO 90.5% |

Table S4. Part of UV-Vis data in 3 and 4



Figure S14 IR spectrum for 3.



Figure S15 Calculated IR spectrum for 3.



Figure S16 IR spectrum for 4.



Figure S17 Calculated IR spectrum for 4.

| Table | <b>S5</b> . | Part | of | IR | data | in | 3 | and 4 | ŀ |
|-------|-------------|------|----|----|------|----|---|-------|---|
|       |             |      |    |    |      |    |   |       |   |

| group | experiment | theory |  |
|-------|------------|--------|--|
|       |            |        |  |

| B=O                                  | 1500.584 | 1489.830              |
|--------------------------------------|----------|-----------------------|
| B=S                                  | 1172.693 | 1156.385              |
| C-H(compound <b>3</b> )              | 2544.049 | 2384.795              |
| C-H(compound 4)                      | 2954.877 | 2904.968              |
| CH <sub>3</sub> (compound <b>3</b> ) | 2958.734 | 2927.643 and 3010.337 |
| CH <sub>3</sub> (compound 4)         | 3064.817 | 3007.669              |

## G. Computational details

The geometries of **3** and **4** were optimized by hybrid functional M06- $2x^6$  with the def2-TZVP (default2 split valence triple-zeta size polarization) basis set<sup>7</sup>. Table S6-S7 list the key geometries of **3** and **4**, and the optimized structures are excellent agreement with single-crystal XRD results of **3** and **4**.

| Dandagananatang              | 3          |        | 4          |        |
|------------------------------|------------|--------|------------|--------|
| Bond parameters              | experiment | theory | experiment | theory |
| <i>R</i> <sub>B1-O1/S1</sub> | 1.293(3)   | 1.303  | 1.7682(17) | 1.764  |
| R <sub>B1-N1</sub>           | 1.505(3)   | 1.485  | 1.477(2)   | 1.472  |
| R <sub>B1-N2</sub>           | 1.499(3)   | 1.495  | 1.477(2)   | 1.484  |
| <i>R</i> <sub>N1-C1</sub>    | 1.378(3)   | 1.385  | 1.3860(19) | 1.375  |
| R <sub>N2-C2</sub>           | 1.386(2)   | 1.382  | 1.3965(18) | 1.391  |
| <i>R</i> <sub>C1-C2</sub>    | 1.367(3)   | 1.365  | 1.359(2)   | 1.360  |
| heta N1-B1-O1                | 129.22(19) | 128.51 | 128.55(12) | 126.3  |
| heta N1-B1-N2                | 101.72(16) | 102.9  | 103.03(12) | 103.1  |

**Table S6**. Key geometries in internal coordinates (*R* is bond length in Å,  $\theta$  is bond and  $\phi$  is dihedral angle in degrees °) of **3** and **4** 

| heta <sub>N2-B1-O1</sub> | 129.07(18) | 128.6 | 128.42(12) | 130.6 |
|--------------------------|------------|-------|------------|-------|
| $\phi$ c2n2b-0/s         | 179.3      | 179.5 | 179.7      | 178.9 |

Table S7. Part of NPA charges in 3 and 4

| Atom                                 | 3      | 4      |
|--------------------------------------|--------|--------|
| В                                    | 1.143  | 0.690  |
| O/S                                  | -1.131 | -0.735 |
| C <sub>2</sub> N <sub>2</sub> B-ring | 0.003  | -0.451 |

### H. References

- G. Bepete, F. Hof, K. Huang, K. Kampioti, E. Anglaret, C. Drummond, et al., *physica status solidi (RRL) Rapid Research Letters.*, 2016, **10**(12), 895-899.
- 2. J. Jiang, H. Zhu, Y. Shen, T. Tu, Org Chem Front., 2014, 1(10), 1172-1175.
- 3. N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo, S. P. Nolan, *J Am Chem Soc.*, 2005, **127**(10), 3516-3526.
- 4. L. Weber, D. Eickhoff, A. Chrostowska, A. Dargelos, C. Darrigan, H. -G. Stammler, et al., *Dalton Trans.*, 2019, **48**(45), 16911-16921.
- I. L. Fedushkin, O. V. Markina, A. N. Lukoyanov, A. G. Morozov, E. V. Baranov, M. O. Maslov, S. Y. Ketkov, *Dalton Trans.*, 2013, **42**(22), 7952-7961.
- 6. Y. Zhao, D. G. Truhlar, *Theoretical Chemistry Accounts.*, 2008, **120**(1), 215-241.
- 7. F. Weigend, R. Ahlrichs, *Phys Chem Chem Phys.*, 2005, 7(18), 3297-3305.