Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Crystal-phase Transition and Polyhedron Transformation towards

Evolution of Photoluminescence and Improvement of Thermal Stability

in Efficient Blue-emitting Ba_{0.47-x}Sr_{0.50+x}Al₂Si₂O₈:Eu²⁺

Haoran Li^a, Yujun Liang^a,*, Shiqi Liu^a, Weilun Zhang^a, Yanying Bi^a, Yuming Gong^a, Wen Lei^{a,b,*} ^aEngineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. *E-mail:* <u>yujunliang@sohu.com</u>

^bSchool of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009, Australia. *E-mail: wen.lei@uwa.edu.au*

Fig. S1 (a) SEM images, (b) corresponding elemental mapping of Ba, Sr, Eu, Si, Al and O, respectively, and (c) EDS spectra of Ba_{0.47}Sr_{0.50}Al₂Si₂O₈:0.03Eu²⁺ sample.

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z
O K	33.22	59.34	54.20	9.23	0.1015	1.1560
AlK	15.75	16.68	87.80	7.02	0.0751	1.0443
SiK	14.26	14.51	83.00	7.08	0.0716	1.0698
BaL	19.67	4.09	38.90	5.09	0.1565	0.7557
EuL	1.45	0.27	2.40	28.36	0.0112	0.7533
SrK	15.65	5.10	4.40	13.88	0.1425	0.7931

Table S1 The average EDS results of $Ba_{0.47}Sr_{0.50}Al_2Si_2O_8:0.03Eu^{2+}$ sample.

Table S2 Crystallographic parameters gained from Rietveld refinements for Ba_{0.47-x}Sr_{0.5+x}Al₂Si₂O₈:

Samples	а	b	с	V	β	γ	R_p	$R_{\rm wp}$	Rexp	χ^2
BASOE	5.2943	5.2943	7.7822	188.906	90.0000	120	4.48	6.25	3.32	3.55
<i>x</i> = -45%	5.2938	5.2938	7.7823	188.876	90.0000	120	6.74	8.77	3.62	5.86
<i>x</i> = -35%	5.2893	5.2893	7.7796	188.488	90.0000	120	8.07	10.70	3.51	9.35
<i>x</i> = -25%	5.2857	5.2857	7.7747	188.111	90.0000	120	6.46	8.90	3.42	6.76
<i>x</i> = -15%	8.5492	13.0277	14.3608	1448.568	115.0872	90	6.42	10.30	3.32	9.65
<i>x</i> = -10%	8.5351	13.0249	14.3542	1445.604	115.0529	90	5.41	7.28	3.22	5.12
<i>x</i> = -5%	8.5215	13.0186	14.3449	1441.630	115.0556	90	5.60	7.38	3.21	5.29
BSASOE	8.5094	13.0174	14.3401	1438.683	115.0800	90	4.09	5.54	3.00	3.41
<i>x</i> = 10%	8.4850	13.0031	14.3183	1429.965	115.1532	90	8.56	10.90	4.66	5.51
<i>x</i> = 25%	8.4360	12.9904	14.2953	1417.060	115.2364	90	3.98	5.40	2.91	3.43
<i>x</i> = 40%	8.3970	12.9751	14.2691	1405.413	115.3093	90	8.53	11.10	4.26	6.75
SASOE	8.3831	12.9729	14.2635	1402.086	115.3285	90	4.47	6.37	2.57	6.13

0.03Eu (x = -50.0%-47.0%)

Note: $\alpha = 90^{\circ}$ for all the samples

Fig. S2 The Rietveld refinement XRD patterns of BASOE, x = -25.0%, x = -15.0%, x = 25.0%, x = 25.0% and SASOE samples.

Samulas	CIE Coordinates				
Samples	Х	у			
BASOE	0.1919	0.2365			
x = -45%	0.1816	0.1992			
x = -40%	0.1761	0.1827			
x = -35%	0.1652	0.1471			
x = -30%	0.1543	0.1147			
x = -25%	0.1599	0.1317			
x = -20%	0.1528	0.1122			
<i>x</i> =-15%	0.1523	0.1057			
x = -10%	0.1516	0.1021			
x = -5%	0.1523	0.1038			
BSASOE	0.1520	0.1016			
<i>x</i> = 10%	0.1531	0.0922			
x = 20%	0.1539	0.0895			
x = 25%	0.1541	0.0993			
$\overline{x=30\%}$	0.1548	0.0884			
x = 40%	0.1560	0.0820			
x = 47%	0.1572	0.0958			

Table S3 CIE coordinates for $Ba_{0.47-x}Sr_{0.5+x}Al_2Si_2O_8$: 0.03Eu (x = -50.0%-47.0%)

Fig. S3 The PL spectra of (a) BSASOE, (b) x = 10.0%, (d) x = 25.0%, (g) x = 30.0% and (h) x = 40.0% samples, and the normalized PL spectra of (c) x = 10.0%, (e) x = 25.0% and (i) x = 40.0% samples at various temperatures (298-523 K), respectively; (f) The corresponding emission intensity with one heating and cooling cycles of the x = 25.0% sample from 298 to 523 K.

Fig. S4 (a) The activation energy (Ea) values for BASOE, BSASOE and SASOE samples which are obtained from the temperature-dependent PL intensity. (b) The calculated average U_{iso} values from the XRD Rietveld refinement for Ba_{0.47-x}Sr_{0.50+x}Al₂Si₂O₈:0.03Eu (x = -50.0%-47.0%).

Fig. S5 (a) The emission spectrum of 365 nm LED chip; insert is the photograph of the semi-finished lamp bead. (b) and (c) CIE chromaticity coordinates diagrams for the two fabricated devices in different versions of CIE 1931.