## I. Crystal structure description

|                                    | 1                                     | Devi 1/Distance        | 1          |
|------------------------------------|---------------------------------------|------------------------|------------|
| Bond/Distance                      |                                       | Bond/Distance          |            |
| Gdl-O8 <sup>1</sup>                | 2.347(3)                              | Gdl-O4                 | 2.510(3)   |
| Gd105                              | 2.368(3)                              | Gd101                  | 2.575(3)   |
| Gd1–O1W                            | 2.404(3)                              | Cu1–O7                 | 1.919(3)   |
| Gd1–O9 <sup>i</sup>                | 2.417(3)                              | Cu1–O6                 | 1.926(3)   |
| Gd103                              | 2.444(3)                              | Cu1–O9                 | 1.962(3)   |
| Gd1–O2W                            | 2.468(3)                              | Cu1–O9 <sup>i</sup>    | 1.974(3)   |
| Gd102                              | 2.479(3)                              | Cu1···Cu1 <sup>i</sup> | 3.0449(12) |
| Angle                              | ω                                     | Angle                  | ω          |
| O8 <sup>i</sup> Gd1O5              | 144.48(11)                            | 08 <sup>i</sup> Gd1O4  | 74.24(12)  |
| O8 <sup>i</sup> -Gd1-O1W           | 142.08(12)                            | O5Gd1O4                | 73.30(12)  |
| O5–Gd1–O1W                         | 71.49(12)                             | O1W-Gd1-O4             | 126.89(13) |
| 08 <sup>i</sup> Gd1O9 <sup>i</sup> | 77.54(10)                             | O9 <sup>i</sup> Gd1O4  | 67.99(9)   |
| O5–Gd1–O9 <sup>i</sup>             | 77.26(10)                             | O3–Gd1–O4              | 52.50(10)  |
| O1W-Gd1-O9 <sup>i</sup>            | 136.89(10)                            | O2W-Gd1-O4             | 115.88(12) |
| O8 <sup>i</sup> -Gd1-O3            | 92.07(12)                             | O2–Gd1–O4              | 139.29(12) |
| O5–Gd1–O3                          | 79.42(11)                             | 08 <sup>i</sup> Gd1O1  | 119.48(11) |
| O1W-Gd1-O3                         | 82.71(12)                             | O5Gd1O1                | 73.91(10)  |
| 09 <sup>i</sup> -Gd1-O3            | 120.02(10)                            | O1W-Gd1-O1             | 73.09(11)  |
| O8 <sup>i</sup> -Gd1-O2W           | 71.99(12)                             | 09 <sup>i</sup> Gd1O1  | 70.18(9)   |
| O5–Gd1–O2W                         | 136.61(11)                            | O3–Gd1–O1              | 148.42(10) |
| O1W–Gd1–O2W                        | 70.29(12)                             | O2W-Gd1-O1             | 112.87(12) |
| O9 <sup>i</sup> -Gd1-O2W           | 146.13(11)                            | O2–Gd1–O1              | 50.97(10)  |
| O3–Gd1–O2W                         | 76.12(11)                             | O4Gd1O1                | 131.15(10) |
| O8 <sup>i</sup> -Gd1-O2            | 74.50(12)                             | O7–Cu1–O6              | 89.25(13)  |
| O5Gd1O2                            | 124.71(11)                            | O7–Cu1–O9              | 96.54(12)  |
| O1W-Gd1-O2                         | 93.68(13)                             | O6–Cu1–O9              | 167.27(13) |
| O9 <sup>i</sup> -Gd1-O2            | 80.31(11)                             | 07–Cu1–O9 <sup>i</sup> | 172.51(13) |
| O3–Gd1–O2                          | 153.18(11)                            | 06–Cu1–O9 <sup>i</sup> | 96.63(12)  |
| O2W-Gd1-O2                         | 77.65(12)                             | 09–Cu1–O9 <sup>i</sup> | 78.64(12)  |
|                                    | · · · · · · · · · · · · · · · · · · · |                        |            |

Table S1. Selected bond lengths, the shortest interatomic distances d (Å) and angles  $\omega$  (°) for  $\mathbf{1}_{Gd}$ .

Symmetry code: (i) -x+1, -y+1, -z+1.

| Table S2. Hydrogen | bonding parameters | of structure $1_{Gd}$ |
|--------------------|--------------------|-----------------------|
|--------------------|--------------------|-----------------------|

| Fragment D–H····A         | Distance/ Å | D II A /9 |          |              |
|---------------------------|-------------|-----------|----------|--------------|
|                           | D-H         | Н…А       | D····A   | $D-\Pi^{*}A$ |
| O1–H1WB…O1S               | 0.88        | 1.85      | 2.698(6) | 159.3        |
| O1W–H1WA…O3 <sup>i</sup>  | 0.86        | 1.82      | 2.635(4) | 157.3        |
| O2W–H2WB…O1W <sup>i</sup> | 0.81        | 2.37      | 3.140(5) | 159.4        |
| O2W–H2WA···O2S            | 0.76        | 2.08      | 2.721(7) | 142.3        |
| O1S-H1SO…O1               | 0.99        | 1.73      | 2.712(5) | 177.8        |
| O2S-H2SO····O2            | 0.95        | 1.90      | 2.766(7) | 150.0        |

Symmetry code: (i) -x, -y+1, -z+1.

| Bond/Distance                          | d          | Bond/Distance                          | d          |
|----------------------------------------|------------|----------------------------------------|------------|
| Dy1–O10 <sup>i</sup>                   | 2.337(2)   | Cu1–O9                                 | 1.942(2)   |
| Dy1–O7                                 | 2.441(2)   | Na1–O5 <sup>ii</sup>                   | 2.652(3)   |
| Dy1–O1 <sup>ii</sup>                   | 2.442(2)   | Na1–O2                                 | 2.254(3)   |
| Dy1–O5                                 | 2.254(2)   | Na1–O4 <sup>ii</sup>                   | 2.370(3)   |
| Dy1–O8                                 | 2.310(2)   | Na1–O4                                 | 2.238(3)   |
| Dy1–O12 <sup>i</sup>                   | 2.327(2)   | Na1–O3                                 | 2.277(5)   |
| Dy106                                  | 2.436(3)   | Dy1…Cu1                                | 3.5090(5)  |
| Dy1–O2 <sup>ii</sup>                   | 2.452(2)   | Dy1…Cu1 <sup>i</sup>                   | 3.5104(6)  |
| Cu1-O10                                | 1.966(2)   | Dy1…Na1 <sup>ii</sup>                  | 3.7301(14) |
| Cu1–O10 <sup>i</sup>                   | 1.969(2)   | Cu1…Cu1 <sup>i</sup>                   | 3.0371(8)  |
| Cu1011                                 | 1.947(2)   | Na1…Na1 <sup>ii</sup>                  | 3.366(3)   |
| Angle                                  | ω          | Angle                                  | ω          |
| O10 <sup>i</sup> –Dy1–O7               | 76.69(8)   | O8–Dy1–O1 <sup>ii</sup>                | 143.31(8)  |
| O10 <sup>i</sup> –Dy1–O1 <sup>ii</sup> | 77.11(8)   | 08–Dy1–O12 <sup>i</sup>                | 114.16(9)  |
| O10 <sup>i</sup> –Dy1–O6               | 128.04(8)  | O8–Dy1–O6                              | 82.33(10)  |
| O10 <sup>i</sup> –Dy1–O2 <sup>ii</sup> | 127.15(10) | O8–Dy1–O2 <sup>ii</sup>                | 157.68(9)  |
| O7–Dy1–O2 <sup>ii</sup>                | 100.78(9)  | O12 <sup>i</sup> –Dy1–O10 <sup>i</sup> | 74.42(8)   |
| O1 <sup>ii</sup> –Dy1–O7               | 73.33(8)   | 012 <sup>i</sup> –Dy1–O7               | 143.83(8)  |
| O1 <sup>ii</sup> –Dy1–O6               | 97.54(10)  | O12 <sup>i</sup> –Dy1–O1 <sup>ii</sup> | 79.35(9)   |
| O1 <sup>ii</sup> –Dy1–O2 <sup>ii</sup> | 52.85(8)   | O12 <sup>i</sup> –Dy1–O6               | 156.43(9)  |
| O5–Dy1–O10 <sup>i</sup>                | 140.73(9)  | O12 <sup>i</sup> –Dy1–O2 <sup>ii</sup> | 80.30(10)  |
| O5–Dy1–O7                              | 133.31(9)  | O6–Dy1–O7                              | 52.98(9)   |
| O5–Dy1–O1 <sup>ii</sup>                | 129.60(8)  | O6–Dy1–O2 <sup>ii</sup>                | 79.37(10)  |
| O5–Dy1–O8                              | 86.87(9)   | O10Cu1O10 <sup>i</sup>                 | 78.96(10)  |
| O5–Dy1–O12 <sup>i</sup>                | 82.61(9)   | O11-Cu1-O10                            | 94.92(11)  |
| O5–Dy1–O6                              | 81.61(9)   | O11–Cu1–O10 <sup>i</sup>               | 171.59(10) |
| O5–Dy1–O2 <sup>ii</sup>                | 77.95(9)   | O9–Cu1–O10 <sup>i</sup>                | 95.05(9)   |
| 08–Dy1–O10 <sup>i</sup>                | 74.55(8)   | O9–Cu1–O10                             | 171.47(11) |
| 08–Dy1–O7                              | 77.82(9)   | O9–Cu1–O11                             | 91.55(10)  |

**Table S3.** Selected bond lengths, the shortest interatomic distances d (Å) and angles  $\omega$  (°) for  $2_{Dy}$ .

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1.

| Table S4. Hydrogen bonding parameters of structure 2 | Dy· |
|------------------------------------------------------|-----|
|------------------------------------------------------|-----|

| Fragment D–H…A        | Distance/ Å | D H A /º |           |               |
|-----------------------|-------------|----------|-----------|---------------|
|                       | D-H         | H···A    | D····A    | $D-\Pi^{**}A$ |
| O3–H3…O6 <sup>i</sup> | 0.82        | 1.94     | 2.727(5)  | 161           |
| O10–H10…O13           | 0.72        | 2.04     | 2.701(9)  | 154           |
| O10–H10…O13A          | 0.72        | 2.05     | 2.727(11) | 158           |

Symmetry codes: (i) 1-x, 2-y, 1-z.

Bond/Distance d Bond/Distance d Gd1-05 2.288(3) Cu1-09 1.947(3)Gd1-06 2.467(4)Na1-O5<sup>i</sup> 2.572(4)Gd1--010 Na1–O4<sup>i</sup> 2.364(3)2.385(4)Gd1–O1<sup>i</sup> 2.471(3) Na1–O4 2.226(4)Gd1-08 2.348(3) Na1–O2 2.238(4) Gd1-07 2.451(3) Na1–O3 2.265(5) Gd1–O12<sup>ii</sup> 2.336(3) Gd1…Cu1 3.501(3) Gd1–O2<sup>i</sup>  $Gd1\cdots Cu1^{ii}$ 2.483(3) 3.502(3) Cu1-O10 1.965(3)  $Gd1 \cdots Na1^i$ 3.704(3) Cu1-O10<sup>ii</sup> 1.978(3)  $Cu1{\cdots}Cu1^{ii}$ 3.061(3) Cu1-O111.948(3) Na1…Na1<sup>i</sup> 3.352(3) Angle Angle ω ω O5–Gd1–O6 81.35(12) O8-Gd1-O7 143.21(11) O5-Gd1-O10 141.84(10)  $O8-Gd1-O2^i$ 79.26(13) 05-Gd1-O1<sup>i</sup> 129.06(11) O7-Gd1-O6 52.99(11) 07–Gd1–O1<sup>i</sup> O5–Gd1–O8 83.54(12) 73.40(11)  $O7-Gd1-O2^i$ O5-Gd1-O7 132.96(11) 101.88(13) O12<sup>ii</sup>-Gd1-O6 O5–Gd1–O12<sup>ii</sup> 87.24(11) 82.37(12) O12<sup>ii</sup>-Gd1-O10 O5-Gd1-O2<sup>i</sup> 77.25(11) 74.82(11)  $O12^{ii}$ -Gd1-O1<sup>i</sup> O6-Gd1-O1<sup>i</sup> 96.58(12) 143.31(9) O6-Gd1-O2<sup>i</sup> 79.66(12) 012<sup>ii</sup>-Gd1-O8 115.08(12) O12<sup>ii</sup>-Gd1-O7 O10-Gd1-O6 127.60(11) 77.12(12) 010-Gd1-O1i  $O12^{ii}$ -Gd1-O2<sup>i</sup> 157.77(11) 77.23(11) O10-Gd1-O7 75.97(12) O10-Cu1-O10<sup>ii</sup> 78.16(13) O11-Cu1-O10<sup>ii</sup> O10-Gd1-O2<sup>i</sup> 126.90(10) 96.09(13)  $O1^i$ -Gd1- $O2^i$ 52.68(10) O11-Cu1-O10 172.01(12) O8–Gd1–O6 156.30(10) O9-Cu1-O10<sup>ii</sup> 171.34(11) 95.25(13) O8-Gd1-O10 O9-Cu1-O10 74.54(11) 08-Gd1-O1<sup>i</sup> 79.01(11) O9-Cu1-O11 90.99(13)

Table S5. Selected bond lengths, the shortest interatomic distances d (Å) and angles  $\omega$  (°) for  $2_{Gd}$ .

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+2.

| Fragment D–H…A        | Distance/ Å | D H A /º |           |     |
|-----------------------|-------------|----------|-----------|-----|
|                       | D-H         | H···A    | D····A    |     |
| O3–H3…O6 <sup>i</sup> | 0.98        | 1.85     | 2.725(6)  | 148 |
| O10–H10…O13A          | 0.76        | 1.99     | 2.719(10) | 161 |
| O10–H10…O13B          | 0.76        | 1.92     | 2.670(15) | 165 |

Symmetry codes: (i) 1-x, 1-y, 1-z.

| Bond/Distance            | d          | Bond/Distance                          | d          |
|--------------------------|------------|----------------------------------------|------------|
| Tb1–O1 <sup>i</sup>      | 2.465(3)   | Cu1–O10 <sup>ii</sup>                  | 1.982(2)   |
| Tb1O10                   | 2.342(3)   | Cu1–O7 <sup>ii</sup>                   | 2.432(4)   |
| Tb1–O5                   | 2.265(3)   | Na1–O5 <sup>i</sup>                    | 2.576(4)   |
| Tb1–O7                   | 2.426(3)   | Na1–O2                                 | 2.240(4)   |
| Tb1–O8                   | 2.335(3)   | Na1–O3                                 | 2.280(4)   |
| Tb1–O12 <sup>ii</sup>    | 2.317(3)   | Na1–O4 <sup>i</sup>                    | 2.381(3)   |
| Tb1–O2 <sup>i</sup>      | 2.457(3)   | Tb1…Cu1                                | 3.4931(8)  |
| Tb1–O6                   | 2.455(3)   | Tb1…Cu1 <sup>ii</sup>                  | 3.4844(7)  |
| Cu1–O9                   | 1.948(3)   | Tb1…Na1 <sup>i</sup>                   | 3.699(2)   |
| Cu1011                   | 1.948(3)   | Cu1…Cu1 <sup>ii</sup>                  | 3.0550(9)  |
| Cu1-O10                  | 1.970(3)   | Na1…Na1 <sup>i</sup>                   | 3.344(2)   |
| Angle                    | ω          | Angle                                  | ω          |
| O10–Tb1–O1 <sup>i</sup>  | 77.32(10)  | O12 <sup>ii</sup> –Tb1–O1 <sup>i</sup> | 143.05(9)  |
| O10–Tb1–O7               | 75.58(10)  | O12 <sup>ii</sup> –Tb1–O10             | 75.02(10)  |
| O10–Tb1–O2 <sup>i</sup>  | 126.78(10) | O12 <sup>ii</sup> –Tb1–O7              | 76.71(10)  |
| O10–Tb1–O6               | 127.52(10) | O12 <sup>ii</sup> –Tb1–O8              | 115.63(11) |
| O5–Tb1–O1 <sup>i</sup>   | 129.39(10) | O12 <sup>ii</sup> –Tb1–O2 <sup>i</sup> | 157.74(11) |
| O5–Tb1–O10               | 141.82(11) | O12 <sup>ii</sup> –Tb1–O6              | 82.47(11)  |
| O5–Tb1–O7                | 133.10(11) | O2 <sup>i</sup> –Tb1–O1 <sup>i</sup>   | 52.83(10)  |
| O5–Tb1–O8                | 83.53(10)  | O6–Tb1–O1 <sup>i</sup>                 | 95.63(11)  |
| O5–Tb1–O12 <sup>ii</sup> | 87.03(10)  | O6–Tb1–O2 <sup>i</sup>                 | 79.75(11)  |
| O5–Tb1–O2 <sup>i</sup>   | 77.23(10)  | O9–Cu1–O10 <sup>ii</sup>               | 171.80(12) |
| O5–Tb1–O6                | 81.55(11)  | O9–Cu1–O10                             | 94.95(11)  |
| O7–Tb1–O1 <sup>i</sup>   | 73.02(9)   | O9–Cu1–O7 <sup>ii</sup>                | 93.32(12)  |
| O7–Tb1–O2 <sup>i</sup>   | 102.65(10) | O11–Cu1–O9                             | 91.20(11)  |
| O7–Tb1–O6                | 53.13(11)  | O11–Cu1–O10                            | 171.83(13) |
| O8–Tb1–O1 <sup>i</sup>   | 79.42(9)   | O11–Cu1–O10 <sup>ii</sup>              | 95.59(11)  |
| O8-Tb1-O10               | 74.82(10)  | O11–Cu1–O7 <sup>ii</sup>               | 88.98(12)  |
| O8–Tb1–O7                | 143.12(10) | O10–Cu1–O10 <sup>ii</sup>              | 78.75(11)  |

**Table S7.** Selected bond lengths, the shortest interatomic distances d (Å) and angles  $\omega$  (°) for  $\mathbf{2}_{Tb}$ .

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*.

## Table S8. Hydrogen bonding parameters of structure $2_{Tb}$ .

| Fragment D–H···A      | Distance/ Å |      |          | D HA /º       |
|-----------------------|-------------|------|----------|---------------|
|                       | D-H         | Н…А  | D····A   | $D-\Pi^{**}A$ |
| O3–H3…O6 <sup>i</sup> | 0.84        | 1.94 | 2.728(6) | 156           |
| O10–H10…O13A          | 0.87        | 1.86 | 2.706(7) | 165           |
| O10–H10…O13B          | 0.87        | 1.83 | 2.67(2)  | 162           |

Symmetry codes: (i) 1-x, 1-y, 1-z.





Fig. S1. Experimental PXRD patterns for a series of  $1_{Ln}$  (Ln = Gd, Tb, Dy, Ho, Yb) measured at 273 K and their comparison with calculated data for  $1_{Gd}$ .



Fig. S2. Comparison of geometric parameters of the tetranuclear anionic fragments of  $2_{Dy}$  and published complex ( ${}^{i}Pr_{2}NH_{2}$ )<sub>2</sub>[Cu<sub>2</sub>Dy<sub>2</sub>(OH)<sub>2</sub>(piv)<sub>10</sub>].



**Fig. S3.** Experimental PXRD patterns for a series of  $2_{Ln}$  (Ln = Tb, Dy, Ho, Yb) measured at 273 K and their comparison with calculated data for  $2_{Tb}$  (for  $2_{Tb}$ ) and  $2_{Dy}$  (for  $2_{Dy}$ ,  $2_{Ho}$ ,  $2_{Yb}$ ).



**Fig. S4.** Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{1}_{Tb}$  at T = 2 K under various dc magnetic fields (Oe). Solid lines are visual guides.



**Fig. S5.** Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{1}_{Dy}$  at T = 2 K under various *dc* magnetic fields (Oe). Solid lines are visual guides.



Fig. S6. Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{1}_{Ho}$  under H = 5000 Oe at temperatures from 18 to 2 K. Solid lines are visual guides.



Fig. S7. Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{1}_{Yb}$  at T = 2 K under various dc magnetic fields (Oe). Solid lines are visual guides.



**Fig. S8.** Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{2}_{Tb}$  under H = 5000 Oe at temperatures from 18 to 2 K. Solid lines are visual guides.



**Fig. S9.** Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $2_{Dy}$  at T = 2 K under various *dc* magnetic fields (Oe). Solid lines are visual guides.



Fig. S10. Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{2}_{Ho}$  under H = 5000 Oe at temperatures from 18 to 2 K. Solid lines are visual guides.



**Fig. S11.** Frequency dependencies of real,  $\chi'$  (left) and imaginary,  $\chi''$  (right) components of dynamic magnetic susceptibility for complex  $\mathbf{2}_{Yb}$  at T = 2 K under various *dc* magnetic fields (Oe). Solid lines are visual guides.



















## Table S12. Fitting of the $\tau$ vs. T dependences for $2_{Yb}$





**Table S13.** Fitting of the  $\tau$  *vs. T* and  $\tau$  *vs. H* dependences for  $\mathbf{2}_{\mathbf{Yb}}$ .

