Supertetrahedral Anions in the Phosphidosilicates Na_{1.25}Ba_{0.875}Si₃P₅ and Na₃₁Ba₅Si₅₂P₈₃

Arthur Haffner, Otto E. O. Zeman, Thomas Bräuniger and Dirk Johrendt*

Abstract: Solid ionic conductors are one key component of all-solid-state batteries, and recent studies with lithium, sodium and potassium phosphidosilicates revealed remarkable ion conduction capabilities in these compounds. We report the synthesis and crystal structures of two quaternary phosphidosilicates with sodium and barium, which crystallize in new structures types. Na_{1.25}Ba_{0.875}Si₃P₅ contains layers of T3 supertetrahedra, while Na₃₁Ba₅Si₅₂P₈₃ forms defect T5 entities and contains Si-Si bonds and P₃ trimers. Though T₁-relaxometry data indicate a relatively low activation energy for Na⁺ migration of 0.16 eV, the crystal structures lack sufficient three-dimensional migration paths necessary for fast sodium ion conductivity.

Table of Contents

- Additional crystallographic data of Na_{1.25}Ba_{0.875}Si₃P₅ (Table S1, Table S2, Table S3) and Na₃₁Ba₅Si₅₂P₈₃ (Table S4, Table S5, Table S6)
- **Topology and ball-stick-models** of the anionic network of Na_{1.25}Ba_{0.875}Si₃P₅ (Figure S1, Figure S3) and Na₃₁Ba₅Si₅₂P₈₃ (Figure S2, Figure S4)
- Powder Diffraction and Rietveld refinements of Na_{1.25}Ba_{0.875}Si₃P₅ and Na₃₁Ba₅Si₅₂P₈₃ (Table S7)
- Elemental analysis by EDX and scanning electron microscopy of Na_{1.25}Ba_{0.875}Si₃P₅ (Figure S5, Table S8) and Na₃₁Ba₅Si₅₂P₈₃ (Figure S6, Table S9)
- Geometrical calculation for possible sodium migration pathways in Na₃₁Ba₅Si₅₂P₈₃ (Figure S7)
- Solid-state ²³Na NMR for spin lattice relaxations times of Na₃₁Ba₅Si₅₂P₈₃ for the estimation of the activation energy of the sodium ion conduction (Figure S8)

atom	Wyckoff	x	у	Z	U _{eq}	Occ. (<1)
Ba1	8f	0.000000	0.20847 (2)	0.08780 (4)	0.01843 (16)	0.4052 (19)
Ba2	4c	0.000000	0.41347 (2)	0.250000	0.0391 (2)	0.808 (3)
Ba3	4c	0.000000	0.79762 (2)	0.250000	0.01851 (9)	
Na1	8f	0.000000	0.20847 (2)	0.08780 (4)	0.01843 (16)	0.595 (2)
Na2	8e	0.2456 (5)	0.000000	0.000000	0.0399 (8)	0.823 (5)
Na3	4c	0.000000	0.41347 (2)	0.250000	0.0391 (2)	0.192 (3)
Na4	4c	0.000000	0.91409 (13)	0.250000	0.0478 (15)	0.733 (11)
Si1	16 <i>h</i>	0.25116 (9)	0.10945 (2)	0.08484 (6)	0.01093 (13)	
Si2	8f	0.000000	0.32129 (3)	0.07770 (9)	0.01184 (18)	
Si3	4c	0.000000	0.03358 (4)	0.250000	0.0114 (2)	
Si4	4c	0.000000	0.53264 (4)	0.250000	0.0116 (2)	
Si5	4c	0.000000	0.68381 (4)	0.250000	0.0118 (2)	
P1	16 <i>h</i>	0.26239 (9)	0.35654 (2)	0.08266 (6)	0.01537 (14)	
P2	8g	0.23757 (13)	0.14767 (3)	0.250000	0.01199 (16)	
P3	8g	0.25204 (13)	0.49366 (3)	0.250000	0.01388 (17)	
P4	8f	0.000000	0.06891 (3)	0.07724 (8)	0.01158 (16)	
P5	8f	0.000000	0.27958 (3)	0.58292 (9)	0.0243 (2)	
P6	8f	0.000000	0.56828 (3)	0.07749 (8)	0.01209 (17)	
P7	4c	0.000000	0.28421 (4)	0.250000	0.0148 (2)	

Table S2. Atomic displacement parameters (Å²) of Na_{1.25}Ba_{0.875}Si₃P₅.

atom	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Ba1	0.0253 (3)	0.0157 (2)	0.0143 (2)	0.000	0.000	0.00122 (15)
Ba2	0.0799 (5)	0.0163 (2)	0.0211 (2)	0.000	0.000	0.000
Ba3	0.02080 (16)	0.01630 (15)	0.01843 (16)	0.000	0.000	0.000
Na1	0.0253 (3)	0.0157 (2)	0.0143 (2)	0.000	0.000	0.00122 (15)
Na2	0.070 (2)	0.0303 (12)	0.0192 (11)	0.000	0.000	-0.0053 (9)
Na3	0.0799 (5)	0.0163 (2)	0.0211 (2)	0.000	0.000	0.000
Na4	0.048 (3)	0.030 (2)	0.066 (3)	0.000	0.000	0.000
Si1	0.0089 (3)	0.0139 (3)	0.0100 (3)	-0.0006 (2)	-0.0002 (2)	0.0011 (2)
Si2	0.0118 (4)	0.0136 (4)	0.0101 (4)	0.000	0.000	0.0010 (3)
Si3	0.0089 (5)	0.0128 (6)	0.0127 (6)	0.000	0.000	0.000
Si4	0.0098 (6)	0.0126 (6)	0.0125 (6)	0.000	0.000	0.000
Si5	0.0116 (6)	0.0135 (6)	0.0103 (6)	0.000	0.000	0.000
P1	0.0111 (3)	0.0220 (3)	0.0131 (3)	-0.0019 (2)	-0.0018 (2)	0.0060 (2)
P2	0.0097 (4)	0.0154 (4)	0.0108 (4)	-0.0001 (3)	0.000	0.000

P3	0.0095 (4)	0.0130 (4)	0.0191 (4)	-0.0003 (3)	0.000	0.000
P4	0.0094 (4)	0.0130 (4)	0.0124 (4)	0.000	0.000	0.0005 (3)
P5	0.0485 (7)	0.0136 (4)	0.0109 (4)	0.000	0.000	-0.0003 (3)
P6	0.0100 (4)	0.0140 (4)	0.0123 (4)	0.000	0.000	0.0003 (3)
P7	0.0212 (6)	0.0145 (6)	0.0086 (5)	0.000	0.000	0.000

Table S3. Selected bond distances in $Na_{1.25}Ba_{0.875}Si_3P_5$ in Å.

				1		1	
atoms	distance	atoms	distance	atoms	distance	atoms	distance
Ba1—P5 ⁱ	3.0749 (11)	Ba2—Na4 ^{ix}	3.5840 (1)	Na2—P4 ^{xx}	3.057 (2)	Si1—P4	2.2707 (9)
Ba1—P7	3.1458 (12)	Ba2—Na4×	3.5840 (1)	Na2—P6 ^{ix}	3.078 (2)	Si2—P1	2.2323 (9)
Ba1—P2	3.2290 (9)	Ba2—Si2 ⁱ	3.6762 (11)	Na2—P6 ^{iv}	3.078 (2)	Si2—P1 ^{viii}	2.2324 (9)
Ba1—P2 ⁱⁱ	3.2290 (9)	Ba2—Si2	3.6764 (11)	Na2—Si3 ^{xx}	3.4777 (17)	Si2—P5 ⁱ	2.2785 (14)
Ba1—P1 [™]	3.3735 (8)	Ba2—P6 ^{xi}	3.6844 (9)	Na2—Si3	3.4777 (17)	Si2—P7	2.2904 (12)
Ba1—P1 ^{iv}	3.3735 (8)	Ba2—P6 ^{vii}	3.6844 (9)	Na2—Si4 ^{ix}	3.4995 (18)	Si3—P3 ^x	2.2382 (12)
Ba1—Ba1 ⁱ	3.5971 (9)	Ba3—P5 ^{xii}	3.2174 (11)	Na2—Si4i ^v	3.4995 (18)	Si3—P3 ^{xix}	2.2382 (12)
Ba1—P5 ^v	3.6074 (2)	Ba3—P5 ^{xiii}	3.2174 (11)	Na2—Na2 ^{xx}	3.521 (7)	Si3—P4	2.2626 (12)
Ba1—P5 ^{vi}	3.6074 (2)	Ba3—P1 ^{xiv}	3.2210 (7)	Na2—Na2 ^{xxi}	3.646 (7)	Si3—P4 ⁱ	2.2627 (12)
Ba1—Ba3 ^{vii}	3.7517 (5)	Ba3—P1×v	3.2210 (7)	Na4—P1 ^{xvii}	3.192 (3)	Si4—P3	2.2424 (12)
Ba1—Si1	3.8241 (8)	Ba3—P1 ^{xvi}	3.2210 (7)	Na4—P1 ^{xvi}	3.192 (3)	Si4—P3 ⁱⁱ	2.2425 (12)
Ba1—Si1 ^{viii}	3.8242 (8)	Ba3—P1 ^{xvii}	3.2210 (7)	Na4—P1 ^{xiv}	3.192 (3)	Si4—P6	2.2658 (12)
Ba2—P3 ⁱⁱ	3.2754 (10)	Ba3—P7 ^{xvii}	3.6129 (2)	Na4—P1×v	3.192 (3)	Si4—P6 ⁱ	2.2658 (12)
Ba2—P3	3.2755 (10)	Ba3—P7 ^{xviii}	3.6129 (2)	Na4—P3 ^{xiv}	3.242 (4)	Si5—P5×iii	2.2336 (13)
Ba2—P1 ^{viii}	3.2775 (8)	Ba3—Na4	3.968 (5)	Na4—P3 ^{xvii}	3.242 (4)	Si5—P5 ^{xii}	2.2336 (13)
Ba2—P1 ⁱⁱ	3.2775 (8)	Na2—P3 ^{xix}	2.7807 (1)	Si1—P1 ⁱ v	2.1913 (9)	Si5—P2 ^{xvii}	2.2483 (12)
Ba2—P1 ⁱ	3.2775 (8)	Na2—P3 ^{iv}	2.7807 (1)	Si1—P2	2.2492 (8)	Si5—P2 ^{xiv}	2.2483 (12)
Ba2—P1	3.2776 (8)	Na2—P4	3.057 (2)	Si1—P6 ^{ix}	2.2707 (9)	Si1—P4	2.2707 (9)

Symmetry codes: (i) x, y, -z+1/2; (ii) -x, y, -z+1/2; (iii) x-1/2, -y+1/2, -z; (iv) -x+1/2, -y+1/2, -z; (v) -x+1/2, -y+1/2, z-1/2; (vi) -x-1/2, -y+1/2, z-1/2; (vi) -x-1/2, -y+1/2, z-1/2; (vii) -x, -y+1, z-1/2; (vii) -x, -y+1, -z+1; (xiv) -x+1/2, y+1/2, z; (x) x-1/2, y-1/2, z+1/2; (x) x-1/2, y-1/2; (x) x-1/2, y-1/2; (x) x-1/2; (x) x-1/2, y-1/2; (x) x-1/2; (x) x-1/2

Table S4. Fractional atomic coordinates, equivalent displacement parameters (A^2) and occupancy factors of $Na_{31}Ba_5Si_{52}P_{33.}$

atom	Wyckoff	x	у	Z	U _{eq}	Occ. (<1)
Ba1	8f	0.03838(3)	0.28816(2)	0.44990(3)	0.03319(13)	0.5
Ba2	8f	0.42512(2)	0.12558(2)	0.29605(2)	0.02363(6)	
Ba3	8f	0.43398(2)	0.00233(2)	0.06545(2)	0.03283(7)	
Na1	8f	0.00223(14)	0.10926(17)	0.49733(14)	0.1048(16)	
Na2	8f	0.00686(11)	0.16477(9)	0.36852(12)	0.0533(6)	

Na3	8f	0.0430(3)	0.30328(17)	0.4023(4)	0.083 (2)	0.5
Na4	8f	0.0624(7)	0.3881(3)	0.2299(5)	0.135(5)	0.5
Na5	8f	0.0636(3)	0.4140 (3)	0.2057 (4)	0.082 (2)	0.5
Na6	8f	0.0721 (4)	0.2081 (2)	0.5718 (3)	0.0715 (18)	0.5
Na7	8f	0.0875 (2)	0.44421 (11)	0.11510 (16)	0.0598 (13)	0.743 (8)
Na8	8f	0.24210 (12)	0.39581 (6)	0.19832 (9)	0.0392 (5)	
Na9	8f	0.24662 (15)	0.33869 (11)	0.32971 (16)	0.0814 (11)	
Na10	8f	0.2477 (2)	0.44216 (9)	0.04221 (14)	0.0820 (10)	
Na11	8f	0.2522 (3)	0.2775 (2)	0.4487 (4)	0.224 (4)	
Na12	8f	0.25708 (15)	0.30915 (7)	0.00968 (9)	0.0502 (6)	
Na13	8f	0.3839 (2)	0.39190 (13)	0.1225 (2)	0.110 (2)	0.892 (10)
Na14	8f	0.40704 (13)	0.14171 (8)	0.07478 (9)	0.0459 (5)	
Na15	8f	0.41501 (15)	0.34166 (8)	0.29286 (11)	0.0545 (6)	
Na16	8f	0.43369 (13)	0.25448 (7)	0.09847 (8)	0.0443 (5)	
Na17	8f	0.4914 (2)	0.4690 (2)	0.1078 (2)	0.130 (3)	0.878 (10)
Na18	4e	0.000000	0.0063 (2)	0.250000	0.096 (2)	0.972 (15)
Na19	4e	0.000000	0.23869 (13)	0.250000	0.0637 (11)	
Si1	8f	0.12797 (5)	0.35015 (3)	0.06876 (4)	0.01613 (19)	
Si2	8f	0.14325 (6)	0.23599 (3)	0.06283 (4)	0.01532 (19)	
Si3	8f	0.14759 (5)	0.29167 (3)	0.19249 (4)	0.01338 (17)	
Si4	8f	0.15704 (5)	0.12513 (3)	0.05375 (4)	0.01428 (18)	
Si5	8f	0.16056 (5)	0.01184 (3)	0.04449 (4)	0.01362 (18)	
Si6	8f	0.16119 (5)	0.06083 (3)	0.17363 (4)	0.01297 (17)	
Si7	8f	0.16278 (5)	0.10598 (3)	0.54268 (4)	0.01372 (18)	
Si8	8f	0.16296 (5)	0.17611 (3)	0.18630 (4)	0.01279 (17)	
Si9	8f	0.16315 (5)	0.04632 (3)	0.41873 (4)	0.01474 (18)	
Si10	8f	0.16454 (5)	0.22990 (3)	0.31329 (4)	0.01346 (18)	
Si11	8f	0.16732 (5)	0.11122 (3)	0.30336 (4)	0.01368 (18)	
Si12	8f	0.16750 (5)	0.16597 (3)	0.42771 (4)	0.01435 (18)	
Si13	8f	0.18625 (5)	0.45145 (3)	0.36336 (4)	0.01375 (18)	
Si14	8f	0.29282 (5)	0.30290 (3)	0.15019 (4)	0.01311 (17)	
Si15	8f	0.30819 (5)	0.18534 (3)	0.15002 (4)	0.01325 (17)	
Si16	8f	0.31110 (5)	0.06675 (3)	0.14294 (4)	0.01319 (17)	
Si17	8f	0.31122 (5)	0.00422 (3)	0.26096 (4)	0.01410 (18)	
Si18	8f	0.31121 (5)	0.23848 (3)	0.27591 (4)	0.01215 (17)	
Si19	8f	0.31647 (5)	0.05175 (3)	0.39075 (4)	0.01445 (18)	
Si20	8f	0.32087 (5)	0.10468 (3)	0.51419 (4)	0.01544 (18)	
Si21	8f	0.32141 (5)	0.16746 (3)	0.39691 (4)	0.01361 (18)	
Si22	8f	0.33889 (5)	0.49532 (3)	0.20764 (4)	0.01324 (17)	

Si23	8 <i>f</i>	0.34165 (5)	0.44621 (3)	0.33394 (4)	0.01315 (17)
Si24	8f	0.44033 (5)	0.24940 (3)	0.23187 (4)	0.01304 (17)
Si25	8f	0.44218 (5)	0.00773 (3)	0.22698 (4)	0.01398 (18)
Si26	8f	0.53629 (6)	0.10431 (4)	0.01670 (5)	0.0208 (2)
P1	8f	0.06627 (5)	0.39356 (4)	0.44006 (4)	0.0225 (2)
P2	8f	0.07249 (6)	0.54290 (4)	0.06602 (5)	0.0279 (2)
P3	8f	0.07437 (5)	0.44766 (3)	0.32417 (4)	0.01828 (18)
P4	8f	0.07790 (5)	0.40785 (3)	0.01360 (4)	0.01930 (19)
P5	8f	0.09242 (5)	0.29268 (3)	0.00918 (4)	0.01777 (18)
P6	8f	0.09491 (5)	0.34891 (3)	0.14242 (4)	0.01832 (18)
P7	8f	0.10536 (5)	0.23290 (3)	0.13459 (4)	0.01500 (17)
P8	8f	0.10650 (6)	0.18167 (3)	0.00068 (4)	0.0220 (2)
P9	8f	0.11451 (5)	0.00588 (3)	0.11124 (4)	0.01454 (17)
P10	8f	0.11484 (5)	0.12101 (3)	0.12364 (4)	0.01305 (16)
P11	8f	0.11639 (5)	0.04637 (3)	0.48593 (4)	0.01397 (16)
P12	8f	0.11657 (5)	0.05668 (3)	0.24087 (4)	0.01412 (16)
P13	8f	0.11874 (5)	0.17174 (3)	0.25340 (4)	0.01327 (16)
P14	8f	0.11905 (5)	0.29095 (3)	0.26748 (4)	0.01677 (18)
P15	8f	0.12014 (5)	0.10811 (3)	0.36871 (4)	0.01485 (17)
P16	8f	0.12105 (5)	0.11210 (3)	0.61046 (4)	0.01588 (17)
P17	8f	0.12370 (5)	0.16694 (3)	0.49356 (4)	0.01713 (18)
P18	8f	0.12431 (5)	0.22756 (3)	0.38152 (4)	0.01681 (18)
P19	8f	0.22142 (5)	0.39077 (3)	0.41677 (4)	0.01363 (16)
P20	8f	0.22370 (5)	0.49260 (3)	0.16714 (4)	0.01396 (16)
P21	8f	0.22584 (5)	0.44311 (3)	0.29334 (4)	0.01382 (16)
P22	8f	0.24177 (5)	0.36008 (3)	0.09607 (4)	0.01576 (17)
P23	8f	0.25854 (5)	0.24264 (3)	0.09306 (4)	0.01516 (17)
P24	8f	0.26254 (5)	0.29965 (3)	0.22710 (4)	0.01323 (16)
P25	8f	0.27277 (5)	0.12761 (3)	0.08910 (4)	0.01386 (16)
P26	8f	0.27463 (5)	0.06746 (3)	0.21473 (4)	0.01354 (16)
P27	8f	0.27620 (5)	0.01137 (3)	0.07962 (4)	0.01393 (16)
P28	8f	0.27732 (5)	0.17644 (3)	0.22442 (4)	0.01289 (16)
P29	8f	0.27839 (5)	0.04335 (3)	0.46111 (4)	0.01609 (17)
P30	8f	0.28076 (5)	0.23274 (3)	0.35208 (4)	0.01360 (16)
P31	8f	0.28253 (5)	0.11168 (3)	0.33466 (4)	0.01478 (17)
P32	8f	0.28390 (5)	0.16936 (3)	0.46901 (4)	0.01530 (17)
P33	8f	0.37585 (6)	0.48831 (3)	0.13755 (4)	0.01998 (19)
P34	8f	0.37902 (5)	0.42929 (3)	0.00814 (4)	0.01809 (18)
P35	8f	0.38405 (5)	0.43940 (3)	0.26701 (4)	0.01661 (17)

P42	8f	0.01904 (15)	0.28372 (9)	0.51020 (13)	0.0397 (6)	0.5
P41	8f	0.56460 (5)	0.16504 (4)	0.07307 (4)	0.0209 (2)	
P40	8f	0.42381 (5)	0.06940 (3)	0.17732 (4)	0.01710 (18)	
P39	8f	0.42275 (5)	0.24213 (3)	0.31297 (4)	0.01698 (18)	
P38	8f	0.42198 (5)	0.01163 (4)	0.30508 (4)	0.0211 (2)	
P37	8f	0.42026 (5)	0.18631 (3)	0.18168 (4)	0.01638 (17)	
P36	8f	0.40505 (5)	0.31098 (3)	0.18038 (4)	0.01743 (18)	

Table S5. Atomic displacement parameters (Å²) of $Na_{31}Ba_5Si_{52}P_{83}$.

atom	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Ba1	0.0237(3)	0.0350(3)	0.0402(3)	-0.0194(2)	0.0120(2)	-0.0034(2)
Ba2	0.02674(12)	0.02313(11)	0.02034(11)	-0.00194(9)	0.00866(9)	0.00406(9)
Ba3	0.04358(16)	0.03085(14)	0.02699(13)	0.00248(10)	0.01716(12)	-0.01025(12)
Na1	0.0256(13)	0.215(5)	0.0616(19)	0.040(2)	0.0052(12)	-0.0109(19)
Na2	0.0267(11)	0.0564(15)	0.0757(18)	0.0158(13)	0.0191(11)	0.0037(10)
Na3	0.044(3)	0.033(3)	0.143(6)	-0.037(3)	0.008(3)	0.013(2)
Na4	0.253(14)	0.088(6)	0.120(8)	-0.025(6)	0.134(9)	0.029(8)
Na5	0.053(3)	0.074(5)	0.125(7)	-0.057(5)	0.040(4)	0.001(3)
Na6	0.103(5)	0.074(4)	0.062(3)	0.015(3)	0.059(4)	0.035(4)
Na7	0.068(3)	0.045(2)	0.056(2)	-0.0191(16)	0.0137(18)	0.0057(17)
Na8	0.0652(14)	0.0238(9)	0.0351(10)	-0.0108(8)	0.0268(10)	-0.0058(9)
Na9	0.0657(18)	0.085(2)	0.109(3)	-0.074(2)	0.0513(18)	-0.0390(16)
Na10	0.135(3)	0.0385(14)	0.076(2)	0.0078(14)	0.047(2)	-0.0253(17)
Na11	0.106(4)	0.241(7)	0.362(10)	-0.255(8)	0.129(5)	-0.090(4)
Na12	0.109(2)	0.0258(10)	0.0343(11)	0.0027(8)	0.0480(13)	0.0058(11)
Na13	0.067(3)	0.062(2)	0.181(5)	0.066(3)	0.029(3)	0.0077(18)
Na14	0.0687(16)	0.0470(13)	0.0329(11)	0.0021(9)	0.0319(11)	0.0095(11)
Na15	0.0839(19)	0.0336(11)	0.0441(13)	-0.0131(10)	0.0237(13)	0.0032(12)
Na16	0.0727(16)	0.0352(11)	0.0205(9)	-0.0003(8)	0.0138(10)	0.0047(10)
Na17	0.046(2)	0.237(7)	0.111(4)	-0.058(4)	0.037(2)	-0.031(3)
Na18	0.037(2)	0.155(6)	0.084(4)	0.000	0.011(2)	0.000
Na19	0.0260(16)	0.056(2)	0.105(3)	0.000	0.0208(19)	0.000
Si1	0.0208(19)	0.0145(4)	0.0148(4)	0.0043(3)	0.0037(4)	0.0006(4)
Si2	0.0228(5)	0.0103(4)	0.0115(4)	0.0012(3)	0.0053(4)	0.0012(4)
Si3	0.0159(4)	0.0115(4)	0.0137(4)	0.0013(3)	0.0070(4)	0.0010(3)
Si4	0.0203(5)	0.0105(4)	0.0123(4)	0.0003(3)	0.0068(4)	-0.0001(3)
Si5	0.0176(5)	0.0116(4)	0.0117(4)	-0.0004(3)	0.0059(4)	0.0008(3)
Si6	0.0168(4)	0.0118(4)	0.0110(4)	-0.0002(3)	0.0064(4)	0.0002(3)

Si7	0.0173(5)	0.0138(4)	0.0112(4)	0.0008(3)	0.0068(4)	-0.0010(3)
Si8	0.0163(4)	0.0113(4)	0.0117(4)	0.0000(3)	0.0065(4)	-0.0006(3)
Si9	0.0215(5)	0.0127(4)	0.0116(4)	-0.0008(3)	0.0083(4)	-0.0023(4)
Si10	0.0168(4)	0.0127(4)	0.0131(4)	0.0004(3)	0.0083(4)	-0.0001(3)
Si11	0.0194(5)	0.0116(4)	0.0109(4)	0.0002(3)	0.0068(4)	0.0000(3)
Si12	0.0192(5)	0.0133(4)	0.0123(4)	0.0007(3)	0.0082(4)	-0.0007(4)
Si13	0.0170(4)	0.0130(4)	0.0121(4)	0.0006(3)	0.0067(4)	0.0002(3)
Si14	0.0161(4)	0.0108(4)	0.0129(4)	0.0012(3)	0.0063(4)	0.0015(3)
Si15	0.0178(5)	0.0107(4)	0.0134(4)	-0.0006(3)	0.0084(4)	-0.0008(3)
Si16	0.0170(4)	0.0115(4)	0.0117(4)	0.0005(3)	0.0065(4)	0.0002(3)
Si17	0.0155(4)	0.0132(4)	0.0131(4)	-0.0001(3)	0.0051(4)	-0.0006(3)
Si18	0.0143(4)	0.0119(4)	0.0117(4)	0.0001(3)	0.0067(3)	-0.0003(3)
Si19	0.0183(5)	0.0128(4)	0.0120(4)	-0.0019(3)	0.0058(4)	-0.0019(3)
Si20	0.0184(5)	0.0168(4)	0.0130(4)	0.0005(3)	0.0082(4)	-0.0008(4)
Si21	0.0158(4)	0.0130(4)	0.0124(4)	0.0008(3)	0.0061(4)	-0.0005(3)
Si22	0.0174(4)	0.0121(4)	0.0109(4)	0.0009(3)	0.0063(4)	0.0012(3)
Si23	0.0166(4)	0.0121(4)	0.0114(4)	0.0011(3)	0.0063(4)	0.0010(3)
Si24	0.0147(4)	0.0114(4)	0.0151(4)	0.0003(3)	0.0082(4)	0.0004(3)
Si25	0.0163(4)	0.0131(4)	0.0115(4)	0.0006(3)	0.0044(4)	-0.0002(3)
Si26	0.0170(5)	0.0225(5)	0.0209(5)	0.0072(4)	0.0055(4)	0.0035(4)
P1	0.0206(5)	0.0272(5)	0.0191(5)	-0.0008(4)	0.0072(4)	-0.0039(4)
P2	0.0181(5)	0.0269(5)	0.0313(6)	0.0105(4)	0.0019(4)	0.0008(4)
P3	0.0168(4)	0.0168(4)	0.0196(4)	0.0011(3)	0.0056(4)	0.0002(3)
P4	0.0162(4)	0.0161(4)	0.0239(5)	0.0091(4)	0.0061(4)	0.0030(3)
P5	0.0233(5)	0.0156(4)	0.0120(4)	0.0015(3)	0.0046(4)	0.0019(4)
P6	0.0222(5)	0.0156(4)	0.0186(4)	0.0041(3)	0.0096(4)	0.0060(4)
P7	0.0189(4)	0.0123(4)	0.0130(4)	0.0011(3)	0.0055(3)	-0.0008(3)
P8	0.0379(6)	0.0111(4)	0.0122(4)	0.0004(3)	0.0050(4)	0.0008(4)
P9	0.0193(4)	0.0124(4)	0.0125(4)	-0.0003(3)	0.0070(3)	0.0004(3)
P10	0.0167(4)	0.0111(4)	0.0111(4)	0.0003(3)	0.0052(3)	0.0004(3)
P11	0.0180(4)	0.0129(4)	0.0115(4)	0.0008(3)	0.0064(3)	-0.0009(3)
P12	0.0186(4)	0.0128(4)	0.0123(4)	-0.0006(3)	0.0076(3)	-0.0004(3)
P13	0.0171(4)	0.0118(4)	0.0120(4)	0.0003(3)	0.0069(3)	0.0001(3)
P14	0.0218(5)	0.0145(4)	0.0170(4)	0.0014(3)	0.0109(4)	0.0027(3)
P15	0.0195(4)	0.0140(4)	0.0127(4)	0.0001(3)	0.0081(3)	-0.0005(3)
P16	0.0219(5)	0.0145(4)	0.0129(4)	0.0029(3)	0.0088(4)	0.0043(3)
P17	0.0230(5)	0.0169(4)	0.0146(4)	0.0028(3)	0.0108(4)	0.0017(4)
P18	0.0237(5)	0.0144(4)	0.0170(4)	0.0019(3)	0.0131(4)	0.0020(3)
P19	0.0171(4)	0.0130(4)	0.0115(4)	-0.0002(3)	0.0065(3)	-0.0007(3)

P210.0170(4)0.0130(4)0.0121(4)0.0002(3)0.0064(3)0.0007(3)P220.0184(4)0.0122(4)0.0181(4)0.0040(3)0.0087(4)0.0026(3)P230.0230(5)0.0112(4)0.0134(4)0.0003(3)0.0095(4)-0.0005(3)P240.0160(4)0.0112(4)0.0135(4)0.0002(3)0.0070(3)0.0007(3)0.0003(3)P250.0195(4)0.0110(4)0.0123(4)0.0002(3)0.0076(3)0.0000(3)0.0007(3)0.0001(3)P260.0172(4)0.0125(4)0.0114(4)-0.0005(3)0.0071(3)0.0001(3)0.0001(3)0.0001(3)0.0001(3)0.0001(3)0.0001(3)0.0002(3)0.0001(3)0.0002(3)0.0001(3)0.0002(3)0.0
P220.0184(4)0.0122(4)0.0181(4)0.0040(3)0.0087(4)0.0026(3)P230.0230(5)0.0112(4)0.0134(4)0.0003(3)0.0095(4)-0.0005(3)P240.0160(4)0.0112(4)0.0135(4)0.0002(3)0.0076(3)0.0003(3)P250.0195(4)0.0110(4)0.0123(4)0.0002(3)0.0076(3)0.0000(3)P260.0172(4)0.0125(4)0.0119(4)-0.0005(3)0.0068(3)-0.0001(3)P270.0183(4)0.0120(4)0.0124(4)-0.0006(3)0.0071(3)0.0002(3)P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.0002(3)P290.0222(5)0.0150(4)0.0120(4)0.0004(3)0.0082(3)-0.0001(3)P310.0203(4)0.0130(4)0.0122(4)-0.0004(3)0.0086(3)-0.0016(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0166(4)0.013(3)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.013(3)P350.0227(5)0.0143(4)0.0126(4)-0.0004(3)0.014(4)0.0013(3)
P230.0230(5)0.0112(4)0.0134(4)0.0003(3)0.0095(4)-0.0005(3)P240.0160(4)0.0112(4)0.0135(4)0.0005(3)0.0070(3)0.0005(3)P250.0195(4)0.0110(4)0.0123(4)0.0002(3)0.0076(3)0.0000(3)P260.0172(4)0.0125(4)0.0119(4)-0.0005(3)0.0068(3)-0.0001(3)P270.0183(4)0.0120(4)0.0124(4)-0.0006(3)0.0071(3)0.0001(3)P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.0002(3)P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.0002(3)P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0086(3)-0.004(3)P310.0203(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0225(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.109(4)0.0047(3)
P240.0160(4)0.0112(4)0.0135(4)0.0005(3)0.0070(3)0.0005(3)P250.0195(4)0.0110(4)0.0123(4)0.0002(3)0.0076(3)0.0000(3)P260.0172(4)0.0125(4)0.0119(4)-0.0005(3)0.0068(3)-0.0001(3)P270.0183(4)0.0120(4)0.0124(4)-0.0006(3)0.0071(3)0.0001(3)P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.002(3)P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.002(3)P300.0169(4)0.0132(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P310.0203(4)0.0130(4)0.0122(4)-0.0004(3)0.0086(3)-0.0016(3)P320.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.019(4)0.0047(3)
P250.0195(4)0.0110(4)0.0123(4)0.0002(3)0.0076(3)0.0000(3)P260.0172(4)0.0125(4)0.0119(4)-0.0005(3)0.0068(3)-0.0001(3)P270.0183(4)0.0120(4)0.0124(4)-0.0006(3)0.0071(3)0.0001(3)P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.0002(3)P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.0002(3)P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0082(3)-0.001(3)P310.0203(4)0.0130(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P320.0198(4)0.0146(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.109(4)0.0047(3)
P260.0172(4)0.0125(4)0.0119(4)-0.0005(3)0.0068(3)-0.0001(3)P270.0183(4)0.0120(4)0.0124(4)-0.0006(3)0.0071(3)0.0001(3)P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.0002(3)P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.0002(3)P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0082(3)-0.001(3)P310.0203(4)0.0130(4)0.0122(4)-0.0004(3)0.0086(3)-0.0016(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0036(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P270.0183(4)0.0120(4)0.0124(4)-0.0006(3)0.0071(3)0.0001(3)P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.0002(3)P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.0002(3)P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0082(3)-0.0004(3)P310.0203(4)0.0130(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P280.0158(4)0.0114(4)0.0125(4)0.0001(3)0.0069(3)-0.0002(3)P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.0002(3)P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0082(3)-0.0001(3)P310.0203(4)0.0130(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P290.0222(5)0.0150(4)0.0120(4)0.0003(3)0.0077(4)-0.0002(3)P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0082(3)-0.0001(3)P310.0203(4)0.0130(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P300.0169(4)0.0132(4)0.0128(4)0.0004(3)0.0082(3)-0.0001(3)P310.0203(4)0.0130(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P310.0203(4)0.0130(4)0.0122(4)-0.0002(3)0.0077(3)-0.0004(3)P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P320.0198(4)0.0146(4)0.0133(4)-0.0004(3)0.0086(3)-0.0016(3)P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P330.0310(5)0.0171(4)0.0174(4)0.0053(3)0.0156(4)0.0086(4)P340.0265(5)0.0118(4)0.0126(4)-0.0004(3)0.0044(4)0.0013(3)P350.0227(5)0.0143(4)0.0160(4)0.0035(3)0.0109(4)0.0047(3)
P34 0.0265(5) 0.0118(4) 0.0126(4) -0.0004(3) 0.0044(4) 0.0013(3) P35 0.0227(5) 0.0143(4) 0.0160(4) 0.0035(3) 0.0109(4) 0.0047(3)
P35 0.0227(5) 0.0143(4) 0.0160(4) 0.0035(3) 0.0109(4) 0.0047(3)
P36 0.0187(4) 0.0133(4) 0.0221(5) 0.0038(3) 0.0101(4) 0.0010(3)
P37 0.0177(4) 0.0134(4) 0.0202(4) -0.0028(3) 0.0098(4) -0.0001(3)
P38 0.0174(4) 0.0298(5) 0.0156(4) 0.0018(4) 0.0062(4) -0.0011(4)
P39 0.0145(4) 0.0234(5) 0.0142(4) 0.0022(3) 0.0069(3) 0.0002(3)
P40 0.0169(4) 0.0152(4) 0.0183(4) 0.0026(3) 0.0061(4) -0.0004(3)
P41 0.0192(5) 0.0285(5) 0.0153(4) 0.0008(4) 0.0071(4) 0.0080(4)
P42 0.0367(14) 0.0346(13) 0.0413(15) -0.0076(11) 0.0087(12) 0.0005(11)

Table S6. Selected bond distances in $Na_{31}Ba_5Si_{52}P_{83}$ in Å.

atoms	distance	atoms	distance	atoms	distance	atoms	distance
Ba1—Na3	1.331 (9)	Na5—P6	2.802 (6)	Na14—P4 ^{vii}	2.828 (2)	Si9—P33 ^{vi}	2.2232 (14)
Ba1—P42	1.738 (3)	Na5—P3 ⁱⁱ	2.912 (6)	Na14—P5 ^{vii}	2.931 (2)	Si9—P29	2.2518 (15)
Ba1—P41 ⁱ	3.2732 (12)	Na5—P38 ^{ix}	3.035 (9)	Na14—P37	2.945 (2)	Si9—P15	2.2604 (14)
Ba1—P1	3.3141 (13)	Na5—P3	3.093 (8)	Na14—P25	3.050 (3)	Si9—P11	2.2879 (13)
Ba1—P5 ⁱⁱ	3.3367 (12)	Na5—Si25 ^{ix}	3.370 (6)	Na14—P40	3.324 (2)	Si10—P14	2.2120 (14)
Ba1—P7 ⁱⁱ	3.4030 (11)	Na5—P21	3.395 (7)	Na14—Si1 ^{vii}	3.416 (2)	Si10—P18	2.2142 (13)
Ba1—P6 ⁱⁱ	3.4190 (12)	Na5—Na8	3.916 (7)	Na14—P41	3.444 (3)	Si10—P30	2.2687 (14)
Ba1—P18	3.5097 (11)	Na5—Na5 ⁱⁱ	4.144 (16)	Na14—Na16	3.518 (3)	Si10—P13	2.2919 (13)
Ba1—Si26 ⁱ	3.7149 (12)	Na6—P42	2.771 (7)	Na15—P36	2.926 (3)	Si11—P13	2.2521 (13)
Ba1—P32 ⁱⁱⁱ	3.7435 (11)	Na6—P17	2.908 (5)	Na15—P35	3.083 (3)	Si11—P15	2.2537 (13)
Ba1—Na6	3.781 (6)	Na6—P16	3.147 (6)	Na15—P39	3.088 (3)	Si11—P31	2.2548 (14)
Ba1—Na2	4.233 (3)	Na6—P39 ⁱⁱⁱ	3.257 (6)	Na15—P16 ⁱⁱⁱ	3.177 (3)	Si11—P12	2.2597 (13)
Ba1—P7 ⁱⁱ Ba1—P6 ⁱⁱ Ba1—P18 Ba1—Si26 ⁱ Ba1—P32 ⁱⁱⁱ Ba1—Na6 Ba1—Na2	3.4030 (11) 3.4190 (12) 3.5097 (11) 3.7149 (12) 3.7435 (11) 3.781 (6) 4.233 (3)	Na5—P21 Na5—Na8 Na5—Na5 ⁱⁱ Na6—P42 Na6—P17 Na6—P16 Na6—P39 ⁱⁱⁱ	 3.395 (7) 3.916 (7) 4.144 (16) 2.771 (7) 2.908 (5) 3.147 (6) 3.257 (6) 	Na14—Si1 ^{vii} Na14—P41 Na14—Na16 Na15—P36 Na15—P35 Na15—P39 Na15—P16 ⁱⁱⁱ	3.416 (2) 3.444 (3) 3.518 (3) 2.926 (3) 3.083 (3) 3.088 (3) 3.177 (3)	Si10—P18 Si10—P30 Si10—P13 Si11—P13 Si11—P15 Si11—P31 Si11—P31 Si11—P12	2.2142 (13) 2.2687 (14) 2.2919 (13) 2.2521 (13) 2.2537 (13) 2.2548 (14) 2.2597 (13)

Ba2—P28	3.3255 (9)	Na6—Na16 ⁱ	3.468 (6)	Na15—P24	3.262 (3)	Si12—P17	2.2111 (13)
Ba2—P37	3.4105 (10)	Na6—Na15 ⁱⁱⁱ	3.662 (6)	Na15—Si24	3.369 (2)	Si12—P18	2.2190 (14)
Ba2—P41 ^{iv}	3.4525 (10)	Na6—Na9 ⁱⁱⁱ	3.935 (7)	Na16—P5v ⁱⁱ	2.937 (2)	Si12—P32	2.2735 (14)
Ba2—P40	3.4557 (10)	Na6—Na11 [⊪]	3.997 (8)	Na16—P36	2.947 (2)	Si12—P15	2.2795 (14)
Ba2—P40 ^{iv}	3.4672 (10)	Na7—P4	2.734 (4)	Na16—P39 ^{iv}	3.006 (3)	Si13—P3	2.1858 (14)
Ba2—P38	3.5049 (12)	Na7—P38 ^{ix}	2.954 (3)	Na16—P8 ^{vii}	3.026 (2)	Si13—P19	2.2465 (13)
Ba2—P26	3.5224 (10)	Na7—P6	2.994 (4)	Na16—P37	3.062 (2)	Si13—P21	2.2604 (13)
Ba2—P31	3.5639 (10)	Na7—P20	3.048 (4)	Na16—Si24	3.328 (2)	Si13—P27 ⁱ ×	2.2761 (13)
Ba2—P39	3.6035 (11)	Na7—P2	3.239 (4)	Na17—P9×	2.821 (5)	Si14—P36	2.2112 (14)
Ba2—P37 ^{iv}	3.6230 (10)	Na7—Si1	3.354 (3)	Na17—P33	2.906 (4)	Si14—P22	2.2243 (13)
Ba2—Na14 ^{iv}	3.792 (3)	Na7—P1 ⁱⁱ	3.379 (4)	Na17—P34	2.958 (5)	Si14—P23	2.2802 (13)
Ba2—Ba2 ^{iv}	4.6383 (5)	Na7—Na8	3.455 (4)	Na17—Si23 ^{iv}	3.331 (5)	Si14—P24	2.2843 (13)
Ba3—P2 ^v	3.1927 (12)	Na8—P22	2.809 (2)	Na17—P35 ^{iv}	3.346 (6)	Si15—P37	2.1913 (14)
Ba3—P3 ^{vi}	3.3247 (11)	Na8—P21	2.946 (2)	Na17—Na18 ^x	3.715 (5)	Si15—P28	2.2454 (13)
Ba3—P1 ^{vi}	3.3394 (12)	Na8—P24	3.028 (2)	Na18—P12	3.007 (4)	Si15—P23	2.2519 (13)
Ba3—P4 ^{vii}	3.3551 (10)	Na8—P20	3.057 (2)	Na18—P12 ⁱⁱ	3.007 (4)	Si15—P25	2.2708 (13)
Ba3—Na7 ^v	3.485 (4)	Na8—P35	3.121 (2)	Na18—P33 ^{xi}	3.0645 (17)	Si16—P40	2.2016 (14)
Ba3—P38 ^{iv}	3.4937 (11)	Na8—P6	3.216 (3)	Na18—P33 ^{vi}	3.0645 (17)	Si16—P26	2.2434 (13)
Ba3—P27	3.5256 (10)	Na8—Si14	3.438 (2)	Na18—Si22 ^{xi}	3.1744 (13)	Si16—P27	2.2489 (13)
Ba3—P2 ^{vii}	3.5583 (14)	Na8—Si1	3.502 (2)	Na18—Si22 ^{vi}	3.1744 (13)	Si16—P25	2.2630 (13)
Ba3—P40	3.5769 (10)	Na8—Na9	3.727 (5)	Na18—P35 ^{xi}	3.366 (4)	Si17—P38	2.1797 (14)
Ba3—P29 ^{viii}	3.5948 (10)	Na8—Na15	3.872 (4)	Na18—P35 ^{vi}	3.366 (4)	Si17—P26	2.2389 (13)
Ba3—Na10 ^{vii}	4.106 (4)	Na9—P14	2.929 (3)	Na19—P14 ⁱⁱ	2.878 (2)	Si17—P20 ^{vi}	2.2524 (13)
Ba3—Na14	4.332 (2)	Na9—P19	2.940 (3)	Na19—P14	2.878 (2)	Si17—P21 ^{vi}	2.2718 (13)
Na1—P16	2.971 (3)	Na9—P24	3.000 (3)	Na19—Si10	3.2275 (11)	Si18—P39	2.1785 (14)
Na1—P34 ⁱ	2.986 (3)	Na9—P16 ⁱⁱⁱ	3.016 (3)	Na19—Si10 ⁱⁱ	3.2275 (11)	Si18—P28	2.2564 (13)
Na1—P10 ⁱⁱ	3.103 (3)	Na9—P21	3.313 (4)	Na19—P13	3.229 (3)	Si18—P24	2.2581 (13)
Na1—Si7	3.140 (3)	Na9—P30	3.329 (4)	Na19—P13 ⁱⁱ	3.230 (3)	Si18—P30	2.2732 (13)
Na1—Si4 ⁱⁱ	3.145 (3)	Na9—Si7 [™]	3.474 (3)	Na19—P18 ⁱⁱ	3.3432 (11)	Si19—P2 ^{vi}	2.1884 (15)
Na1—P17	3.164 (4)	Na9—Na11	3.515 (11)	Na19—P18	3.3432 (11)	Si19—P29	2.2467 (13)
Na1—P11	3.203 (4)	Na9—Na15	4.046 (4)	Si1—P6	2.2410 (14)	Si19—P31	2.2584 (13)
Na1—P8 ⁱⁱ	3.221 (5)	Na10—P22	2.890 (3)	Si1—P4	2.2431 (14)	Si19—P20 ^{vi}	2.2741 (13)
Na1—Na6	3.567 (9)	Na10—P29 ^{ix}	3.148 (3)	Si1—P5	2.2461 (14)	Si20—P1 [⊪]	2.2112 (15)
Na1—Na2	3.715 (4)	Na10—P33	3.165 (4)	Si1—P22	2.2572 (14)	Si20—P19 [⊪]	2.2673 (13)
Na1—Na17 ⁱ	3.761 (6)	Na10—Na13	3.195 (5)	Si2—P5	2.2062 (14)	Si20—P32	2.2684 (14)
Na2—P15	2.969 (3)	Na10—P27 ^{vii}	3.249 (3)	Si2—P8	2.2100 (14)	Si20—P29	2.2790 (14)
Na2—P10 ⁱⁱ	2.992 (2)	Na10—P34	3.260 (4)	Si2—P7	2.2647 (14)	Si21—P41 ^{iv}	2.2344 (14)
Na2—P18	3.066 (3)	Na10—Na12	4.183 (4)	Si2—P23	2.2681 (15)	Si21—P31	2.2488 (13)
Na2—Si12	3.137 (2)	Na11—P32 ⁱⁱⁱ	2.978 (5)	Si3—P6	2.1937 (13)	Si21—P32	2.2660 (13)

Na2—P7 ⁱⁱ	3.150 (3)	Na11—P17 [⊪]	2.989 (4)	Si3—P14	2.2126 (13)	Si21—P30	2.2941 (13)
Na2—P17	3.151 (3)	Na11—P18	2.992 (4)	Si3—P24	2.2578 (14)	Si22—P33	2.2197 (13)
Na2—P13 ⁱⁱ	3.184 (3)	Na11—P30	3.070 (5)	Si3—P7	2.2705 (13)	Si22—P35	2.2300 (13)
Na2—Si8 ⁱⁱ	3.331 (2)	Na11—Na11	3.124 (19)	Si4—P8	2.1947 (14)	Si22—P20	2.2489 (14)
Na2—Na19	3.718 (4)	Na11—P32	3.380 (8)	Si4—P34 ^{vii}	2.2074 (13)	Si22—P12 ^{ix}	2.2704 (13)
Na3—P1	2.907 (5)	Na11—Si12 [⊪]	3.384 (5)	Si4—P25	2.2605 (14)	Si23—P16 [⊪]	2.2180 (13)
Na3—P6 ⁱⁱ	3.032 (5)	Na11—Si10	3.503 (6)	Si4—P10	2.2849 (13)	Si23—P35	2.2247 (13)
Na3—P42	3.032 (10)	Na12—P22	2.811 (2)	Si5—P34 ^{vii}	2.2024 (13)	Si23—P9i ^x	2.2612 (13)
Na3—P18	3.064 (5)	Na12—P23	2.927 (2)	Si5—P27	2.2575 (14)	Si23—P21	2.2614 (14)
Na3—Na19	4.102 (7)	Na12—P23 ^{vii}	2.952 (2)	Si5—P11 ^{viii}	2.2713 (13)	Si24—P39	2.2405 (13)
Na3—Na4 ⁱⁱ	4.124 (13)	Na12—P25 ^{vii}	3.026 (2)	Si5—P9	2.2738 (13)	Si24—P36	2.2475 (13)
Na3—Na11	4.202 (7)	Na12—P8 ^{vii}	3.029 (3)	Si6—P26	2.2234 (14)	Si24—P37	2.2603 (13)
Na4—Na5	1.009 (11)	Na12—Si14	3.334 (2)	Si6—P10	2.2331 (13)	Si24—Si24 ^{iv}	2.330 (2)
Na4—P6	2.837 (7)	Na12—Si4 ^{vii}	3.510 (2)	Si6—P9	2.2522 (13)	Si25—P38	2.1882 (14)
Na4—P3	2.936 (8)	Na12—Na14 ^{vii}	3.616 (4)	Si6—P12	2.2595 (13)	Si25—P3 ^{vi}	2.1986 (14)
Na4—Na4 ⁱⁱ	3.20 (2)	Na12—Na12 ^{vii}	3.658 (4)	Si7—P17	2.2159 (14)	Si25—P40	2.2182 (13)
Na4—P14	3.212 (11)	Na12—Na16	3.904 (4)	Si7—P16	2.2327 (13)	Si25—Si25 ^{iv}	2.263 (2)
Na4—P3 ⁱⁱ	3.241 (12)	Na12—Na13	3.967 (6)	Si7—P19 ⁱⁱⁱ	2.2615 (14)	Si26—P2v	2.2215 (15)
Na4—Na7	3.597 (11)	Na13—P36	2.826 (4)	Si7—P11	2.2914 (13)	Si26—P4 ^{vii}	2.2675 (15)
Na4—Na5 ⁱⁱ	3.735 (12)	Na13—P22	2.988 (4)	Si8—P7	2.2294 (13)	Si26—P1 ^{xii}	2.2727 (16)
Na4—Na9	4.017 (14)	Na13—P33	2.995 (4)	Si8—P28	2.2308 (14)	Si26—P41	2.2768 (16)
Na4—Na8	4.212 (12)	Na13—P34	3.078 (5)	Si8—P13	2.2505 (13)	P5—P42 ⁱⁱ	2.238 (3)
Na5—Na7	2.706 (11)	Na13—Na17	3.412 (7)	Si8—P10	2.2643 (13)	P41—P42 ^{xii}	2.171 (3)

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) -x, y, -z+1/2; (iii) -x+1/2, -y+1/2, -z+1; (iv) -x+1, y, -z+1/2; (v) x+1/2, y-1/2, z; (vi) -x+1/2, y-1/2, z; (vii) -x+1/2, y-1/2, z; (vii) x, -y, z-1/2; (ix) -x+1/2, y+1/2, -z+1/2; (x) x+1/2, y+1/2, z; (xi) x-1/2, y-1/2, z; (xii) x+1/2, -y+1/2, z-1/2.

Figure S1. Ball-stick models of T3 supertetrahedra in $Na_{125}Ba_{0.875}Si_3P_5$ along the crystallographic *a*- and *c*-axis showing their connectivity by a common vertex (left) and by a common SiP₄ tetrahedron (right). Ellipsoids are drawn with 90 % probability.

Figure S2. Ball-stick models of T3 supertetrahedra in $Na_{31}Ba_5Si_{52}P_{83}$ showing their connectivity by common SiP₄ tetrahedra to defect T5 supertetrahedra (left) and the condensation to a three dimensional anionic network by homonuclear silicon bonds (right). Ellipsoids are drawn with 90 % probability and the homonuclear silicon bonds are depicted in black.

Figure S3. Topology of the anionic sheets in $Na_{1,25}Ba_{0.875}Si_3P_5$, which can be assigned to distorted sql-nets. Every red position corresponds to a T3 supertetrahedron. The distortion arises from different condensations of the T3 supertetrahedra either by common vertices or by fusion.

Figure S4. Topology of the anionic 26-nodal network (TD10 = 596) in $Na_{31}Ba_5Si_{52}P_{83}$ in *b* (left), *c* (right) and *a* (bottom) direction. Every red position corresponds to a T3 supertetrahedron either with a SiP₄ or a SiP₃Si vertex.

The preparation of polycristalline samples was conducted in an argon filled glovebox due to the high sensitivity towards air and moisture of the compounds. Respective samples were ground and filled in silica capillaries with a diameter of 0.2 mm and subsequently sealed. The according powder X-ray diffractograms were obtained by using the setup described in the publication for this Supporting Information and the fundamental parameter approach. Based on the structure models of the single-crystal X-ray structure determination and refinement the according powder diffraction patterns were fitted. Therefore, the unit cell parameters were refined as well as the atom positions of barium, silicon and phosphorus with no significant changes. The occupancies derived from the single-crystal refinement were not refined and the peak shapes and background were fitted using pseudo-Voigt and shifted Chebyshev, respectively. For the Na₃₁Ba₅Si₅₂P₈₃ samples the difference curve revealed a side phase beside unreacted silicon (1.4 %), which we were able to refine with the single-crystal structure model of Na₂₃Si₃₇P₅₇ (9.8 %). The according results are compiled in Table S5.

Formula	Na _{1.25} Ba _{0.875} Si ₃ P ₅	Na ₃₁ Ba ₅ Si ₅₂ P ₈₃		
Space group	<i>Cmcm</i> (No. 63)	C2/c (No. 15)		
a / Å	7.1682(2)	21.279(1)		
b/Å	34.158(2)	30.688(2)		
c / Å	11.0886(3)	25.341(1)		
β/°	90	113.559(5)		
V _{cell} / ų	2715.1(2)	15168(2)		
ρ _{X-ray} / g⋅cm ⁻¹	2.733(5)	2.3751(2)		
Diffractometer	Stoe Stadi P			
Radiation	Mo-Kα1 (λ = 0.709319 Å)			
Detector	Mythen 1K			
Monochromator	Ge(111)			
20 - range / °	2.000 - 55.940	1.000 - 57.145		
Data points	3597	3744		
Background function	Shifted Chebyshev			
Refined parameters (background parameters)	48 (18)	234 (20)		
GooF	3.302	3.019		
R _p ; R _{wp}	0.040; 0.053	0.033; 0.044		
R _{exp} ; R _{Bragg}	0.016; 0.027	0.014; 0.012		

Table S7. Crystallographic data of powder Rietveld refinements of Na_{1.25}Ba_{0.875}Si₃P₅ and Na₃₁Ba₅Si₅₂P₈₃.

Figure S5. Representative scanning electron microscopic photographs of $Na_{1.25}Ba_{0.875}Si_3P_5$.

	Na	Ва	Si	Ρ
EDX point 1 / atom-%	13.09	8.35	26.52	52.04
EDX point 2 / atom-%	12.49	9.28	26.48	51.75
EDX point 3 / atom-%	12.85	9.73	26.42	51.00
EDX point 4 / atom-%	12.51	9.45	26.49	51.55
EDX point 5 / atom-%	12.26	8.28	26.78	52.68
EDX point 6 / atom-%	12.55	8.08	26.96	52.41
EDX point 7 / atom-%	12.15	9.14	26.86	51.85
EDX point 8 / atom-%	12.38	9.48	26.65	51.48
EDX point 9 / atom-%	12.25	9.28	26.79	51.68
EDX point 10 / atom-%	12.28	8.65	26.81	52.27
EDX point 11 / atom-%	11.47	8.78	27.04	52.70
EDX point 12 / atom-%	12.05	8.01	27.18	52.76
EDX point 13 / atom-%	10.11	8.73	28.91	52.24
EDX point 14 / atom-%	13.08	9.18	26.49	51.25
EDX point 15 / atom-%	12.24	9.53	26.23	52.00
Average / atom-%	12.25	8.93	26.84	51.98
Calculated / atom-%	12.4	8.6	29.6	49.4

 $\textbf{Table S8.} Elemental analysis by EDX of Na_{1.25}Ba_{0.875}Si_3P_5, signals of oxygen were not taken into account due to hydrolysis.$

Figure S6. Representative scanning electron microscopic photographs of $Na_{31}Ba_5Si_{52}P_{83}$.

	Na	Ва	Si	Ρ
EDX point 1 / atom-%	17.27	3.56	27.54	51.64
EDX point 2 / atom-%	18.81	3.54	26.51	51.14
EDX point 3 / atom-%	18.69	3.42	26.09	51.80
EDX point 4 / atom-%	18.35	3.76	26.79	51.10
EDX point 5 / atom-%	18.21	2.85	26.42	52.52
EDX point 6 / atom-%	19.48	3.81	26.03	50.69
EDX point 7 / atom-%	17.92	3.41	26.87	51.80
EDX point 8 / atom-%	18.22	3.15	26.29	52.34
EDX point 9 / atom-%	15.64	3.24	28.65	52.47
EDX point 10 / atom-%	17.99	3.45	26.59	51.97
EDX point 11 / atom-%	17.51	3.28	27.71	51.51
EDX point 12 / atom-%	17.62	3.61	28.83	49.94
EDX point 13 / atom-%	15.56	3.52	29.52	51.40
EDX point 14 / atom-%	20.53	3.30	24.25	51.92
EDX point 15 / atom-%	18.44	3.24	27.02	51.31
Average / atom-%	18.0	3.4	27.0	51.6
Calculated / atom-%	18.13	2.92	30.41	48.54

 $\textbf{Table S9.} Elemental analysis by EDX of Na_{31}Ba_5Si_{52}P_{83}, signals of oxygen were not taken into account due to hydrolysis.$

Figure S7. Geometrically calculated possible sodium migration paths for $Na_{31}Ba_5Si_{52}P_{83}$. Wide channels along *c* are formed which are connected by narrow and short passages along the T3 faces assuming predominantly one-dimensional sodium ion conduction.

To obtain the ²³Na-NMR spin-lattice relaxation time (T₁) at different temperatures, the saturation recovery technique was used. For an estimate of the activation energies, the characteristic correlation times τ_c of the dynamic processes causing the spin relaxation are assumed to follow an Arrhenius type of behavior with activation energy E_A :

$$\tau_c = \tau_0 \exp\!\left(\frac{E_A}{k_B T}\right)$$

In the so-called low-temperature regime ($\omega_0 \tau_c >>1$), the relaxation rate $1/T_1$ for a single dynamic process is given by the following form, which can be linearized and fitted to extract the activation energy:

$$R_{1} = \frac{1}{T_{1}} = \frac{4}{3} G(0) \frac{1}{\omega_{0}^{2} \tau_{0}} \exp\left(-\frac{E_{A}}{k_{B}T}\right)$$

For a single dynamic process, the integrated signal intensities are expected to follow a mono-exponential function. As may be seen from Figure S8 (left), using a mono-exponential does not lead to a good fit for $Na_{31}Ba_5Si_{52}P_{83}$. In contrast, a biexponential fit describes the data much better, see Figure S8 (right). The existence of a second exponential function implies the presence of at least one more dynamic process on a much slower time scale. From the M_0 values returned by the bi-exponential fit it may be seen that slow process constitutes the minority component of the signal by a factor of about one quarter. Therefore, this process could be due to sodium ions in the side phase or related to non-mobile or slow moving sodium in the target structure.

Figure S8. ²³Na-NMR spin-lattice relaxation time (T_1) data for Na₃₁Ba₅Si₅₂P₈₃ at 274K. The integrated signal intensities were fitted with either a mono-exponential (left) or bi-exponential (right) function.