1

## Electronic Supplementary File for manuscript: $\pi$ -hole spodium bonding in tri-coordinated Hg(II) complexes

Rosa M. Gomila,<sup>a</sup> Antonio Bauza,<sup>b</sup> Tiddo J. Mooibroek<sup>\*,c</sup> and Antonio Frontera<sup>\*,b</sup>

## Table of contents:

| Theoretical methods | Page 2 |
|---------------------|--------|
| Table S1            | Page 2 |
| Figure S1           | Page 4 |
| References          | Page 5 |

## **Theoretical methods**

The calculations were performed using Gaussian-16 program<sup>1</sup> at the PBE0-D3/def2-TZVP level of theory using the X-ray coordinates. The Grimme's D3 dispersion correction has been used in the calculations.<sup>2</sup> The molecular electrostatic potential surfaces have been computed at the same level of theory. This level of theory has been successfully used before to investigate SpB interactions.<sup>3</sup> The QTAIM analysis<sup>4</sup> and NCIplot index<sup>5</sup> calculations have been computed at the same level of theory by means of the AIMAII program.<sup>6</sup>

| HgXPn <sub>2</sub> ; total number of hits: 66 |                                |                  |          |          |          |  |  |  |
|-----------------------------------------------|--------------------------------|------------------|----------|----------|----------|--|--|--|
|                                               | BEFLIH                         | BZAMHG           | BZPYHG   | CAZTII   | ECURUR   |  |  |  |
|                                               | EFUDOY                         | ENTIHG           | FINFIR   | FOLLAT   | GEQREZ   |  |  |  |
|                                               | GIHYOL                         | HASTOK           | HESMAT   | HOSCOH   | HOXBUR   |  |  |  |
|                                               | HOXCAY                         | HOXCEC           | IFUHEW   | IRIZIU   | IRIZOA   |  |  |  |
|                                               | IZIDUQ                         | JEJGOU           | JUWNOE   | KAZYEP   | KIHWIH   |  |  |  |
|                                               | KIKBIP                         | KOLCOE           | LEGKUD   | LEGPOD   | LUWCEM   |  |  |  |
|                                               | LUWCIQ                         | LUWCUC           | MBPYHG10 | MEPHGC10 | MNAZHG   |  |  |  |
|                                               | MPYHGA                         | MPYHGA10         | NAPRHG   | ODUPIN   | PAVTAH   |  |  |  |
|                                               | PHNAHG                         | PIXVAU           | QOTLOA   | QUKDUW   | ROBYEN   |  |  |  |
|                                               | SEGSEE                         | SEQMIL           | SEQMOR   | SEQMUX   | SEQNIM   |  |  |  |
|                                               | SIRDEC                         | SUTTEG           | TAWYEV   | TITBUT   | TUSVAG   |  |  |  |
|                                               | TUTLAX                         | TUTLEB           | TUTLIF   | UJIKON   | VOCVEO   |  |  |  |
|                                               | WOLYEB                         | XETXUQ           | XULREC   | YIZPIH   | ZAXXUT   |  |  |  |
|                                               | ZOWROS                         |                  |          |          |          |  |  |  |
|                                               | HgXCh <sub>2</sub> ; total num | ber of hits: 147 |          |          |          |  |  |  |
|                                               | ABOGAZ                         | ACHGPT           | ACHGPT10 | AJAJAX   | AROVOT   |  |  |  |
|                                               | BEMNOY                         | BOBZUO           | BOCBAX   | BOCBEB   | BOMVAA   |  |  |  |
|                                               | CECSIN                         | CHMEHG           | CUBVEB   | DEFBEV   | DELFIJ   |  |  |  |
|                                               | DIBWOA                         | DOJFUE           | DOLFAM   | DPSEHG   | DPSEHG01 |  |  |  |
|                                               | DUFQOK                         | DUVLUC           | EBUSUR   | EDIDEB   | EDUCUB   |  |  |  |
|                                               | EDUDAI                         | EDUDEM           | EGIDOQ   | EGIDUW   | EKIYON   |  |  |  |
|                                               | EKIYUT                         | EYAYUY           | FAKCOL   | FAKHOR   | FETTUT   |  |  |  |
|                                               | FINJOD                         | FODRUN           | GEJTOF   | GERLOG   | GERLUM   |  |  |  |
|                                               | GEZPEG                         | GOKPIG           | GUVQUJ   | HGCSUR01 | HUBRON   |  |  |  |
|                                               | HUTZIF                         | IMUFUR           | IMUGAY   | ITASUR   | JANZOQ   |  |  |  |
|                                               | JEFVIZ                         | JUWFOW           | ΚΑΗΚΑΙ   | KELVUS   | KEXZOC   |  |  |  |
|                                               | KEYMOQ                         | KINZAI           | KIQSAE   | KIVVAM   | KIVVIU   |  |  |  |
|                                               | KUKQUE                         | KUKSAM           | LAJCIJ   | LAJGOV   | LATTEF   |  |  |  |
|                                               | LECDED                         | LOLYAM           | LOLYEQ   | LULVIX   | MEDTHG   |  |  |  |
|                                               | ΜΙΚΚΑΤ                         | MIYPUG           | MTACHG   | NASLID   | NEGREZ   |  |  |  |
|                                               | NEGRID                         | NEJGIV           | NOPTUI   | NOPVIX   | NOPVOD   |  |  |  |
|                                               | NOSSIX                         | NOSSUJ           | NOYNIY   | PAFXOJ   | PETFUP   |  |  |  |
|                                               | PETFUP10                       | POCFAP           | ΡΟΤͿΑΚ   | PTEHGP   | QABJEI   |  |  |  |
|                                               | QEHDIQ                         | QITKIQ           | QOHZAO   | RACJOW   | RASGIC   |  |  |  |
|                                               | RICLUK                         | SANQAZ           | TASZOD   | TECKAN   | TECKIV   |  |  |  |
|                                               | TOBLIF                         | TPARHG10         | TUJFUZ   | TUJFUZ01 | TUJFUZ02 |  |  |  |
|                                               | UCEYAD                         | UDANAO           | UDEDUF   | UPITIY   | UPITOE   |  |  |  |
|                                               | UPITUK                         | UPIVAS           | VANFAT   | VIMBEA   | VIYKUK   |  |  |  |
|                                               | VIYLAR                         | VIYLIZ           | VIYLOF   | VOXTOR   | VUKLOD   |  |  |  |
|                                               | WAPFOK                         | WEJCUM           | WEWREY   | XAKHOG   | XOBQAI   |  |  |  |

Table S1. CSD reference codes of HgXPn2, HgXCh2; HgXHa2 X-ray structures

| XOLGOW                                         | XUHROI   | XUHROI01 | YARNIP   | YAXHEN   |  |  |  |  |
|------------------------------------------------|----------|----------|----------|----------|--|--|--|--|
| YAXHIR                                         | YEYYUX   | YEYZEI   | YOLHUD   | YOLJAL   |  |  |  |  |
| YOLJEP                                         | YOMXIJ   | YOMXOP   | YOMXUV   | YOMYAC   |  |  |  |  |
| ZESCUV                                         | ZESDAC   | ZETKAK   | ZIWDUG   | ZUHZOT   |  |  |  |  |
| ZUHZUZ                                         | ZURXEP   |          |          |          |  |  |  |  |
| HgXHa <sub>2</sub> ; total number of hits: 181 |          |          |          |          |  |  |  |  |
| AFEYOZ                                         | AXAWON   | BABLOH   | BABNAU   | BARGUW   |  |  |  |  |
| BEHLUV                                         | BETPEV   | BHGIRP   | BIMJAI   | BITHIV   |  |  |  |  |
| BOLLET                                         | BOPXIN02 | BORYIC02 | BORYIC03 | BSHGCL   |  |  |  |  |
| BUKYEN                                         | BUKYIR   | CAGPIK   | CEKHOR   | CEKJEJ   |  |  |  |  |
| CEKJIN                                         | CHGIRP   | CIBDUN   | CIDLIM   | CIDZUL   |  |  |  |  |
| CINZEF                                         | CMSMOM   | COZMAF   | COZMAF10 | CPCOHG10 |  |  |  |  |
| CPRUHG                                         | CUFCEL   | CUFCEL10 | CUPXUH   | DEBWAJ   |  |  |  |  |
| DEFYET                                         | DEJZIB   | DILTOH   | DOBCAZ   | DOBCIH   |  |  |  |  |
| DOTLIH                                         | DTIZHG01 | DTIZHG10 | DUGCEN   | DUSFAA   |  |  |  |  |
| ELEWEY                                         | EMIFOX   | EMINOF   | EMINUL   | EMSCHG   |  |  |  |  |
| ENTIHG                                         | EWOREN   | EXERII   | FEGLAE   | FIJQOF   |  |  |  |  |
| FOCLOY                                         | GARSEX   | GIRPUU   | GIRQAB   | GOCTUQ   |  |  |  |  |
| GOGHUH                                         | GUBBEK   | HARRAV   | HGCBPO10 | HGCETS   |  |  |  |  |
| HGCQIN                                         | HIRTUX   | HOTCEA   | IBAFEY   | IBAFIC   |  |  |  |  |
| ICACUN                                         | IRUVEW   | JANFEK   | JOGJOE   | KEZBAT   |  |  |  |  |
| KIQKED                                         | KOFXAE   | KOZREY   | KOZREY01 | KUKNAF   |  |  |  |  |
| LAQGIT                                         | LEHGAI   | LEQRAB   | LEQRUV   | LITSEM   |  |  |  |  |
| LOMPAG                                         | LOWJUE   | MAJHAI   | MAJHEM   | MHPCHG   |  |  |  |  |
| MIXQIW                                         | MOLVUE   | MOWFUA   | MOWGAH   | MUMDAB   |  |  |  |  |
| NEHQUM01                                       | NOFJIE   | NOSSUJ   | OXTETH10 | PASCHI   |  |  |  |  |
| PAYCAT                                         | PERGOJ   | PEWVAO   | PIGRIH   | PURGIS   |  |  |  |  |
| QEMDUH                                         | QEMDUH01 | QEVHUU   | QEZNUG   | QEZPAO   |  |  |  |  |
| QEZPIW                                         | QEZPOC   | QEZPUI   | QEZQAP   | QIJXIQ   |  |  |  |  |
| QIJXIQ01                                       | QOFQEH   | QOFQEH01 | QQQBVJ   | QQQBVJ02 |  |  |  |  |
| QQQBVJ03                                       | QQQBVJ04 | QQQBVJ31 | QQQBVJ32 | QQQBVJ33 |  |  |  |  |
| RAFJUD                                         | REGVUV   | RICSIG   | RIMKUW   | RITMAI   |  |  |  |  |
| RORREV                                         | RUYVUE   | SARBOC   | SEBNAP   | SIFCAL   |  |  |  |  |
| SIRMAH                                         | SODZES   | SOYPIF   | SURNOI   | TABYUS   |  |  |  |  |
| TAGCAF                                         | TEBPAS   | TEBPEW   | TMAHGB   | TMSCHG   |  |  |  |  |
| TMSHGI                                         | TMSHGI01 | TMSHGI02 | ТОСЈІН   | TOCJON   |  |  |  |  |
| UCEYIL                                         | UGUBOO   | UGUQES   | UJEROQ   | UJEROQ01 |  |  |  |  |
| UYOCES                                         | UYUSUD   | VEGSAD   | VEQJAE   | VEWKOY   |  |  |  |  |
| VICFIW                                         | VOFROX   | VOZGEW   | VUDSUJ   | νυγυν    |  |  |  |  |
| VUPWUZ                                         | WABCEH   | WIVTAY   | WURPIJ   | WURPOP   |  |  |  |  |
| XIVKIW                                         | XIVKOC   | XOGKIN   | XUVRIQ   | YARNEL   |  |  |  |  |
| YAWNUF                                         | ZUPCUI   | ZZZDWQ   | ZZZHBA   | ZZZTLW   |  |  |  |  |
| ZZZTOE                                         |          |          |          |          |  |  |  |  |



**Figure S1**. Plots to assess the geometry of HgX<sub>3</sub> structures in the CSD. (**a**): Plot of the hit-count as a function of the X<sub>3</sub><sup>plane</sup>...Hg distance to assess the planarity of HgX<sub>3</sub> structures. The plot shows that nearly all structures (97.6%, green) are best considered as planar, as opposed to a triangular pyramidal structure. The inset figure shows the relationship between the height of a triangular pyramid (h) and length of the edges (a and e), together with the actual distribution of Hg–X distances. Assuming that a = e = Hg–X, these give a height in between 1.47 and 2.94 Å. The lower value of 1.47 Å is used as borderline between a planar and triangular pyramidal structure (indicted in red). (**b**): Plot of the hit-count as a function of largest X–Hg–X to assess the proportion of structures with Y-shaped ( $\angle = 120^{\circ}$  in the ideal case) or a T-shaped ( $\angle = 180^{\circ}$  in the ideal case) geometry. The border between the two structures of 150° ((120+180)/2) is marked with the red dash-dot line.

## References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 (Revision A.03), Gaussian Inc., Wallingford CT, 2016.
- 2. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- (a) M. Karmakar, A. Frontera, S. Chattopadhyay, T. J. Mooibroek and A. Bauzá, *Int. J. Mol. Sci.*, 2020, **21**, 7091; (b) G. Mahmoudi, S. E. Lawrence, J. Cisterna, A. Cárdenas, I. Brito, A. Frontera and D. A. Safin, *New J. Chem.*, 2020, **44**, 21100-21107
- 4. R. F. W. Bader, *Chem. Rev.*, 1991, **91**, 893–928
- 5. J. Contreras-Garcia, E. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. Beratan and W. Yang, J. Chem. Theor. Comp., 2011, **7**, 625–632.
- 6. T. A. Keith, AIMAll (Version 19.02.13), TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com).