Supporting Information

Effect of isothermal holding time on hydrogen-induced structural transitions of WO₃

Takeshi Matsukawa* and Toru Ishigaki

Figure S1. Rietveld refinement results of XRPD measurements of WO₃ samples before and after hydrogen treatments: (a) WO₃, (b) bule WO₃ (500 °C for 30 min), (c) mazarine WO₃ (500 °C for 22 h), (d) mazarine WO₃ (800 °C for 30 min), and (e) gray WO₃ (800 °C for 22 h).

Figure S2. Crystal structures of WO₃, $W_{10}O_{29}$, $W_{18}O_{49}$, and WO₂.

Figure S3. Rietveld refinement results of NPD measurements of WO₃ and WO₃-H samples before and after hydrogen treatment: (a) WO₃ and (b) WO₃-H.

	Temperature (°C)				500					
-	Isothermal holding time				0		30 m	in		
-	Chemical formula				WO ₃		WO ₃			
	Crystal system				Monoclini	c	Monoc	linic		
Succession Systems										
	Space group				$P Z_1/n$		$P Z_{1}/2$	n		
a (Å)				7.30959(1))	7.30759	9(1)			
<i>b</i> (Å)				7.54425(1))	7.54425	5(1)			
<i>c</i> (Å)				7.70015(1))	7.70552	2(1)			
	β (°)				90.7661(3)	90.7661(4)			
	V (Å ³)				424.6		424.	8		
	R_{wp} (%)				6.25		7.21			
-										
Isothermal h	olding	Flomont	aita	~					_	\mathbf{D} (3^2)
time at 50	0°C	Element	sile	g	X		У		4	$B_{\rm iso}(A)$
		W (1)	4 <i>e</i>	1	0.2516(1)	0.	0248(1)	0.283	881(7)	0.5
WO3(0 r		W (2)	4 <i>e</i>	1	0.2473(1)	0.	.0297(1)	0.780)55(7)	0.5
	min)	O (1)	4 <i>e</i>	1	0.00068(9)	0.	4660(1)	0.214	25(8)	0.355(3)
		O (2)	4 <i>e</i>	1	1.0010(1)	0.	4660(1)	0.217	780(8)	0.355(3)
	1111)	O (3)	4 <i>e</i>	1	0.28473(8)	0.2	26144(8)	0.281	.97(8)	0.355(3)
		O (4)	4 <i>e</i>	1	0.21082(8)	0.	2582(1)	0.734	06(8)	0.355(3)
		O (5)	4 <i>e</i>	1	0.28510(8)	0.0	03963(8)	0.006	664(8)	0.355(3)
		O (6)	4 <i>e</i>	1	0.28521(7)	0.4	48837(7)	0.993	337(4)	0.355(3)
) min)	W (1)	4 <i>e</i>	1	0.2540(1)	0.	.0245(1)	0.281	82(8)	0.5
		W (2)	4 <i>e</i>	1	0.2475(1)	0.	0271(1)	0.779	918(8)	0.5
		O(1)	4 <i>e</i>	1	-0.00014(1)) 0.	.0406(1)	0.215	588(8)	0.406(3)
		O(2)	4 <i>e</i>	1	0.9986(1)	0.	4692(1)	0.220)12(7)	0.406(3)
WO ₃ (30		O (3)	4 <i>e</i>	1	0.28457(7)	0.	2624(1)	0.279	001(8)	0.406(3)
		O (4)	4 <i>e</i>	1	0.21080(7)	0.	2582(1)	0.735	584(8)	0.406(3)
		0 (5)	4 <i>e</i>	1	0.28572(9)	0.0	03502(7)	0.004	199(8)	0.406(3)
		O (6)	4 <i>e</i>	1	0.28253(8)	0.4	49050(7)	0.994	05(8)	0.406(3)

 $Table\ S1.$ Crystallographic information (obtained by NPD) of WO_3 and WO_3-H samples