Supporting Information

Assembly of Tetra-Nuclear Yb^{III}-Containing Selenotungstate

Clusters: Synthesis, Structures, and Magnetic Properties

Li-Zhi Han,^a Cheng-Qi Jiao,^b Wei-Chao Chen,^{*c} Kui-Zhan Shao,^c Long-Yi Jin,^{*a} and Zhong-

Min Su^a

^aDepartment of Chemistry, College of Science, Yanbian University, Yanji 133002, People's Republic of China E-mail: lyjin@ybu.edu.cn

^bLiaoning Normal University Liaoning Normal Univ, Sch Chem & Chem Engn, Huanghe Rd 850, Dalian 116029, Peoples R China

^cKey Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University Ren Min Street No. 5268 Changchun, Jilin, 130024 P. R. China E-mail: chenwc061@nenu.edu.cn

CONTENTS

Section 1 A detailed survey of the lanthanoid-containing selenotungstates

Section 2 Structures

Section 3 Experimental Section

Section 4 Supplementary Physical Characterizations

Section 1 A detailed survey of the lanthanoid-containing selenotungstates

Year	Lanthanoid ions	Formula	properties	Ref.
2013	Ce	$\begin{split} & K_{32}Na_{16}[\{(SeO_3)W_{10}O_{34}\}_8\{Ce_8(H_2O)_{20}\}(WO_2)_4(W_4O_{12})]\cdot 81H\\ & _2O\\ & K_{32}Na_{16}[\{(TeO_3)W_{10}O_{34}\}_8\{Ce_8(H_2O)_{20}\}(WO_2)_4(W_4O_{12})]\cdot 114\\ & H_2O\\ & K_{12}Na_{22}[\{(SeO_3)W_{10}O_{34}\}_8\{Ce_8(H_2O)_{20}\}(WO_2)_4\{(W_4O_6)Ce_4(H_{2}O)_{14}(SeO_3)_4(NO_3)_2\}]\cdot 79H_2O \end{split}$	the formation of inorganic hollow spheres in dilute solution	1
2014	Ce	$(C_{2}H_{8}N)_{4}K_{3}Na_{10}[(\alpha - G_{2}H_{8}N)_{4}K_{3}Na_{10}[(\alpha - G_{2}CH_{3}COO)(H_{2}O)_{3}W_{3}O_{6}](\alpha - G_{2}W_{14}O_{52})]\cdot 26H_{2}O;$ $K_{10}Na_{5}[(\alpha - SeW_{9}O_{33})_{2}\{Ce_{2}(H_{2}O)_{4}W_{3}O_{6}\}\{\alpha - G_{2}W_{14}O_{51}(OH)\}]\cdot 24H_{2}O$	DFT for the investigations of electronic properties	2
2015	Се	$K_6Na_{16}[Ce_6Se_6W_{67}O_{230}(OH)_6(H_2O)_{17}]\cdot47H_2O;$ $K_9Na_5Ce(H_2O)_4[Ce_6Se_{10}W_{51}O_{187}(OH)_7(H_2O)_{18}]\cdot45H_2O$	electrochemical properties	3
2015	Ce	Na ₁₃ H ₇ [Ce(SeW ₁₇ O ₅₉) ₂]·31H ₂ O	electrochemical properties	4
2017	La, Ce	[H ₂ N(CH ₃) ₂] ₁₆ Na ₉ LnH ₁₀ {[W ₁₆ Ln ₁₀ (H ₂ O) ₃₈ O ₅₀][<i>B</i> -α- SeW ₉ O ₃₃] ₈ }·56H ₂ O; [H ₂ N(CH ₃) ₂] ₂₂ Na ₄ H ₁₂ {[W ₁₈ Ln ₁₀ (H ₂ O) ₃₄ O ₅₆][<i>B</i> -α- SeW ₉ O ₃₃] ₈ }·80H ₂ O	variable-temperature IR spectra and PXRD patterns	5
2017	Pr	$Cs_2Na_4H_{12}[{Pr_3(H_2O)_{10}[Se_2W_{22}O_{76}(gly)_2]}_2(Se_2W_7O_{30}H_2)]$ $\cdot 25H_2O$	H ₂ O ₂ -based catalytic epoxidation property	6
2018	Tb, Dy	$[H_2N(CH_3)_2]_2Na_9K_2H_{19}{[Ln_4W_4Se_4O_{22}(H_2O)_5](Se_2W_{14}O_{52})}_2}_2\cdot 60H_2O$	solid-state luminescent spectra	7
2019	Gd, Dy	$[H_2N(CH_3)_2]_{10}H_3[SeO_4Ln_5(H_2O)_7(Se_2W_{14}O_{52})_2]\cdot40H_2O$	luminescence properties	8
2019	Се	[HDMEA][H ₂ N(CH ₃) ₂] ₄ H ₃ Na ₄ [Ce ₂ (H ₂ O) ₆ (DMEA)W ₄ O ₉ (α- SeW ₉ O ₃₃) ₃]·26H ₂ O; [H ₂ N(CH ₃) ₂] ₁₀ H ₄ Na ₁₀ [Ce ₂ W ₄ O ₉ (H ₂ O) ₇ (α- SeW ₉ O ₃₃) ₃]2·63H ₂ O	the oxidation of aromatic sulfides	9
2019	Gd, Tb, Dy	$(C_4H_{10}NO)_9Na_3[Dy_3Se_{3.5}W_{30}O_{107.5}(H_2O)_{10}]\cdot 22H_2O;$ $(NH_4)_3(C_2H_8N)Na_2[Dy_4Se_6W_{38}O_{132}(H_2O)_{26}(OH)_6]\cdot 18H_2O;$ $(NH_4)_4Na_8[Gd_4Se_6W_{48}O_{166}(H_2O)_{20}(OH)_4]\cdot 21H_2O;$ $(NH_4)_9(C_2H_8N)_4Na_5[Ln_6Se_6W_{58}O_{202}(H_2O)_{20}(OH)_4]\cdot 58H_2O;$ $(NH_4)_4(C_2H_8N)_5Na_{13}[Ln_4Se_8W_{56}O_{196}(H_2O)_x(OH)_{10}]\cdot 40H_2O;$	magnetic behaviors	10

Table S1. A detailed survey of the lanthanoid-containing selenotungstates.

2020	Ho, Er, Tb,	[H-N(CH-)-]-H-[SeO-Lp-(H-O)-(Se-W, O)-]-40H-O	luminescence	11
Tm			properties	11
		$Na_{9}K_{8}[W_{3}Nd_{2}(H_{2}O)_{3}(NO_{3})O_{6}](B-\alpha-SeW_{9}O_{33})_{2}(\alpha-C)$		
2020	Nd	Se ₂ W ₁₄ O ₅₂)}·35H ₂ O;	catalytic oxidation of	17
	NU NU	$[H_2N(CH_3)_2]_7H_9Na_4[[W_2Nd_2(H_2O)_8O_6(OH)_2(\beta-$	aromatic thioethers	12
		Se ₂ W ₁₄ O ₅₂)][W ₃ Nd ₂ (H ₂ O) ₆ O ₇ (B-α-SeW ₉ O ₃₃) ₂] ₂ }·84H ₂ O		
2020	Fu		luminescence	12
2020			properties	15
	Ce, Pr,		electrochemical	
2020	Nd, Sm, Gd,	$(121(C13)2)12102(C12(C12C))(W_4Og)(11) SeW_{15}O_{54}(SeW_{15}O_{54})(SeW_{1$		14
	Tb, Ho, Er	U ₃₃ /2] ⁴⁴ Π2U	sensing properties	
2020	60	$Na_{16}H_{6}\{[Ce_{3}W_{4}O_{10}(H_{2}O)_{9}(CH_{3}COO)_{3}]_{2}(Se_{2}W_{7}O_{30})(B-\alpha-M_{2})_{3}(Se_{2}W_{7}O_{30})(Se_{2}W_{7}O_{30})(Se_{2}W_{7}O_{30})(Se_{2}W_{7}O_{30})($	electrochemical	15
2020	Ce	SeW ₉ O ₃₃) ₄ }·(C ₅ H ₈ NBO ₃)·119H ₂ O	sensing properties	15
2021	Vh	$(C_2H_8N)_6Na_{14}[Yb_4Se_6W_{44}O_{160}(H_2O)_{12}]\cdot40H_2O;$	single molecule	This
2021	TD	$(C_2H_8N)_4Na_{14}[Yb_4Se_6W_{45}O_{159}(OH)_6(H_2O)_{11}]\cdot 38H_2O$	magnets	work

REFERENCES

(1) Chen, W.-C.; Li, H.-L.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. Assembly of cerium(III)-stabilized polyoxotungstate nanoclusters with SeO_3^{2-}/TeO_3^{2-} templates: from single polyoxoanions to inorganic hollow spheres in dilute solution. *Chem. Eur. J.* **2013**, *19*, 11007-11015.

11015.

(2) Chen, W.-C.; Yan, L.-K.; Wu, C.-X.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. Assembly of Keggin-/Dawson-type polyoxotungstate clusters with different metal units and SeO₃²⁻ heteroanion templates. *Cryst. Growth Des.* **2014**, *14*, 5099-5110.

(3) Chen, W.-C.; Qin, C.; Li, Y.-G.; Zang, H.-Y.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. Assembly of large purely inorganic Cestabilized/bridged selenotungstates: from nanoclusters to layers. *Chem. Asian J.* **2015**, *10*, 1184-1191.

(4) Li, H.; Yang, W.; Chai, Y.; Chen, L.; Zhao, J. A novel Dawson-like cerium(IV)-hybridizing selenotungstate Na₁₃H₇[Ce(SeW₁₇O₅₉)₂]·31H₂O. *Inorg. Chem. Commun.* **2015**, *56*, 35-40.

(5) Liu, Y.; Li, H.; Lu, C.; Gong, P.; Ma, X.; Chen, L.; Zhao, J. Organocounterions-assisted and pH-controlled self-assembly of five nanoscale high-Nuclear lanthanide substituted heteropolytungstates. *Cryst. Growth Des.* **2017**, *17*, 3917-3928.

(6) Yang, L.; Li, L.; Guo, J.; Liu, Q.; Ma, P.; Niu, J.; Wang, J. A nanosized gly-decorated praseodymium-stabilized selenotungstate cluster: synthesis, structure, and oxidation catalysis. *Chem. Asian J.* **2017**, *12*, 2441-2446.

(7) Li, H.-L.; Liu, Y.-J.; Li, Y.-M.; Chen, L.-J.; Zhao, J.-W.; Yang, G.-Y. Unprecedented selenium and lanthanide simultaneously bridging selenotungstate aggregates stabilized by four tetravacant Dawson-like {Se₂W₁₄} units. *Chem. Asian J.* **2018**, *13*, 2897-2907.

(8) Y. Zhang, Y. Li, J. Pang, Y. Liu, P. Li, L. Chen and J. Zhao, Two Penta-RE^{III} Encapsulated Tetravacant Dawson Selenotungstates and Nanoscale Derivatives and Their Luminescence Properties, *Inorg. Chem.* 2019, *58*, 7078–7090.
(9) Li, H.-L.; Lian, C.; Chen, L.-J.; Zhao, J.-W.; Yang, G.-Y. Two Ce³⁺-substituted selenotungstates regulated by N,N-dimethylethanolamine and dimethylamine hydrochloride, *Inorg. Chem.* 2019, *58*, 8442-8450.

(10) W.-C. Chen, C.-Q. Jiao, X.-L. Wang, K.-Z. Shao and Z.-M. Su, Self-Assembly of Nanoscale Lanthanoid-Containing Selenotungstates: Synthesis, Structures, and Magnetic Studies, *Inorg. Chem.* **2019**, *58*, 12895–12904.

(11) Y. Zhang, Y.-F. Liu, X. Xu, L.-J. Chen and J.-W. Zhao, Preparations, Structures and Luminescence Properties of Pentarare-earth Incorporated Tetravacant Dawson Selenotungstates and Their Ho³⁺/Tm³⁺ Co-doped Derivatives, *Chem Asian J.* **2020**, *15*, 1156–1166.

(12) H. Li, C. Lian, L. Chen, J. Zhao and G.-Y. Yang, Two unusual nanosized Nd3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments, *Nanoscale*, **2020**, *12*, 16091–16101.

(13) Y. Zhang, B. Zeng, Y. Liu, P. Li, L. Chen and J. Zhao, A Penta-EuIII Sandwiched Dawson Selenotungstate and Its Unique Luminescence Properties, *Eur. J. Inorg. Chem.* **2020**, 3416–3425.

(14) L. Liu, J. Jiang, X. Liu, G. Liu, D. Wang, L. Chen and J. Zhao, First series of mixed (P^{III}, Se^{IV})-heteroatomoriented rareearth-embedded polyoxotungstates containing distinct building blocks, *Inorg. Chem. Front.*, **2020**, *7*, 4640–4651.

(15) J. Jiang, L. Liu, G. Liu, D. Wang, Y. Zhang, L. Chen and J. Zhao, Organic–Inorganic Hybrid Cerium-Encapsulated Selenotungstate Including Three Building Blocks and Its Electrochemical Detection of Dopamine and Paracetamol, *Inorg. Chem.* **2020**, *59*, 15355–15364.

Section 2 Structures

	1	2					
Empirical formula	$C_{12}H_{152}N_6Na_{14}O_{212}Se_6W_{44}Yb_4$	$C_8H_{136}N_4Na_{14}O_{214}Se_6W_{45}Yb_4\\$					
М	13350.57	13474.23					
λ/Å	0.71073	0.71073					
7/К	296.15	296.15					
Crystal system	Orthorhombic	Triclinic					
Space group	Pbcn	P-1					
a/Å	50.919(2)	17.1503(13)					
b/Å	23.3103(8)	25.581(2)					
c/Å	20.2832(8)	35.869(3)					
α/°	90	93.152(2)					
<i>6</i> /°	90	99.869(2)					
γ/°	90	106.340(2)					
V/Å ³	24074.8(16)	14788(2)					
Ζ	4	2					
$D_c/Mg m^{-3}$	3.683	3.026					
µ/mm⁻¹	23.499	19.514					
F(000)	23424	11784					
2ϑ Range/°	3.584–49.998	2.954–43.492					
Measured reflections	135589	62674					
Independent reflections	21189	34925					
<i>R_{int}</i> after SQUEEZE	0.1655	0.0963					
Goodness-of-fit on <i>F</i> ²	1.029	1.018					
$R_1(l>2\sigma(l))^a$	0.0552	0.0756					
wR_2 (all data) ^b	0.1392	0.2282					
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} \cdot {}^{b}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}.$							

Table S2. Crystal Data and Structure Refinements for 1 and 2.

Single-crystal X-ray diffraction: Single-crystal X-ray diffraction data for **1** and **2** were recorded on a Bruker Apex CCD II area-detector diffractometer with graphite-monochromated Mo_{Ka} radiation ($\lambda = 0.71073$ Å) at 296(2) K. Absorption corrections were applied using multi-scan technique and performed by using the SADABS program (Sheldrick, G. *SADABS*; ver. 2.10; University of Gottingen: Göttingen, Germany, **2003**). The structures of **1** and **2** were solved by direct methods and refined on F^2 by full-matrix leastsquares methods by using the Olex2 package (*J. Appl. Cryst.*, **2009**, 42, 339). CCDC number: 2067697 for **1**; 2067696 for **2**.

As for CCDC 2067696, about one Na⁺ and 3 [C₂H₈N]⁺ cations as well as 5 water molecules were found from the Fourier maps, however, there are still accessible solvent voids in the crystal structure prompted by Checkcif report, indicating that some more cations and solvent molecules should exist in the structure, but cannot be found from the weak residual electron peaks. Based on the TGA curve, bond valence sum calculations, elemental analyses, another 33 water molecules, 13 Na⁺, one [C₂H₈N]⁺ cation and 34 H⁺ were included into the molecular formula directly. Specifically, the 38 water molecules and 4 organic amine groups in this formula were confirmed by TGA curve, two successive weight decrease is the loss of water molecules and organic amine groups (Cacld: 7.91%; Found: 7.82%). Elemental analysis supports this molecular formula once again (Cacld: C 0.71, N 0.42, Na 2.39, Yb 5.14, Se 3.52, W 61.4 %; Found C 0.69, N 0.50, Na 2.88, Yb 5.06, Se 3.49, W 60.8 %). In all, the molecular formula was defined as (C₂H₈N)₄Na₁₄[Yb₄Se₆W₄₅O₁₅₉(OH)₆(H₂O)₁₁]·38H₂O according to single crystal analysis, charge balance, TGA curve as well as elemental analyses.

As for CCDC 2067697, about one Na⁺ and 4 [C₂H₈N]⁺ cations as well as 9 water molecules were found from the Fourier maps, however, there are still accessible solvent voids in the crystal structure prompted by Checkcif report, indicating that some more cations and solvent molecules should exist in the structure, but cannot be found from the weak residual electron peaks. Based on the TGA curve, bond valence sum calculations, elemental analyses, another 31 water molecules, 13 Na⁺, 2 [C₂H₈N]⁺ cations and 40 H⁺ were included into the molecular formula directly. Specifically, the 40 water molecules and 6 organic amine groups in this formula were confirmed by TGA curve, two successive weight decrease is the loss of water molecules and organic amine groups (Cacld: 9.08%; Found: 8.93%). Elemental analysis supports this molecular formula once again (Cacld: C 1.08, N 0.63, Na 2.41, Yb 5.18, Se 3.55, W 60.6 %; Found C 0.98, N 0.67, Na 2.98, Yb 5.13, Se 3.31, W 59.9 %). In all, the molecular formula was defined as (C₂H₈N)₆Na₁₄[Yb₄Se₆W₄₄O₁₆₀(H₂O)₁₂]·40H₂O according to single crystal analysis, charge balance, TGA curve as well as elemental analyses.

		1	
Yb(1)-O(8)	2.382(15)	Yb(2)-O(34)	2.273(15)
Yb(1)-O(16)	2.302(15)	Yb(2)-O(40)	2.385(16)
Yb(1)-O(25)	2.339(15)	Yb(2)-O(51)	2.292(16)
Yb(1)-O(30)	2.316(15)	Yb(2)-O(69)	2.317(15)
Yb(1)-O(53)	2.314(17)	Yb(2)-O(73)	2.314(17)
Yb(1)-O(70)	2.283(16)	Yb(2)-O(81)	2.321(16)
Yb(1)-O(79)	2.337(16)	Yb(2)-O(82)	2.311(16)
Yb(1)-O(80)	2.346(17)	Yb(2)-O(83)	2.370(18)
		2	
Yb(1)-O(22)	2.26(3)	Yb(2)-O(2)	2.23(3)
Yb(1)-O(44)	2.19(2)	Yb(2)-O(35)	2.29(3)
Yb(1)-O(50)	2.30(3)	Yb(2)-O(37)	2.35(4)
Yb(1)-O(95)	2.30(3)	Yb(2)-O(110)	2.25(3)
Yb(1)-O(117)	2.21(4)	Yb(2)-O(123)	2.24(3)
Yb(1)-O(145)	2.36(4)	Yb(2)-O(174)	2.34(3)
Yb(1)-O(159)	2.27(2)	Yb(2)-O(154)	2.34(3)
Yb(3)-O(65)	2.27(3)	Yb(4)-O(20)	2.27(3)
Yb(3)-O(67)	2.20(4)	Yb(4)-O(22)	2.15(3)
Yb(3)-O(69)	2.35(4)	Yb(4)-O(63)	2.29(4)
Yb(3)-O(75)	2.42(4)	Yb(4)-O(77)	2.29(3)
Yb(3)-O(96)	2.26(3)	Yb(4)-O(84)	2.28(3)
Yb(3)-O(123)	2.12(3)	Yb(4)-O(136)	2.26(3)
Yb(3)-O(149)	2.35(3)	Yb(4)-O(162)	2.27(3)

Table S3. Bond lengths [Å] for the Yb atoms in 1–2.

Oxygen Code	Bond Valence	Protonation Degree	Oxygen Code	Bond Valence	Protonation Degree				
O ₁₅	1.349	1	O ₁₀₉	1.422	1				
O ₁₅₆	1.372	1	O ₁₀₅	0.355	2				
O ₇₃	1.372	1	O ₁₂₃	0.778	1				
O ₂₂	0.737	1							
Total 8 protons per cluster									

Table S4. The BVS calculation results of all the oxygen atoms in 2.

Fig. S1 The twist angle (a) and four Yb-O-W linkages (b, red bonds) in dimeric {Yb₂Se₂W₂₁} subunit. Color code: W (purple); Se (green); Yb (yellow).

Fig. S2 The open pocket-like fragments of $[Se_2W_{19}O_{68}]^{14-}$ (a) and $[As_2W_{19}O_{68}]^{16-}$ (b). Color code: W (purple); Se or As (blue); O (red).

Fig. S3 Dimeric (a), trimeric (c) or tetrameric (b,d) Ln-containing selenotungstates based on three or four $\{Yb_2Se_2W_{21}\}$ subunits fixed by $\{W_2O_7\}$ (e) or $\{W_4\}$ linkers (f, g and h), respectively. Color code: W (purple); Se (green); Yb or Ce (yellow); O (gray).

Fig. S4 The distorted square antiprismatic geometries of Yb^{III} centers. Color code: Yb (yellow); O (gray).

Fig. S5 The pentagonal bipyramidal geometry of Yb center (a) and molybdenum {Mo(Mo₅)} or tungsten { $W(W_5)$ } centers (b,c). Color code: W or Mo (purple); Yb (yellow); O (gray).

Fig. S6 Polyhedral and ball-and-stick representation of opening $\{Se_4W_{28}\}$ subunit (a) and the "cavity" in **2a** with a half-"S"-shaped configuration (b). Color code: W (purple); Se (green); Yb (yellow).

Table S5. Lanthanide geome	try analysis of 1 b	y using the Sha	pe software.
----------------------------	---------------------	-----------------	--------------

Ideal shape	Octagon	Heptagona	Hexagonal	Cube	Square	Triangular	Johnson	Johnson	Biaugmented	Biaugmented	Snub	Triakis	Elongated
		l pyramid	bipyramid		antiprism	dodecahe	gyrobifastig	elongated	trigonal prism	trigonal prism	diphenoid	tetrahedro	trigonal
						dron	ium	triangular				n	bipyramid
								bipyramid					
Abbreviation	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
Symmetry	D _{8h}	C _{7v}	D _{6h}	O _h	D_{4d}	D_{2d}	D _{2d}	D _{3h}	C _{2v}	C _{2v}	D _{2d}	T _d	D _{3h}
CShM _(Yb1)	30.795	23.452	15.768	9.149	0.908	0.964	15.191	29.559	1.975	1.545	3.511	9.837	24.776
CShM _(Yb2)	31.209	23.042	16.265	10.208	1.046	1.348	14.398	29.538	1.854	1.467	3.696	10.822	24.783

Table S6. Lanthanide geometry analysis of **2** by using the Shape software.

Ideal shape	Heptagon	Hexagonal	Pentagonal	Capped	Capped	trigonal	Johnson pentagonal	Johnson elongated
		pyramid	bipyramid	octahedron	prism		bipyramid	triangular pyramid
Abbreviation	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7		JPBPY-7	JETPY-7
Symmetry	D _{7h}	C _{6v}	D _{5h}	C _{3v}	C _{2v}		D _{5h}	C _{3v}
CShM _(Yb1)	29.927	20.493	5.498	2.386	0.765		8.827	18.763
CShM _(Yb2)	34.464	22.027	1.691	4.221	3.412		5.729	21.098
CShM _(Yb3)	35.093	22.436	1.654	4.566	3.634		5.283	20.054
CShM _(Yb4)	28.923	20.508	6.730	2.202	0.709		10.097	18.401

Section 3 Experimental Section

Materials and Characterization: All chemicals and solvents were commercially purchased and used without further purification. C and N were performed on a PerkinElmer 2400 CHN elemental analyzer. Elemental analysis of Na, Yb, Se, and W were performed with a Leaman inductively coupled plasma (ICP) spectrometer. IR spectra were recorded on an Alpha Centauri FTIR spectrophotometer on pressed KBr pellets in the range 400~4000 cm⁻¹. Water contents were determined by TG analyses on a PerkinElmer TGA7 instrument in flowing N₂ with a heating rate of 10 °C min⁻¹. Electrospray ionization mass spectrometry was carried out on a Bruker Micro TOF-QII instrument. X-ray photoelectron spectroscopy was performed on a VG ESCALABMKII spectrometer with an Mg_{ka} (1253.6 eV) achromatic X-ray source. The vacuum inside the analysis chamber was maintained at 6.2 × 10⁻⁶ Pa during the analysis. Magnetic measurements of the samples were performed on a Quantum Design PPMS-9. Data were corrected for the diamagnetic contribution calculated from Pascal constants.

Fig. S7 Yb, W, and Se XPS spectra of 1.

Fig. S8 Yb, W, and Se XPS spectra of 2.

intens.

Table S7. Assignment of peaks of 1.

Observed	Calculated	Charge	Molecular	Delverion
m/z	m/z	Charge	mass	Polyanion
2869.9	2869.8	-2	5739.7	${NaH_{10}[Yb_2Se_2W_{21}O_{76}(H_2O)_6](H_2O)}^{2-}$
2899.4	2898.8	-2	5797.7	${Na_2H_9[Yb_2Se_2W_{21}O_{76}(H_2O)_6](H_2O)_3}^{2-}$
2913.4	2913.8	-2	5827.7	${Na_5H_6[Yb_2Se_2W_{21}O_{76}(H_2O)_6](H_2O)}^{2-}$

I ADIE JO. ASSIGNMENT UN DEARS UN Z

Observed	Calculated	Charge	Molecular	Polyanion
m/z	m/z	Charge	mass	roryanion
1969.5	1969.9	-2	3939.8	${Na_{10}[Se_2W_{13}O_{49}(H_2O)](H_2O)_{20}}^{2-}$
2270.3	2269.8	-2	4593.5	${H_3[Yb_2Se_2W_{16}O_{55}(OH)_5(H_2O)_6](H_2O)}^{2-}$
2475.3	2474.7	-2	4949.5	${Na_8H_3[Yb_2Se_2W_{16}O_{61}(OH)(H_2O)_4](H_2O)_{14}}^{2-}$
2496.8	2496.7	-2	4993.5	${Na_{10}H[Yb_2Se_2W_{16}O_{61}(OH)(H_2O)_4](H_2O)_{14}}^{2-}$
2518.4	2517.7	-2	5035.5	${Na_7H_4[Yb_2Se_2W_{16}O_{61}(OH)(H_2O)_4](H_2O)_{20}}^{2-}$

Supplementary Magneic Characterizations

Fig. S11 Temperature dependences of the in-phase χ' and out-of-phase χ'' components of the ac susceptibility of **1** (a) and **2** (b) under an applied external dc field (2000 Oe) and a constant frequency (1000 Hz).

Table S9. Best fitted parameters (χ_T , χ_S , τ and α) with the generalized Debye model at 2000 Oe in the temperature range 2.5-8.0 K.

Т/К	χ_T / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	α	τ/s	R ²
2.5	2.24403	0.098	0.1609	9.13E-4	0.99687
3.0	2.08831	0.07656	0.1934	7.73E-4	0.9968
3.5	1.65605	0.07605	0.16133	4.47E-4	0.99592
4.0	1.38421	0.07609	0.11797	2.69E-4	0.98021
4.5	1.3633	0.05347	0.16531	2.19E-4	0.99759
5.0	1.12435	0.05704	0.11207	1.21E-4	0.9951
5.5	1.00169	0.06425	0.07498	7.43E-5	0.98155
6.0	0.93273	0.03324	0.10738	4.62E-5	0.98547
6.5	0.86314	0.02348	0.11418	2.94E-5	0.97896
7.0	0.78638	0.03337	0.0821	1.88E-5	0.9777
7.5	0.73609	0.01246	0.09245	1.25E-5	0.99333
8.0	0.69379	0.02271	0.09694	9.10E-6	0.99565

Section 4 Supplementary Physical Characterizations

Fig. S12 The XRPD patterns of 1: as-synthesized (b) and simulated (a).

Fig. S13 The XRPD patterns of 2: as-synthesized (b) and simulated (a).

Fig. S14 TGA and DTA curves of **1**. The first and second weight loss is the lost of water molecules and organic amine groups (8.93 %). Then the structure begins to decompose.

Fig. S15 TGA and DTA curves of **2**. The first and second weight loss is the lost of water molecules and organic amine groups (7.82 %). Then the structure begins to decompose.