Selective Encapsulation of a Chloride Anion in a 1H-Pyrazole Cu²⁺.

Javier Pitarch-Jarque,^a Hermas R. Jiménez,^a Elina Kalenius,^b Salvador Blasco,^{*a} Alberto Lopera,^a M. Paz Clares,^a Kari Rissanen^b and Enrique García-España^{*a}

^a Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático José Beltrán Martínez 2, 46980 Paterna, Spain. E-mail: salvador.blasco@uv.es, enrique.garcia-es@uv.es

^b University of Jyväskylä, Department of Chemistry, P.O. Box. 35, FI-40014; University of Jyväskylä, Finland

Contents

1	Ligand characterisation.	2
2	Crystallographic information	4
3	Mass Spectroscopy	11
4	UV-vis titrations	12
Li	ist of Figures	
	S1: ¹ H and ¹³ C NMR characterisation of L	. 2
	S2: COSY and HSQC NMR spectra of L.	. 3
	S3: Hirshfeld surface analysis for structure 1	. 5
	S4: Hirshfeld surface analysis for structure 2	. 6
	S5: Hirshfeld surface analysis for structure 3	. 7
	S6: Hirshfeld surface analysis for structure 4	. 8
	S7: Crystal structure (3)	. 9
	S8: Pictures of the crystals sampled	. 10
	S9: Mass Spectrum ESI(+) of crystals of 3 dissolved in H_2O/CH_3CN .	. 11
	S10: Expanded mass spectrometry peaks	. 11
	S11: UV-vis spectra for the titration with cloride	. 12
Li	ist of Tables	
	S1: Crystallographic data	. 4
	S2: Hydrogen bonds of structure 1	. 5
	S3: Hydrogen bonds of structure 2	. 6
	S4: Hydrogen bonds of structure 3	. 7
	S5: Hydrogen bonds of structure 4	. 8
	S6: Ions observed in the ESI(+)–MS spectrum	. 12

1 Ligand characterisation.

Figure S1: (a) ^1H NMR (300 MHz, D_2O) spectrum of L. (b) ^{13}C NMR (75 MHz, D_2O) spectrum of L.

Figure S2: (c) COSY and (d) HSQC in D_2O of L.

2 Crystallographic information

Table S1: Crystallographic data

	1	2	3	4
Formula	C ₄₀ H _{78.67} Cu ₄ F ₁₄ N ₁₆	C ₄₀ H ₇₄ Cl ₄ Cu ₄ N ₁₆ O ₃	C ₈₀ H ₁₃₆ Br ₄ Cu ₈ N ₃₂	C40H60ClCu5
	O _{5.33} P ₂			I ₇ N ₁₆ O ₄
Weight / g mol ⁻¹	1451.27	1223.11	2374.16	2077.10
Density / gcm ⁻³	1.423	1.601	1.488	1.962
Size	$0.30 \times 0.10 \times 0.05$	$0.20 \times 0.20 \times 0.20$	$0.24 \times 0.09 \times 0.08$	$0.20 \times 0.10 \times 0.10$
System	orthorhombic	triclinic	monoclinic	orthorhombic
Space Group	I bam	P-1	I 2/m	I mmm
Cell				
$a/\text{\AA}$	13.861(3)	12.0598(7)	14.34035(14)	20.5739(9)
b/Å	20.5434(17)	14.3764(8)	18.7171(2)	14.4716(5)
c/Å	23.7890(18)	15.6936(6)	19.8559(2)	11.8083(4)
$\dot{\alpha}/^{\circ}$		108.589(4)		
β ['] /°		90.753(4)	96.1863(10)	
$\gamma/^{\circ}$		99.531(5)		
$V/Å^3$	6774.0(17)	2537.0(2)	5298 49(10)	3515.8(2)
Z	4	2337.6(2)	2	2
$\frac{T}{K}$	291.0(2)	120.0(1)	123(1)	291.0(2)
Θ range / °	3.21-32.40	3.03-32.33	1.80-26.62	3.84-23.65
F(000)	2981	1268	2424	1959
μ/cm^{-1}	1.373	1.920	3.136	4.677
Reflections				
- total	12959	27668	20584	9900
- unique	5683	14775	5669	2586
$-I > 2\sigma_I$	2350	7843	5318	1536
Parameters	209	663	320	117
Constraints	0	0	0	0
Restraints	0	9	61	0
Indices	-20 < h < 8	-15 < h < 16	-18 < h < 14	-26 < h < 27
	-17 < k < 31	-20 < k < 20	-23 < k < 20	-20 < k < 17
	-34 < l < 15	-22 < l < 22	-24 < l < 24	-16 < l < 16
R(int)	0.0945	0.0472	0.0186	0.0332
R(sigma)	0.1500	0.0901	0.0139	0.0347
<i>R</i> 1	0.2068	0.1311	0.0519	0.0904
$R1(I > 2\sigma_I)$	0.0835	0.0607	0.0493	0.0553
wR2	0.2520	0.1755	0.1403	0.1925
$wR2(I > 2\sigma_I)$	0.2034	0.1326	0.1429	0.1623
GooF	0.921	1.018	1.039	1.033
CCDC number	1994846	1994845	1994844	1994847

Table S2: Hydrogen bonds of structure $\mathbf{1}$

	distances / Å			angles / °
D–H···A	D–H	$H{\cdots}A$	$D\!\cdots\!A$	D–H···A
$O(1)-H(1A)\cdots(F6)$	0.92	2.21	2.748(6)	117
O(1)– $H(1A)$ ···(F4) ⁱ	0.92	2.21	3.067(6)	156
$O(1)-H(1B)\cdots(F2)$	0.91	2.23	2.99(3)	141
$O(1)-H(1B)\cdots(F3)$	0.91	2.29	2.84(2)	119
$N(2)-H(2) \cdots (F5)$	0.98	2.10	2.905(5)	138
N(2)–H(2) ··· (F6)	0.98	2.19	3.087(6)	152
N(3)–H(3) · · · (F5)	0.98	2.32	3.062(5)	132
$N(3)-H(3)\cdots(F4)^{i}$	0.98	2.09	3.034(6)	162

D: donor, A: acceptor, H: hydrogen. Symmetry operations: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, $\frac{1}{2} - z$

Figure S3: (top) Hirshfeld surface representation for structure 1. (middle) Hirshfeld surface fingerprint for all interactions. (bottom left) Interactions involving copper from the inside and oxygen on the outside which represent 2.1% of the Hirshfeld surface. (bottom right) Interactions involving hydrogen from the inside with any atom in the outside which account for 92.1% of the Hirshfeld surface.

Table S3: Hydrogen bonds of structure $\mathbf{2}$

distances / Å			angles / $^\circ$
D–H	$H{\cdots}A$	$D{\cdots}A$	$D – H \cdots A$
1.00	2.13	3.127(4)	175.5
1.00	2.46	3.293(4)	140.2
1.00	2.17	3.021(5)	141.4
1.00	2.31	3.230(4)	152.4
0.78	2.38	3.076(3)	149.2
0.82	2.49	3.173(3)	141.2
0.99	2.66	3.28(1)	121.5
1.00	2.40	3.303(4)	150.2
1.00	2.50	3.238(5)	130.8
0.80	2.43	3.154(5)	150.6
0.81	2.43	3.161(5)	150.0
	D-H 1.00 1.00 1.00 0.78 0.82 0.99 1.00 1.00 0.80 0.81	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

D: donor, A: acceptor, H: hydrogen. Symmetry operations: (i) -x, 1-y, 1-z; (ii) 1-x, 1-y, 1-z; (iii) x, 1+y, z; (iv) 1-x, 1-y, 1-z; (v) 1-x, -y, 1-z.

Figure S4: (top) Hirshfeld surface representation for structure 2. (middle) Hirshfeld surface fingerprint for all interactions. (bottom left) Interactions involving chlorine outside with any atom in the inside which represent 15.7% of the Hirshfeld surface. (bottom right) Interactions involving hydrogen from the inside with any atom in the outside which account for 89.7% of the Hirshfeld surface.

Table S4: Hydrogen bonds of structure 3

	distances / Å			angles / °
D–H···A	D–H	$H{\cdots}A$	$D\!\cdots\!A$	$D – H \cdots A$
$N(5)-H(5A)\cdots Br(1)^i$	1.00	2.60	3.336(5)	130.6
$N(1)-H(1)\cdots Br(2)^{ii}$	1.00	2.58	3.433(3)	143.6

D: donor, A: acceptor, H: hydrogen. Symmetry operations: (i) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) -x, -y, 1 - z.

Figure S5: (top) Hirshfeld surface representation for structure **3**. (middle) Hirshfeld surface fingerprint for all interactions. (bottom left) Interactions involving oxygen outside with copper inside which represent 0.12% of the Hirshfeld surface. (bottom right) Interactions involving hydrogen from the inside with any atom in the outside which account for 8.3% of the Hirshfeld surface.

Table S5: Hydrogen bonds of structure 4

	distances / Å			angles / °			
D–H···A	D–H	$H{\cdots}A$	$D\!\cdots\!A$	D–H···A			
$C(3)-H(3B)\cdots(I2)$	0.97	2.95	3.920(7)	178			
D: donor, A: acceptor, H: hydrogen,							

Figure S6: (top) Hirshfeld surface representation for structure 4. (middle) Hirshfeld surface fingerprint for all interactions. (bottom left) Interactions involving oxygen outside with copper inside which represent 2.4% of the Hirshfeld surface. (bottom right) Interactions involving hydrogen from the inside with iodine atoms in the outside which account for 38.0% of the Hirshfeld surface.

Figure S7: (A) Void channels as calculated by Mercury viewed down *b* and *c* axis. (B) Unit cell of 4 showing the arrangements of the anions in the lattice with respect to the $[Cu_4(H_{-2}L)_2]^{4+}$ cations.

no halogen (perchlorate counterion)

fluoride

chloride

bromide

iodide

Figure S8: Pictures of the crystals sampled.

3 Mass Spectroscopy

Figure S9: Mass Spectrum ESI(+) of crystals of 3 dissolved in H_2O/CH_3CN .

Figure S10: Detail of experimental (blue lines) and calculated (red lines) peaks for m/z = 256.0744 (a), 353.0892 (b), 547.1182 (c) and 1129.2057.

Table S6: The ions observed in the ESI(+)–MS spectrum measured from $[Cu_4(H_{-2}L)]$ with chloride ions, their formulas, theoretical and experimental m/z values (monoisotopic) and absolute mass accuracies.

ion	charge	formula	m/z (calc)	m/z (exp)	$\Delta(m/z)$
$[Cu_4(H_{-2}L)_2]^{4+}$	+4	C ₄₀ H ₆₈ N ₁₆ Cu ₄	256.0744	256.0783	0.0039
[Cu ₄ (H _{_2} L) ₂ Cl] ³⁺	+3	C ₄₀ H ₆₈ N ₁₆ Cu ₄ Cl	353.0892	353.0921	0.0029
[Cu ₅ (H ₂ L) ₂ Cl ₂] ³⁺	+3	C ₄₀ H ₆₈ N ₁₆ Cu ₅ Cl ₂	385.7218	385.7254	0.0036
$[Cu_4(H_{-2}L)_2Cl_2]^{2+}$	+2	C ₄₀ H ₆₈ N ₁₆ Cu ₄ Cl ₂	547.1182	547.122	0.0038
$[Cu_5(H_{-2}L)_2Cl_3]^{2+}$	+2	C ₄₀ H ₆₈ N ₁₆ Cu ₅ Cl ₃	596.0674	596.0797	0.0123
$\left[\operatorname{Cu}_{4}(\operatorname{H}_{-2}\operatorname{L})_{2}\operatorname{Cl}_{3}\right]^{+}$	+1	C ₄₀ H ₆₈ N ₁₆ Cu ₄ Cl ₃	1129.2057	1129.183	0.0227

4 UV-vis titrations

Figure S11: UV-vis spectra for the titration of a 0.002 M water solution of $[Cu_4(H_{-1}L)_2](CIO_4)_4$ with chloride and absorbance vs. chloride concentration at 812 nm (inset).