Dimethyltin(IV)-4,6-dimethyl-2-pyridylselenolate: An Efficient Single Source Precursor for the Preparation of SnSe Nanosheets as Anode Material for Lithium Ion Batteries

Gourab Karmakar,^{a,b} Kruti K. Halankar,^a Adish Tyagi,^{*a,b} B. P. Mandal,^{a,b} A. P. Wadawale,^a G. Kedarnath,^{*a,b} A. P. Srivastava^c and Vishal Singh^c ^aChemistry Division, Bhabha Atomic Research Centre, Mumbai- 400 085 (India), ^bHomi Bhabha National Institute, Anushaktinagar, Mumbai- 400 094 (India) ^cMaterials Science Division, Bhabha Atomic Research Centre, Mumbai- 400 085 (India). Email: tyagia@barc.gov.in, kedar@barc.gov.in

Figure captions

Figure S1 . ⁷⁷Se{¹H} NMR spectra of bis(4,6-dimethyl-2-pyridyl)diselenide

Figure S2. ⁷⁷Se{¹H} NMR spectra of $[Me_2Sn{2-SeC_5H_2(Me-4,6)_2N}_2]$ (1)

Figure S3. XRD pattern of TG residue of $[Me_2Sn\{2-SeC_5H_2(Me-4,6)_2N\}_2]$ (1) obtained at 800°C.

Figure S4. Deconvolution of pXRD peaks (20; 30-31.6°) of tin selenide material synthesized in DDT

Figure S5. EDS spectra of tin selenide nanostructures obtained by thermolysis of $[Me_2Sn\{2-SeC_5H_2(Me-4,6)_2N\}_2]$ (1) in (a) DDT, (b) OAm+DDT (1:1, v/v) respectively.

Figure S6. EDS spectra of SnSe nanostructures obtained by (a) pyrolysis of **1** and thermolysis of **1** in (b) OAm and (c) ODE respectively.

Figure S7. 2-D Elemental mapping of SnSe nanostructures obtained by (a) pyrolysis of 1 and thermolysis of 1 in (b) OAm and (c) ODE respectively.

Figure S8. SAED pattern of SnSe nanostructures obtained by (a) pyrolysis of **1** and thermolysis of **1** in (b) OAm and (c) ODE respectively.

Figure S9. (a) pXRD pattern, (b) FT-IR spectra, (c) SEM micrograph and (d) EDS spectra of electrode after 100 cycles.

Figure S10. (a) Cycling, coulombic efficiency and normalized capacity of full cell $LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$ // SnSe at current density 100 mAg⁻¹ and (b) Cycling and coulombic efficiency of $LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$ at current density 100 mAg⁻¹.

Figure S1 . $^{77}\text{Se}\{^1\text{H}\}$ NMR spectra of bis(4,6-dimethyl-2-pyridyl)diselenide

Figure S2. ⁷⁷Se{¹H} NMR spectra of $[Me_2Sn\{2-SeC_5H_2(Me-4,6)_2N\}_2]$ (1)

Figure S3. XRD pattern of TG residue of $[Me_2Sn\{2-SeC_5H_2(Me-4,6)_2N\}_2]$ (1) obtained at 800°C.

Figure S4. Deconvolution of pXRD peaks (20; 30-31.6°) of tin selenide material synthesized in DDT

Figure S5. EDS spectra of tin selenide nanostructures obtained by thermolysis of $[Me_2Sn\{2-SeC_5H_2(Me-4,6)_2N\}_2]$ (1) in (a) DDT, (b) OAm+DDT (1:1, v/v) respectively.

Figure S6. EDS spectra of SnSe nanostructures obtained by (a) pyrolysis of **1** and thermolysis of **1** in (b) OAm and (c) ODE respectively.

Figure S7. 2-D Elemental mapping of SnSe nanostructures obtained by (a) pyrolysis of 1 and thermolysis of 1 in (b) OAm and (c) ODE respectively.

Figure S8. SAED pattern of SnSe nanostructures obtained by (a) pyrolysis of **1** and thermolysis of **1** in (b) OAm and (c) ODE respectively.

Figure S9. (a) pXRD pattern, (b) FT-IR spectra, (c) SEM micrograph and (d) EDS spectra of electrode after 100 cycles.

Figure S10. (a) Cycling, coulombic efficiency and normalized capacity of full cell $LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$ // SnSe at current density 100 mAg⁻¹ and (b) Cycling and coulombic efficiency of $LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$ at current density 100 mAg⁻¹.