Immobilizing molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO₂ reduction

Maxime Laurans, Jordann A. L. Wells and Sascha Ott

Department of Chemistry – Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden. E-mail: <u>sascha.ott@kemi.uu.se</u>

Table of contents:

Figure S1. 1D ¹ H (top) and 2D COSY (left) and 1D difference NOE (with a pulse set at δ =3.04 ppm, s,
3H, -CH ₃) (right) NMR spectra of (1) in CD ₃ CN/400 MHz
Table S1. Selected bond lengths (Å) and angles (°) for (2), and (1).
Figure S2. A. Numbering convention for Table S1. B. Positional disorder in the crystal structure of (2),
which could not be modelled in order to obtain stable refinement
Table S2. Crystal data and structure refinement. 5
Figure S3. Cyclic voltammograms of (1) and (5) (1 mM) under Ar (blue) and under CO ₂ (red). All
experiments were done in 0.1 M TBAPF ₆ in CH ₃ CN, $v = 200$ mV/s
Table S3. RSF (relative sensitivity factors) based on Casa XPS v 2.3.22PR1.0 software values.
Figure S4. XP survey spectrum of 3-bromopropyltrimethoxysilane on native silicon oxide, (inset: high
resolution spectrum of Br3d region)7
Figure S5. High resolution XPS N1s region of p-Si/SiO ₂ /Br after 4 days at room temperature in a
2.5mM DIPEA solution in CH ₃ CN
Figure S6. High resolution XPS C1s/Ru3d and N1s regions of p-Si/SiO ₂ /[Ru] after 5min. sonication in
CH ₃ CN (a and b) and after 5min. sonication in TBAPF ₆ 0.1M in CH ₃ CN (c and d) and after 20min. in
TBAPF ₆ 1M in CH ₃ CN (e and f)
Figure S7. High resolution XPS C1s/Ru3d (left) and N1s (right) regions of p-Si/SiO ₂ /[Ru] before (black)
and after (red) 5min. sonication in TBAPF $_6$ 0.1M in CH $_3$ CN
Figure S8. Cyclic voltammograms of p-Si/SiO ₂ /Br after 4 days in 2.5 mM DIPEA in acetonitrile and p-
Si/SiO ₂ /[Ru] under one sun illumination (TBAPF ₆ 1M in CH ₃ CN, $v=1V.s^{-1}$)
Table S4. Representative values of photovoltage at p-Si measured for related reductive catalysis
complexes
Figure S9. Cyclic voltammograms of p-Si/SiO ₂ /[Ru] under one sun illumination (TBAPF ₆ 1M in CH ₃ CN,
v=1V.s ⁻¹) under Ar and CO ₂ saturated conditions10
Figure S10. High resolution XPS C1s/Ru3d and N1s regions of p-Si/SiO ₂ /[Ru] on 3-
propyltrimethoxysilane layer after 5 min sonication in TBAPF ₆ 0.1M in CH ₃ CN10
Figure S11. High resolution XPS C1s/Ru3d and N1s regions of p-Si/SiO ₂ /[Ru] without siloxane layer
after 5 min sonication in $TBAPF_6 0.1M$ in CH_3CN
Figure S12. High resolution XPS C1s/Ru3d and N1s regions of p-Si/SiO ₂ /(5) after 5 min sonication in
TBAPF ₆ 0.1M in CH ₃ CN

NMR spectroscopy of complex (1)

Figure S1. 1D ¹H (top) and 2D COSY (left) and 1D difference NOE (with a pulse set at δ =3.04 ppm, s, 3H, -CH₃) (right) NMR spectra of **(1)** in CD₃CN/400 MHz.

X-ray Crystallography

Specific for (2): The methylbipyridine ligand exhibits a positional disorder where the Me group is either *cis* or *trans* to the coordinated chloride ligand (occupancies: *trans* = 80 %, *cis* = 20 %). The protons for one lattice H₂O molecule were located on the difference map, and the O-H and H-H distances were fixed to 0.95 Å and 1.50 Å, respectively. Another lattice water molecule is disordered over two sites (75 % and 25 % occupancies), and the protons could not be located on the difference map, or led to unstable refinement. The non-coordinated chloride ligand is disordered over two sites (75 % and 25 % occupancies). The Ru1 complex showed further disorder on the bipyridine ligand by analysis of the Fourier difference map. Unfortunately, modelling this disorder did not lead to stable refinement, and the corresponding *trans* MeCN ligand could not be located in the Fourier difference map. The disorder was attempted to be modelled in three parts with occupancies 0.375, .0375, and 0.25 for parts 1, 2, and 3 respectively. Parts 1 and 2 represent the positional *cis/tans* disorder of the methylbipyridine ligand with respect to the MeCN ligand. Part 3 represents the positional disorder of the methylbipyridine and MeCN ligands, and is a mirror plane reflection of Part 1. This is schematically represented in **Figure S2(B)**.

Specific for (1): While the crystals grown were of good quality, low intensity diffraction was obtained even with prolonged exposure times. This may be due to the small size of the crystals, which were very thin needles. We expect that a high intensity X-ray source (e.g. synchrotron) would be required to obtain higher resolution data. The dataset presented here is suitable for the purpose of identifying the complex and broadly discussing the molecular geometry. The methylbipyridine ligands on Ru1 and Ru2 exhibit a positional disorder where the Me group is either *cis* or *trans* to the coordinated acetonitrile (Ru1 occupancies: *trans* = cis = 50 %; Ru2 occupancies: trans = 75 %, cis = 25 %). There is residual electron density near the acetonitrile ligand which corresponds to a tertiary disordered position for the methylbipyridine ligand, however stable refinements could not be obtained after modelling this disorder. One of the non-coordinating PF_6 anions exhibits a positional disordered which was modelled as two parts of equal occupancy. The protons for a lattice H₂O molecule were located on the difference map, and the O-H and H-H distances were fixed to 0.95 Å and 1.50 Å, respectively. The Olex2 solvent mask function was employed to remove disordered lattice solvent molecules which could not be successfully modelled. A 733.1 Å void was removed containing 188.9 electrons, which was ascribed to four diethyl ether molecules and two water molecules (per unit cell).

CCDC 2059979-2059980 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures</u>.

Table S1. Selected bond lengths (Å) and angles (°) for (2), and (1).

Parameter	(2)	(1)	
	(2)	Ru1	Ru2
Ru-N1	2.06 (1)	2.080 (3)	2.073 (3)
Ru-N2	1.94 (1)	1.975 (3)	1.978 (3)
Ru-N3	2.06 (1)	2.068 (3)	2.070 (3)
D., N/4	2.06 (1)	2.198 (8)	2.056 (4)
KU-N4		1.997 (7)	2.16 (2)
D. NE	2.06 (1)	2.085 (7)	2.116 (7)
KU-115		2.029 (8)	2.04 (2)
Ru-X	2.413(4)	2.039 (4)	2.038 (5)
	X = Cl	X = MeCN	

Α.

X = CI, MeCN

Figure S2. A. Numbering convention for **Table S1**. B. Positional disorder in the crystal structure of **(2)**, which could not be modelled in order to obtain stable refinement.

Compound	Ru Cl	Ru PF6
Chemical formula	(C ₂₆ H ₂₁ ClN₅ORu) H ₂ O·Cl·O	2(C ₂₈ H ₂₄ N ₆ ORu) 4(F ₆ P)·H ₂ O·C ₄ H ₁₀ O
<i>M</i> r	625.46	1795.22
Crucetal system analog group	Monoclinic	Triclinic
Crystal system, space group	P21/n	<i>P</i> ⁻ 1
Temperature (K)	170	170
	8.770 (6)	13.989 (3)
a, b, c (Å)	25.712 (16)	14.256 (3)
	11.115 (8)	23.355 (4)
	-	90.689 (6)
α, β, γ (°)	96.765 (14)	96.845 (6)
	-	118.958 (5)
<i>V</i> (ų)	2489 (3)	4033.3 (2)
Ζ	4	2
Radiation type	Μο Κα	Μο Κα
μ (mm ⁻¹)	0.89	0.56
Crystal size (mm)	$0.36 \times 0.08 \times 0.08$	0.36 × 0.25 × 0.10
Diffractometer	Bruker D8 APEX-II	Bruker D8 APEX-II
Absorption correction	Multi-scan	Multi-scan
T _{min} , T _{max}	0.422, 0.745	0.694, 0.746
No. of measured independent and	23121	210324
observed [1 > 2s(1)] reflections	4402	22061
	2465	11762
R _{int}	0.190	0.068
(sin θ/λ) _{max} (Å-1)	0.595	0.690
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.100, 0.268, 1.10	0.061, 0.154, 1.12
No. of parameters	354	1180
No. of restraints	102	1494
H-atom treatment	Independent and constrained	Independent and constrained
$\Delta angle_{ m max},\Delta angle_{ m min}$ (e Å-3)	1.38, -1.57	1.21, -0.81
CCDC No.	2059979	2059980

 Table S2. Crystal data and structure refinement.

Cyclic Voltammetry in solution

Figure S3. Cyclic voltammograms of (1) and (5) (1 mM) under Ar (blue) and under CO₂ (red). All experiments were done in 0.1 M TBAPF₆ in CH₃CN, v = 200 mV/s.

X-ray Photoelectron Spectroscopy

Calibration:

The calibration was made on the survey spectrum and was based on the Si2p peak. Following deconvolution of the signal in two contributions, one for the silicon oxide and one for the bulk silicon, the latest at 99.4 eV.

Deconvolution of the C1s and Ru3d3/2 peak

Ru 3d(3/2) contribution area was imposed to be 0.6667*Ru3d (5/2) contribution area and a spinorbit splitting of + 4.17 eV.¹ Two C1s contributions were added and fitted according to the expected C atoms environments.

All the fit operations for C1s+Ru3d (3/2), Ru3d (5/2) and N1s peaks gave a satisfying residual STD between 1.02 and 1.64.

Ratios of atomic percentage

The atomic percentage ratios N/Ru were determined from high resolution spectra after deconvolution of the C1s+Ru3d and N1s photopeaks.

Table S3. RSF (relative sensitivity factors) based on Casa XPS v 2.3.22PR1.0 software values.

Element	Ru 3d		N 1s	Si 2p	C1s
	5/2	3/2			
RSF	7.39	5.1	1.8	0.817	1

Figure S4. XP survey spectrum of 3-bromopropyltrimethoxysilane on native silicon oxide, (inset: high resolution spectrum of Br3d region).

Figure S5. High resolution XPS N1s region of $p-Si/SiO_2/Br$ after 4 days at room temperature in a 2.5mM DIPEA solution in CH₃CN.

Figure S6. High resolution XPS C1s/Ru3d and N1s regions of $p-Si/SiO_2/[Ru]$ after 5min. sonication in CH₃CN (a and b) and after 5min. sonication in TBAPF₆ 0.1M in CH₃CN (c and d) and after 20min. in TBAPF₆ 1M in CH₃CN (e and f).

Figure S7. High resolution XPS C1s/Ru3d (left) and N1s (right) regions of p-Si/SiO₂/[Ru] before (black) and after (red) 5min. sonication in TBAPF₆ 0.1M in CH₃CN.

Photoelectrochemistry study

Figure S8. Cyclic voltammograms of p-Si/SiO₂/Br after 4 days in 2.5 mM DIPEA in acetonitrile and p-Si/SiO₂/[Ru] under one sun illumination (TBAPF₆ 1M in CH₃CN, v=1V.s⁻¹).

Table S4. Reported photovoltages obtained	for catalysts for reductive	e transformations a	t illuminated
p-Si.			

Assembly	Related Molecular specie or Catalyst	Measured Photovoltage at illuminated p-Si	Dark electrode	Ref.
Immobilized				
Si/SiO ₂ /[Ru]	Complex (1)	+570 mV	n*-Si	This work
p-Si BisPNP-Ni	H⁺ from [H(dmf)]OTf	+210 mV	n ⁺ -Si BisPNP-Ni	(2)
Zr(NDI) TiO2@Si	NDI reduction	+330 mV	Zr(NDI)ITiO2@FTO	(3)
In solution				
[Fe2(µ-bdt)(CO)6]	[Fe ₂ (µ-bdt)(CO) ₆]	+500mV	Glassy Carbon	(4)
Re(bipy-But)(CO)₃Cl	Re(bipy-But)(CO)₃Cl	+500 mV	Pt	(5)

Figure S9. Cyclic voltammograms of p-Si/SiO₂/[Ru] photoelectrodes under one sun illumination (TBAPF₆ 1M in CH₃CN, $v = 1V.s^{-1}$) under Ar (left) and CO₂ (right) saturated conditions.

Figure S10. High resolution XPS C1s/Ru3d and N1s regions of $p-Si/SiO_2/[Ru]$ on 3-propyltrimethoxysilane layer after 5 min sonication in TBAPF₆ 0.1M in CH₃CN.

Figure S11. High resolution XPS C1s/Ru3d and N1s regions of p-Si/SiO₂/[Ru] without siloxane layer after 5 min sonication in TBAPF₆ 0.1M in CH₃CN.

Figure S12. High resolution XPS C1s/Ru3d and N1s regions of p-Si/SiO₂/(5) after 5 min sonication in TBAPF₆ 0.1M in CH₃CN.

References

(1) Morgan, D. J. Surface and Interface Analysis 2015, 47 (11), 1072–1079.

(2) J. M. Gurrentz and M. J. Rose, J. Am. Chem. Soc., 2020, 142, 5657–5667.

(3) A. M. Beiler, B. D. McCarthy, B. A. Johnson and S. Ott, *Nat. Commun.*, 2020, **11**, 5819.

(4) B. Kumar, M. Beyler, C. P. Kubiak and S. Ott, *Chem. – Eur. J.*, 2012, **18**, 1295–1298.

(5) B. Kumar, J. M. Smieja and C. P. Kubiak, J. Phys. Chem. C, 2010, 114, 14220–14223.