Preparation and Characterization of Nanofibrous Metal–Organic Frameworks as Efficient Catalysts for Synthesis of Cyclic Carbonates in the Solvent Free Conditions

Razieh Mirzaei^a, Mehrnaz Bahadori^a, Reihaneh Kardanpour^a, Sara Rafiei^a, Shahram Tangestaninejad^{*a}, Majid Moghadam^{*a}, Valiollah Mirkhani^{*a}, Iraj Mohammadpoor-Baltork^a, Seyed Erfan Mirazimi^b

^a Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441,

^b Laboratory for Mechanical and Physical Properties of Solids, Central Laboratory of Isfahan University

1. Sample preparation

1.1. Synthesis of UiO-66

Briefly, terephthalic acid (0.327 g) and $\text{ZrCl}_4(0.512 \text{ g})$ were mixed with DMF (25 mL) in a Teflonlined bomb. The Teflon-lined bomb was then sealed and placed in an oven at 120 °C for 24 h. The final product was collected by centrifuging and washed successively with DMF and methanol several times. Finally, the UiO-66 particles were evacuated in vacuum at 100 °C for 12 h.

1.2. Synthesis of ZIF-67

2-methylimidazole (1.64 g) was dissolved in 2 mL deionized water and followed the addition of an aqueous $Co(NO_3).6H_2O$ solution (0.291 g in 2 mL deionized water) with stirring. Purple colored product was formed immediately at room temperature. Stirring kept for 2 hours and then the resulted purple powder filtered and washed with deionized water and ethanol 3 times and then kept for drying in the oven at 80°C overnight under vacuum.

2. Study of the electrospinning parameters:

For improving the fibers performances, different processing parameters such as voltage, the distance from needle to collector, PVA weight fraction in solution and MOF weight fraction relative to the polymer were optimized. The results are summarized in Table S1. As seen the best fibers were prepared with a concentration of 9% in water for PVA and 50% in DMF for PS. In the case of PVA, in concentrations of less than 9%, because of the low viscosity, the solvent was trapped into the fibers and knotted fibers were prepared and in concentrations of higher than 9%, the solution could not be passed through the needle. When the distance between the needle and the collector was 10 cm, the solvent has not enough time to evaporate, and therefore knotty fibers were obtained. For distances more than 15 cm, the electrospinning jet could not reach the collector, and no fibers were prepared.

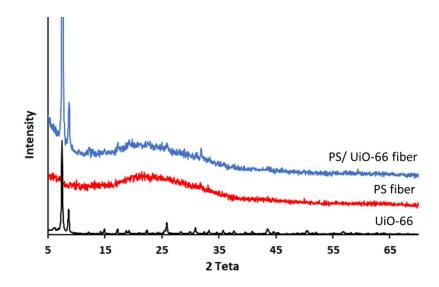


Figure S1: XRD patterns of UiO-66, PS fiber and PS-UiO-66 fiber.

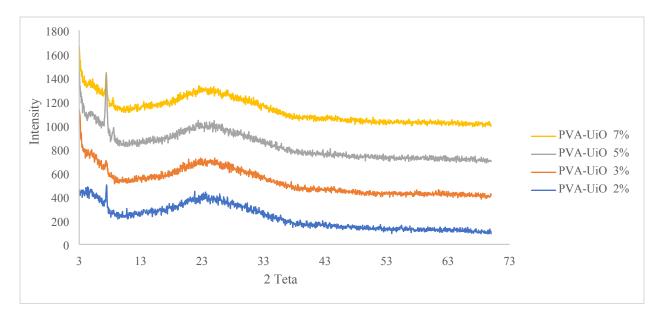


Figure S2: The XRD patterns of PVA/UiO-66 composites with different feeding weight ratio of UiO-66

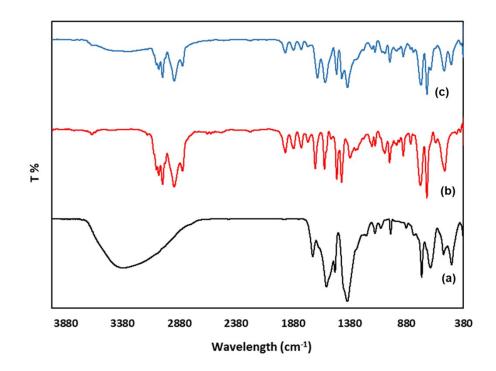


Figure S3: FT-IR spectra of (a) UiO-66, (b) PS fiber and (c) PS/UiO-66 fiber.

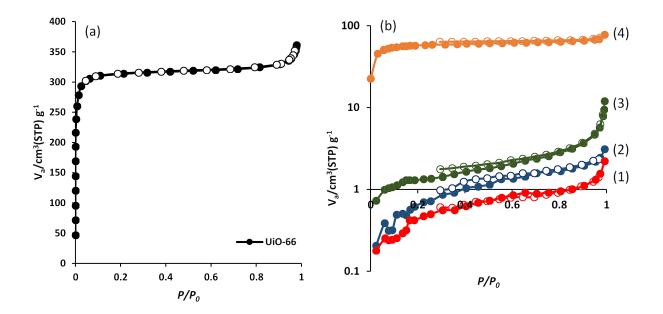


Figure S4: (a) N_2 isotherms of UiO-66 and (b) N_2 adsorption and desorption of (1) Ps fiber, (2) PS/UiO-66 fiber, (3) PVA fiber and (4) PVA/UiO-66 fiber (\bullet = sorption, \circ = desorption).

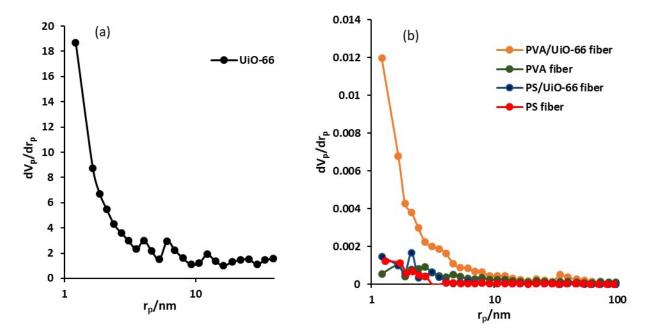


Figure S5: BJH plots of (a) UiO-66 and (b) PS fiber, PS/UiO-66 fiber, PVA fiber and PVA/UiO-66 fiber

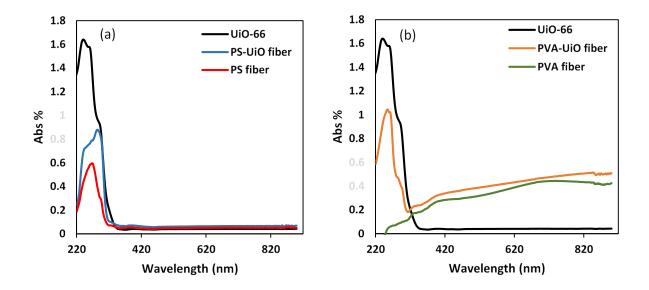


Figure S6: UV-Vis spectra of UiO-66, PS fiber, PS/UiO-66 fiber, PVA fiber and PVA/UiO-66 fiber.

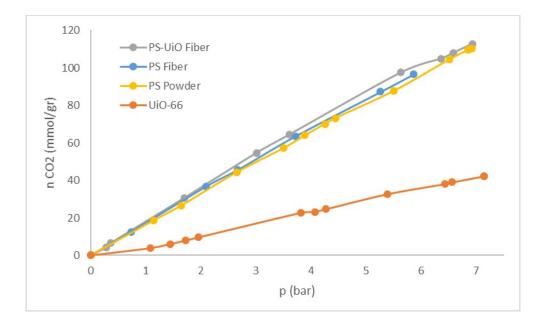


Figure S7. CO₂ adsorption capacity of UiO-66, PS powder, PS fiber and PS/UiO-66 fiber at

298.2 K.

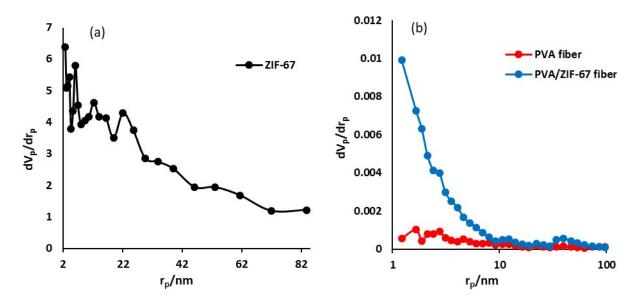


Figure S8: BJH plots of (a) ZIF-67 and (b) PVA fiber and PVA/ZIF-67 fiber.

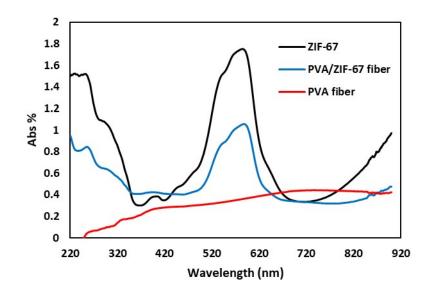


Figure S9: UV-Vis spectra of ZIF-67 fiber, PVA fiber and PVA/ZIF-67 fiber.

	PVA/UiO-66 & PVA/ZIF-67	PS/UiO-66
Applied voltage (kV)	10, <u>15</u> , 20	10, 15, 18, <u>20</u> , 22
Flow rate (mL/h)	0.3, <u>0.5</u> , 0.8	0.5, 1, <u>2</u> , 3
Collection distance (cm)	10, 12, <u>15</u> , 20	10- <u>15</u> - 20
PVA weight fraction in	5 7 0 12	5 10 20 20 40 50 (0
solution (%)	5, 7, <u>9</u> , 12	5, 10, 20, 30, 40, <u>50</u> , 60
MOF weight fraction relative		
to the polymer solution (%)	2, 3, <u>5</u> , 7	3, 5, 7, <u>8</u> , 10

Table S1. Optimization of electrospinning parameters

Sample	$S_{BET} (m^2 g^{-1})$	Total pore volume	Mean pore diameter	
	S _{BET} (III g)	$(P/P_0=0.990)$ (cm ³ g ⁻¹)	(nm)	
UiO-66	1315.5	0.5585	1.6983	
PS fiber	1.6536	0.0032871	7.9514	
PS/UiO-66 fiber	3.0412	0.0046288	6.0881	
PVA fiber	4.8378	0.015581	12.883	
PVA/UiO-66 fiber	220.96	0.1181	2.1372	

Table S2: Sorption data for UiO-66, PS fiber, PS/UiO-66 fiber, PVA fiber and PVA/UiO-66 fiber

Catalyst	Amount (mg)	Conversion ^b (%)	Selectivity ^b (%)	
-	-	43	65	
UiO-66 powder	40	66	71	
PS powder	40	39	73	
PS fiber	40	50	78	
PS/UiO-66 fiber	40	65	72	
PS/UiO-66 fiber	80	93	83	
PVA powder	40	40	67	
PVA fiber	40	43	81	
PVA/(5%)UiO-66 fiber	40	65	70	
PVA/(5%)UiO-66 fiber	80	90	84	
PVA/(2%)UiO-66 fiber	80	50	58	
PVA/(3%)UiO-66 fiber	80	45	55	
PVA/(7%)UiO-66 fiber	80	40	49	

Table S3: Cycloaddition of CO₂ to styrene epoxide^a

^aReaction condition: Styrene epoxide (10 mmol), P_{CO2} (2.0 MPa), TBABr (0.3 gr) and T (120 °C) for 4h. ^bYields were determined by GC analysis.

entry	Catalyst (mg)	time (h)	T (°C)	Epoxide (mmol)	P _{CO2} (bar)	TBABr (mg)	Conv. ^a (%)	Sel. ^a (%)
1	30	4	120	10	20	300	63	78
2	60	4	120	10	20	300	81	82
3	80	4	120	10	20	300	91	84
4	100	4	120	10	20	300	85	79
5	80	3	120	10	20	300	75	75
6	80	4	120	10	20	300	91	83
7	80	5	120	10	20	300	82	84
8	80	4	90	10	20	300	50	78
9	80	4	100	10	20	300	84	83
10	80	4	110	10	20	300	87	74
11	80	4	120	10	20	300	91	83
12	80	4	130	10	20	300	85	81
13	80	4	120	7	20	300	73	82
14	80	4	120	10	20	300	91	84
15	80	4	120	13	20	300	74	81
16	80	4	120	10	14	300	76	82
17	80	4	120	10	16	300	82	83
18	80	4	120	10	20	300	91	83.5
19	80	4	120	10	24	300	86	83.5
20	80	4	120	10	20	25	87	95
21	80	4	120	10	20	50	95	94
22	80	4	120	10	20	100	91	91
23	80	4	120	10	20	200	90	85
24	80	4	120	10	20	300	91	84

Table S4: Conditions optimization of cycloaddition of CO₂ to styrene epoxide catalyzed by PVA/UiO-66 fiber

^aYields were determined by GC analysis.

entry	T (°C)	TBABr (mg)	Conversion ^b (%)	Selectivity ^b (%)
1	90	300	72	80
2	100	300	81	84
3	110	300	86	81
4	120	300	94	83
5	130	300	86	82
6	120	200	87	85
7	120	300	94	83
8	120	400	88	81

Table S5: Conditions optimization of cycloaddition of CO_2 to styrene epoxide catalyzed by PS/UiO-66 fiber^a

^aReaction condition: Catalyst =80 mg, epoxide=10 mmol, P_{CO2} =20 bar, for 4 h. ^bYields were determined by GC analysis.

		Total pore volume	Mean pore diameter		
Sample	$S_{BET} (m^2 g^{-1})$	$(P/P_0=0.990)$	(nm)		
		$(cm^3 g^{-1})$			
ZIF-67	260.91	0.3284	5.0348		
PVA fiber	4.8378	0.015581	12.883		
PVA/ZIF-67 fiber	115.47	0.084734	2.9352		

Table S6: Sorption data for ZIF-67, PVA fiber and PVA/ZIF-67 fiber.

entry	Catalyst (mg)	time (h)	Epoxide (mmol)	TBABr (mg)	T (°C)	P _{CO2} (bar)	Conv. ^a (%)	Sel. ^a (%)
1	20	6	25	300	120	10	95	82
2	30	6	25	300	120	10	91	89
3	60	6	25	300	120	10	88	89
4	80	6	25	300	120	10	90	86
5	30	2	25	300	120	10	84	88
6	30	3	25	300	120	10	91	89
7	30	4	25	300	120	10	88	89
8	30	5	25	300	120	10	88	87
9	30	3	15	300	120	10	85	83
10	30	3	20	300	120	10	94	88
11	30	3	25	300	120	10	91	88
12	30	3	20	50	120	10	74	94
13	30	3	20	100	120	10	91	91
14	30	3	20	200	120	10	90	91
15	30	3	20	300	120	10	74	88
16	30	3	20	100	110	10	75	92
17	30	3	20	100	120	10	90	91
18	30	3	20	100	130	10	91	84
19	30	3	20	100	120	6	87	93
20	30	3	20	100	120	8	86	95
21	30	3	20	100	120	10	90	91
22	30	3	20	100	120	15	88	92

Table S7: Conditions optimization of cycloaddition of CO_2 to styrene epoxide catalyzed by PVA/ZIF-67 fiber

^aYields were determined by GC analysis.