Supporting Information

Iodonium Complexes of the Tertiary Amines Quinuclidine and 1-Ethylpiperidine

Jas S. Ward,^{a*} Antonio Frontera,^b and Kari Rissanen^{a*}

^a University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.

^b Department de Química, Universitat de les Illes Balears, Palma de Mallorca, Baleares, Spain

E-mail: james.s.ward@jyu.fi, kari.t.rissanen@jyu.fi

Contents

Synthesis	S2
General Considerations	S2
General Procedure for Synthesis of Quinuclidine Iodonium Complexes	S3
Characterisation Data	S4
General Procedure for Synthesis of 1-Ethylpiperidine Iodonium Complexes	S8
NMR Spectra	
Computational Details	S28
Theoretical methods	S28
Cartesian Coordinates	S29
References	\$32

Synthesis

General Considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification. For structural NMR assignments, ¹H NMR and ¹H-¹⁵N NMR correlation spectra were recorded on a Bruker Avance III 500 MHz spectrometer at 25°C in CD₃CN. Chemical shifts are reported on the δ scale in ppm using the residual solvent signal as internal standard (CD₃CN; $\delta_{\rm H}$ 1.94), or for ¹H-¹⁵N NMR spectroscopy, to an external d_3 -MeNO₂ standard. For ¹H NMR spectroscopy, each resonance was assigned according to the following conventions: chemical shift (δ) measured in ppm, observed multiplicity, number of hydrogens, observed coupling constant (*J* Hz), and assignment. Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet), and br (broad). For the ¹H-¹⁵N HMBC spectroscopy, spectral windows of 4 ppm (¹H) and 600 ppm (¹⁵N) were used, with 1024 points in the direct dimension and 512 increments used in the indirect dimension (resolution \approx 0.3 ppm/point).

The single crystal X-ray data for [1]PF₆ was collected at 170 K using Bruker-Nonius Kappa CCD diffractometer with an APEX-II detector with graphite-monochromatised Mo-K α (λ = 0.71073 Å) radiation. The program COLLECT¹ was used for the data collection and DENZO/SCALEPACK² for the data reduction. The single crystal X-ray data for [1]NO₃, [1]ClO₄, I₂·quin and I₂·quin_2 were collected at 120 K using an Agilent SuperNova dual wavelength diffractometer with an Atlas detector using mirror-monochromated Cu-K α (λ = 1.54184 Å) radiation. The single crystal X-ray data for [CICH₂(quin)][AgCl₂] was collected at 120 K using an Agilent SuperNova diffractometer with an Eos detector using mirror-monochromated Mo-K α (λ = 0.71073 Å) radiation. The program CrysAlisPro³ was used for the data collection and reduction on the SuperNova diffractometer, and the intensities were absorption corrected using a gaussian face index absorption correction method. All structures were solved by intrinsic phasing (SHELXT)⁴ and refined by full-matrix least squares on F^2 using the OLEX2,⁵ utilizing the SHELXL-2015 module.⁶ Anisotropic displacement parameters were assigned to non-H atoms and isotropic displacement parameters for all H atoms were constrained to multiples of the equivalent displacement parameters of their parent atoms with U₁₅₀(H) = 1.5 U_{eq} (alkyl) of their respective parent atoms. The X-ray single crystal data and CCDC numbers of all new structures are included below. The solid-state structure of [1]BF₄ is known,⁷ however, the solution-state data has not been previously reported and is therefore included herein.

The following abbreviations are used: 1-Etpip = 1-ethylpiperidine, quin = quinuclidine (1-azabicyclo[2.2.2]octane), py = pyridine, 4-DMAP = N,N-dimethylpyridin-4-amine, DCM = dichloromethane, MeCN = acetonitrile, DIPE = diisopropylether, TBME = ^tbutylmethylether, DMSO = dimethylsulfoxide.

General Procedure for Synthesis of Quinuclidine Iodonium Complexes

All iodonium complexes of quinuclidine ($[1]BF_4$, $[1]PF_6$, $[1]NO_3$, $[1]ClO_4$) were prepared using the same general method of cation exchange, which is given below using $[1]PF_6$ as an example.

A quinuclidine solution (5.6 mg, 0.05 mmol) in CD_3CN (0.5 mL) was added to AgPF₆ (6.3 mg, 0.025 mmol), thoroughly mixed and left for 1 hour to ensure complete formation of the silver(I) complex. I₂ (6.3 mg, 0.025 mmol) was added to immediately give a yellow precipitate and a light orange solution. Samples were prepared immediately prior to the collection of NMR data. The formation of all iodonium complexes ([1]BF₄, [1]PF₆, [1]NO₃, [1]ClO₄) was confirmed to be quantitative by ¹H NMR spectroscopy.

For the preparation of crystallographic samples, the same general procedure was followed but using the scaled-up values of: quinuclidine (11.1 mg, 0.1 mmol), AgPF₆ (12.6 mg, 0.05 mmol), MeCN (3 mL), and I₂ (12.7 mg, 0.05 mmol).

Characterisation Data

quin: ¹H NMR (500 MHz, CD₃CN) δ 2.81 – 2.70 (m, 6H), 1.67 (sept, *J* = 3.1 Hz, 1H), 1.54 – 1.44 (m, 6H); ¹⁵N NMR (500 MHz, CD₃CN) δ -366.6.

[**1**]BF₄: ¹H NMR (500 MHz, CD₃CN) δ 3.25 − 3.17 (m, 12H), 1.90 (sept, *J* = 3.2 Hz, 2H), 1.74 (m, 12H); ¹⁵N NMR (500 MHz, CD₃CN) δ -357.4.

[1]PF₆: ¹H NMR (500 MHz, CD₃CN) δ 3.26 – 3.16 (m, 12H), 1.90 (sept, *J* = 3.2 Hz, 2H), 1.75 (m, 12H); ¹⁵N NMR (500 MHz, CD₃CN) δ -357.3. ¹H NMR (500 MHz, d₆-DMSO) δ 3.24 (s.br, 12H), 1.85 (s.br, 2H), 1.69 (s.br, 12H); satisfactory ¹H-¹⁵N HMBC data could not be collected due to the broadness of the ¹H NMR signals. Crystals suitable for single crystal X-ray diffraction were obtained from an MeCN solution vapour diffused with DIPE. Crystal data for [1]PF₆: CCDC-2079430, [C₁₄H₂₆IN₂][PF₆], M = 494.23, colourless block, 0.24 x 0.30 x 0.36 mm³, cubic, space group *Pa*-3, a = 12.3792(3) Å, V = 1897.05(14) Å³, Z = 4, D_{calc} = 1.730 gcm⁻³, F000 = 984, μ = 1.83 mm⁻¹, T = 170(1) K, θ_{max} = 27.1°, 705 total reflections, 552 with I₀ > 2σ(I₀), R_{int} = 0.042, 705 data, 50 parameters, no restraints, GooF = 1.16, 0.25 < dΔp < -0.81 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.031, *wR*(*F*²) = 0.068.

Figure S1: The X-ray crystal structure of [1]PF6 (Hydrogen and disordered atoms omitted for clarity; thermal ellipsoids at 50% probability).

[1]NO₃: ¹H NMR (500 MHz, CD₃CN) δ 3.25 – 3.16 (m, 12H), 1.90 (sept, *J* = 3.1 Hz, 2H), 1.74 (m, 12H); ¹⁵N NMR (500 MHz, CD₃CN) δ -357.4. Crystals suitable for single crystal X-ray diffraction were obtained from an MeCN solution vapour diffused with DIPE. Crystal data for [1]NO₃: CCDC-2079431, [C₁₄H₂₆IN₂][NO₃], M = 411.28, colourless plate, 0.06 x 0.14 x 0.21 mm³, orthorhombic, space group *Pca*2₁, a = 13.8822(3) Å, b = 10.4099(3) Å, c = 11.3834(3) Å, V = 1645.04(7) Å³, Z = 4, D_{calc} = 1.661 gcm⁻³, F000 = 832, μ = 15.42 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.2°, 2510 total reflections, 2180 with I₀ > 2σ(I₀), R_{int} = 0.027, 2510 data, 191 parameters, 1 restraint, GooF = 1.05, 1.03 < dΔρ < -1.37 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.037, *wR*(*F*²) = 0.099.

Figure S2: The X-ray crystal structure of [1]NO₃ (Hydrogen atoms omitted for clarity; thermal ellipsoids at 50% probability). [1]ClO₄: ¹H NMR (500 MHz, CD₃CN) δ 3.26 – 3.16 (m, 12H), 1.90 (sept, *J* = 3.1 Hz, 2H), 1.75 (m, 12H); ¹⁵N NMR (500 MHz, CD₃CN) δ -357.4. Crystals suitable for single crystal X-ray diffraction were obtained from an MeCN solution vapour diffused with TBME. Crystal data for [1]ClO₄: CCDC-2079432, [C₁₄H₂₆IN₂][ClO₄], M = 448.72, colourless block, 0.10 x 0.11 x 0.13 mm³, cubic, space group *P*2₁3, a = 11.9987(2) Å, V = 1727.44(9) Å³, Z = 4, D_{calc} = 1.725 gcm⁻³, F000 = 904, μ = 16.16 mm⁻¹, T = 120.0(1) K, θ_{max} = 75.8°, 1130 total reflections, 1078 with I_o > 2 σ (I_o), R_{int} = 0.019, 1130 data, 68 parameters, no restraints, GooF = 1.04, 0.31 < d $\Delta\rho$ < -0.95 eÅ⁻³, *R*[*F*² > 2 σ (*F*²)] = 0.023, *wR*(*F*²) = 0.057.

Figure S3: The X-ray crystal structure of [1]ClO₄ (Hydrogen atoms omitted for clarity; thermal ellipsoids at 50% probability).

I₂•**quin**: Crystals suitable for single crystal X-ray diffraction were obtained in a trace amount by evaporation of a 1:4 MeCN:DIPE mixture of complex [**1**]BF₄. Crystal data for **I**₂•**quin**: CCDC-2079433, C₇H₁₃I₂N, M = 364.98, orange plate, 0.02 x 0.05 x 0.06 mm³, monoclinic, space group $P2_1/c$, a = 10.0222(7) Å, b = 7.9210(5) Å, c = 13.7704(10) Å, $\beta = 110.604(8)^\circ$, V = 1023.25(13) Å³, Z = 4, D_{calc} = 2.369 gcm⁻³, F000 = 672, $\mu = 47.77$ mm⁻¹, T = 120.0(1) K, $\theta_{max} = 72.1^\circ$, 1742 total reflections, 1411 with I_o > 2σ(I_o), R_{int} = 0.106, 1742 data, 91 parameters, 18 restraints, GooF = 1.02, 2.52 < dΔρ < -2.72 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.066, *wR*(*F*²) = 0.168.

Figure S4: The X-ray crystal structure of I₂·quin (Hydrogen atoms omitted for clarity; thermal ellipsoids at 50% probability). Deliberately synthesised from an equimolar combination of quinuclidine and elemental iodine, and crystals suitable for single crystal X-ray diffraction were obtained by evaporation of a 1:4 MeCN:DIPE mixture. Crystal data for I₂·quin_2: CCDC-2079434, C₇H₁₃I₂N, M = 364.98, orange plate, 0.01 x 0.05 x 0.08 mm³, triclinic, space group *P*-1 (No. 2), a = 6.7067(7) Å, b = 8.4046(8) Å, c = 9.5027(7) Å, α = 91.599(7)°, β = 104.779(8)°, γ = 97.372(8)°, V = 512.61(8) Å³, Z = 2, D_{calc} = 2.365 gcm⁻³, F000 = 336, μ = 47.68 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.5°, 1843 total reflections, 1572 with I₀ > 2 σ (I₀), R_{int} = 0.098, 1843 data, 91 parameters, no restraints, GooF = 1.01, 1.76 < d $\Delta\rho$ < -1.30 eÅ⁻³, *R*[*F*² >

 $2\sigma(F^2)$] = 0.045, $wR(F^2)$ = 0.120.

Figure S5: The X-ray crystal structure of I2-quin_2 (Hydrogen atoms omitted for clarity; thermal ellipsoids at 50% probability).

The synthesis of [1]⁺ when performed using DCM as the solvent (instead of MeCN) gave [CICH₂(quin)][AgCl₂] as the major product recovered, and crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution vapour diffused with pentane. Crystal data for [CICH₂(quin)][AgCl₂]: CCDC-2084411, [C₈H₁₅CIN][AgCl₂], M = 339.43, colourless needle, 0.11 x 0.16 x 0.49 mm³, tetragonal, space group *I*4₁*cd*, a = 18.1238(3) Å, c = 13.8565(3) Å, V = 4551.47(18) Å³, Z = 16, D_{calc} = 1.981 gcm⁻³, F000 = 2688, μ = 2.43 mm⁻¹, T = 120.0(1) K, θ_{max} = 26.3°, 2292 total reflections, 2216 with I₀ > 2 σ (I₀), R_{int} = 0.022, 2292 data, 119 parameters, 1 restraint, GooF = 1.06, 0.24 < d Δ p < -0.46 eÅ⁻³, *R*[*F*² > 2 σ (*F*²)] = 0.020, *wR*(*F*²) = 0.043.

Figure S6: The X-ray crystal structure of [CICH₂(quin)][AgCl₂] (Hydrogen atoms omitted for clarity; thermal ellipsoids at 50% probability).

General Procedure for Synthesis of 1-Ethylpiperidine Iodonium Complexes

All iodonium complexes of 1-ethylpiperidine ($[2]BF_4$, $[2]PF_6$, $[2]NO_3$, $[2]CIO_4$) were prepared using the same general method of cation exchange, which is given below using $[2]NO_3$ as an example.

A 1-ethylpiperidine solution (6.9 μ L, 0.05 mmol) in CD₃CN (0.5 mL) was added to AgNO₃ (4.2 mg, 0.025 mmol), thoroughly mixed and left for 5 minutes to ensure complete formation of the silver(I) complex. I₂ (6.3 mg, 0.025 mmol) was added to immediately give a yellow precipitate and a light orange solution. Samples were prepared immediately prior to the collection of NMR data. Complete decomposition of all iodonium complexes ([**2**]BF₄, [**2**]PF₆, [**2**]NO₃, [**2**]ClO₄) to [H(1-Etpip)][Anion] (Anion = BF₄, PF₆, NO₃, ClO₄) within (a maximum of) 30 minutes was confirmed by ¹H NMR spectroscopy.

1-Etpip: ¹H NMR (500 MHz, CD₃CN) δ 2.30 (s.br, 4H), 2.27 (q, *J* = 7.2 Hz, 2H), 1.56 – 1.47 (m, 4H), 1.40 (s.br, 2H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹⁵N NMR (500 MHz, CD₃CN) δ -329.4.

[2]NO₃ (between 0-30 minutes after addition of I₂): ¹H NMR (500 MHz, CD₃CN) δ 3.04 (s.br, 4H), 2.99 (q, 7.3 Hz, 2H),
1.85 – 1.74 (m, 4H), 1.59 (s.br, 2H), 1.25 (t, *J* = 7.3 Hz, 3H); ¹⁵N NMR (500 MHz, CD₃CN) δ -331.1.

[**2**]NO₃ (1 hour after addition of I₂): ¹H NMR (500 MHz, CD₃CN) δ 3.10 (s.br, 4H), 3.04 (q, 7.3 Hz, 2H), 1.89 – 1.76 (m, 4H), 1.61 (s.br, 2H), 1.28 (t, J = 7.3 Hz, 3H), N—H signal not observed due to H/D exchange; ¹⁵N NMR (500 MHz, CD₃CN) δ -327.5.

[H(1-Etpip)]NO₃: Prepared by addition of HNO₃ to 1-Etpip. ¹H NMR (500 MHz, CD₃CN) δ 8.29 (s.br, 1H), 3.45 (d, J = 12.3 Hz, 2H), 3.11 – 3.02 (m, 2H), 2.84 – 2.73 (m, 2H), 1.86 (d, J = 14.4 Hz, 2H), 1.78 – 1.64 (m, 3H), 1.47 – 1.37 (m, 1H), 1.24 (t, J = 7.3 Hz, 3H); ¹⁵N NMR (500 MHz, CD₃CN) δ -327.1.

NMR Spectra

Figure S7: The ¹H NMR spectrum of complex **quin** in CD₃CN.

Figure S9: The ¹H NMR spectrum of complex $[1]BF_4$ in CD₃CN.

Figure S11: The ¹H NMR spectrum of complex [**1**] PF_6 in CD₃CN.

S13

Figure S13: The ¹H NMR spectrum of complex [**1**]PF₆ in d₆-DMSO.

Figure S14: The ¹H NMR spectrum of complex [**1**]NO₃ in CD₃CN.

Figure S15: The ¹H-¹⁵N HMBC spectrum of complex [**1**]NO₃ in CD₃CN.

Figure S16: The ¹H NMR spectrum of complex [**1**]ClO₄ in CD₃CN.

Figure S18: The ¹H NMR spectrum of 1-Etpip in CD₃CN.

Figure S20: The ¹H NMR spectrum of complex [**2**]NO₃ (between 0-30 minutes after addition of I_2) in CD₃CN.

S22

Figure S21: The ${}^{1}H{}^{15}N$ HMBC spectrum of complex [**2**]NO₃ (between 0-30 minutes after addition of I₂) in CD₃CN.

Figure S22: The ¹H NMR spectrum of complex [**2**]NO₃ (1 hour after addition of I_2) in CD₃CN.

S24

Figure S23: The ${}^{1}H{}^{15}N$ HMBC spectrum of complex [**2**]NO₃ (1 hour after addition of I₂) in CD₃CN.

Figure S24: The ¹H NMR spectrum of [H(1-Etpip)]NO₃ in CD₃CN.

S26

Computational Details

Theoretical methods

For the optimizations we have used the M06-2X/def2-TZVP level of theory and the Gaussian-16 program.^{8–10} The minimum nature of the compounds has been verified by using frequency calculations (zero imaginary frequencies). The NBO calculations including the Wiberg bond index (WBI) have been computed using the same level of theory (M06-2X/def2-TZVP level of theory) by using the NBO 3.1 version as implemented in Gaussian-16 program.^{10,11}

Cartesian Coordinates

[1]⁺

53	0.00000	0.00000	0.00000
7	0.00000	0.00000	2.288211
6	-0.215106	1.385595	2.789174
1	-1.230899	1.666982	2.509950
1	0.473034	2.042410	2.258173
6	0.00000	1.434584	4.315792
1	0.947530	1.920749	4.551987
1	-0.791670	2.021040	4.781089
6	0.00000	0.000000	4.850331
1	0.00000	0.00000	5.938756
6	1.307513	-0.506510	2.789174
1	2.059099	0.232499	2.509950
1	1.532262	-1.430865	2.258173
6	1.242386	-0.717292	4.315792
1	1.189653	-1.780960	4.551987
1	2.146107	-0.324913	4.781089
6	-1.092407	-0.879085	2.789174
1	-0.828200	-1.899481	2.509950
1 C	-2.005296	-0.611546	2.2581/3
6	-1.242386	-0./1/292	4.313/92
1	-2.13/183	-0.139/90	4.331987
1	-1.354437	-1.09012/	4./8LU89 2.200211
6	-0.000000	-1 395595	-2.200211
1	1 230900	-1 666092	-2.709174
1	-0 473034	-2.042410	-2.309930
6	-0.000000	-1 /3/58/	-1 315792
1	-0.947530	-1 920749	-1 551987
1	0.791670	-2 021040	-4 781089
6	-0.000000	-0 000000	-4 850331
1	-0.000000	-0.000000	-5.938756
6	-1.307513	0.506510	-2.789174
1	-2.059099	-0.232499	-2.509950
1	-1.532262	1.430865	-2.258173
6	-1.242386	0.717292	-4.315792
1	-1.189653	1.780960	-4.551987
1	-2.146107	0.324913	-4.781089
6	1.092407	0.879085	-2.789174
1	0.828200	1.899481	-2.509950
1	2.005296	0.611546	-2.258173
6	1.242386	0.717292	-4.315792
1	2.137183	0.139790	-4.551987
1	1.354437	1.696127	-4.781089

[2]⁺

53	0.00000	0.000000	0.00000
7	-2.299148	-0.213489	0.097065
6	-2.720465	-0.787001	-1.214632
1	-2 288145	-1 785560	-1 288923
1	2.200145	1 CE 4 0 2	1 0000000
1	-2.203520	-0.165495	-1.988062
6	-4.233479	-0.810866	-1.407643
6	-4.837887	0.573462	-1.189623
6	-2.879366	1.147588	0.256464
1	-2.458086	1.757833	-0.546097
1	-2.526557	1,559822	1,199801
6	-4 398490	1 145631	0 155846
e e	2 641960	1 146045	1 200574
6	-2.641860	-1.146045	1.209574
1	-2.036/6/	-2.039/32	1.048904
1	-3.686757	-1.442299	1.111187
6	-2.404248	-0.583455	2.597833
1	-3.119491	0.198540	2.849791
1	-2.530921	-1.386688	3.322487
7	2.299148	0.213489	-0.097065
6	2 720465	0 787001	1 214632
1	2 288145	1 785560	1 288923
1	2.200140	0 165402	1 000062
1 C	2.203320	0.103493	1.900002
0	4.2334/9	0.810866	1.40/643
6	4.83/88/	-0.5/3462	1.189623
6	2.879366	-1.147588	-0.256464
1	2.458086	-1.757833	0.546097
1	2.526557	-1.559822	-1.199801
6	4.398490	-1.145631	-0.155846
6	2.641860	1.146045	-1.209574
1	2.036767	2.039732	-1.048904
1	3.686757	1.442299	-1.111187
6	2.404248	0.583455	-2.597833
1	3 119491	-0 198540	-2 849791
1	2 530021	1 396699	-3 300407
1	2.330921	1.300000	-3.322407
1	-1.393719	-0.100240	2.711149
1	1.395/19	0.186246	-2./11149
Ţ	-4.503821	1.244275	-1.98/165
1	-5.924608	0.525702	-1.250028
1	-4.832194	0.568849	0.977568
1	-4.749720	2.171236	0.274912
1	-4.697265	-1.535617	-0.736052
1	-4.431511	-1.163546	-2.420669
1	4.431511	1.163546	2.420669
1	4.6972.65	1.535617	0.736052
-	4 749720	-2 171236	-0 274912
± 1	4 83010/	-0 568840	-0 977569
⊥ 1	5 02/600	_0 525702	1 250020
1	J. 924008 4 E02001	1 044075	1 007165
T	4.503821	-1.2442/5	T. AR \T02

[I(4-DMAP)₂]⁺

53	0.00000	0.00000	0.00000
7	-2.244942	0.000000	0.000000
7	-6.390778	0.00000	0.000000
7	2.244942	-0.000000	0.000000
7	6.390778	-0.000000	0.00000
6	-2.931929	1.151258	0.00000
1	-2.343248	2.060056	0.00000
6	-4.299435	1.201715	0.00000
1	-4.780379	2.166956	0.00000
6	-5.049030	0.00000	0.00000
6	-7.120625	1.258353	0.00000
1	-6.886349	1.848167	0.888353
1	-8.185184	1.049534	0.00000
1	-6.886349	1.848167	-0.888353
6	2.931929	-1.151258	0.00000
1	2.343248	-2.060056	0.000000
6	4.299435	-1.201715	0.000000
1	4.780379	-2.166956	0.00000
6	5.049030	-0.000000	0.00000
6	7.120625	-1.258353	0.000000
1	6.886349	-1.848167	0.888353
1	8.185184	-1.049534	0.000000
1	6.886349	-1.848167	-0.888353
6	-2.931929	-1.151258	-0.000000
1	-2.343248	-2.060056	-0.000000
6	-4.299435	-1.201715	-0.000000
1	-4.780379	-2.166956	-0.000000
6	-7.120625	-1.258353	-0.000000
1	-6.886349	-1.848167	0.888353
1	-8.185184	-1.049534	-0.000000
1	-6.886349	-1.848167	-0.888353
6	2.931929	1.151258	0.000000
1	2.343248	2.060056	0.000000
6	4.299435	1.201715	0.000000
1	4.780379	2.166956	0.000000
6	7.120625	1.258353	0.000000
1	6.886349	1.848167	0.888353
1	8.185184	1.049534	0.000000
1	6.886349	1.848167	-0.888353

References

- 1 R. W. W. Hooft and Nonius, 1998.
- 2 Z. Otwinowski and W. B. T.-M. in E. Minor, in *Macromolecular Crystallography Part A*, Academic Press, 1997, vol. 276, pp. 307–326.
- 3 Agilent Technologies Ltd, 2014.
- 4 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, **71**, 3–8.
- 5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- G. M. Sheldrick, Acta Crystallogr. Sect. C, Struct. Chem., 2015, 71, 3–8.
- 7 C. P. Brock, Y. Fu, L. K. Blair, P. Chen and M. Lovell, Acta Crystallogr. Sect. C, 1988, 44, 1582–1585.
- 8 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 9 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. a. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, a. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, a. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, a. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, 2016, Gaussian 16, Revision A.01, Gaussian, Inc., Wallin.
- 11 E. D. Glendening, C. R. Landis and F. Weinhold, *WIREs Comput. Mol. Sci.*, 2012, **2**, 1–42.