## **Supplementary Material**

## Fe, Ni-codoped $W_{18}O_{49}$ grown on nickel foam as bifunctional electrocatalyst for boosted water splitting

Guojuan Hai<sup>a,b</sup>, Jianfeng Huang<sup>a,\*</sup>, Liyun Cao<sup>a,\*</sup>, Koji Kajiyoshi<sup>c</sup>, Long Wang<sup>b</sup>, Liangliang Feng<sup>a</sup>,

Yijun Liu<sup>d</sup>, Limin Pan<sup>d</sup>

<sup>a</sup> School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China

<sup>b</sup> Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.

<sup>c</sup> Kochi University, Research Laboratory of Hydrothermal Chemistry, Kochi 780-8520, Japan.

<sup>d</sup> Guangdong Monalisa Ceramics Co., Ltd. Guangdong, Foshan 528211, China.

E-mail addresses: huangjf@sust.edu.cn

caoliyun@sust.edu.cn



Fig. S1. XRD patterns of (a) as-synthesized Ni-doped W<sub>18</sub>O<sub>49</sub>/NF (WN) and Fe, Ni-codoped

 $W_{18}O_{49}\!/NF$  (FEWN). (b) 2Theta range: 15~33  $^\circ\,$  .



Fig. S2. (a, c) SEM, (b, d) TEM and (c) HRTEM images of Ni-doped  $W_{18}O_{49}/NF$  (WN).



Fig. S3. (a) STEM image and (b-d) Elemental mappings of W, Ni and O of Ni-doped

W<sub>18</sub>O<sub>49</sub>/NF (WN).



Fig. S4. The orbital interactions between cations  $(Ni^{2+}, Ni^{3+}, Fe^{3+})$  and the OER intermediates.



Fig. S5. (a) OER and (b) HER polarization curves of Fe, Ni-codoped  $W_{18}O_{49}/NF$  measured at

different sweep speeds.



Fig. S6. Chronopotentiometry curves of Fe, Ni-codoped  $W_{18}O_{49}/NF$  for water splitting at 10 mA

cm-2 in a 1 M KOH solution: (a) OER, (b) HER.



Fig. S7. (a) Polarization curves of Fe, Ni-codoped  $W_{18}O_{49}/NF$  in neutral media, (b)

Overpotentials required for different current densities, OER and (b) HER polarization curves of

Fe, Ni-codoped W<sub>18</sub>O<sub>49</sub>/NF measured at different sweep speeds in neutral media.



Fig. S8. Polarization curves of Fe, Ni-codoped  $W_{18}O_{49}/NF$  measured in 1M KOH. The molar

ratios of WCl6: FeCl<sub>2</sub>·4H<sub>2</sub>O is 1:0.1, 1:0.3 and 1:0.5, respectively.



Fig. S9. CV curves obtained at different scanning rates of Ni-doped  $W_{18}O_{49}/NF$  (WN) and Fe,

Ni-codoped W<sub>18</sub>O<sub>49</sub>/NF (FEWN).

**Table S1.** Comparison of charge transfer resistance  $(R_2)$  values of all samples in alkaline solution (OER).

| Catalysts | $R_{ m S}(\Omega)$ | $R_1(\Omega)$ | $R_{\rm ct}(\Omega)$ |
|-----------|--------------------|---------------|----------------------|
| NF        | 4.39               | 2.00          | 28.01                |
| WN        | 4.00               | 2.12          | 10.97                |
| FEWN      | 3.98               | 1.34          | 4.43                 |

**Table S2.** Comparison of charge transfer resistance  $(R_2)$  values of all samples in alkaline solution (HER).

| Catalysts | $R_{ m S}(\Omega)$ | $R_1(\Omega)$ | $R_{\rm ct}(\Omega)$ |
|-----------|--------------------|---------------|----------------------|
| NF        | 3.847              | 2.308         | 21.81                |
| WN        | 3.442              | 1.73          | 4.68                 |
| FEWN      | 3.31               | 0.80          | 2.99                 |