Electronic Supplementary Information

Titanium Complexes of Pyrrolylaldiminate Ligands and Their Exploitation for the Ring-Opening Polymerization of Cyclic Esters

Kanokon Upitak,^a Worawat Wattanathana,^b Tanin Nanok,^a Pitak Chuawong,^a

Pimpa Hormnirun*,a

^aLaboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^bDepartment of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.

*E-mail: fscipph@ku.ac.th

Fig. S1 ¹H NMR spectrum of **1** in CDCl₃ at 298 K.

Fig. S2 ¹H NMR spectrum of 1 in toluene-d₈ at 298 K.

Fig. S3 ¹H NMR spectrum of **1** in toluene- d_8 at 363 K.

Fig. S4 ¹H NMR spectra of 1 in toluene- d_8 at different temperatures.

Fig. S5 Relative free energies of five possible stereoisomers of complex 1 calculated using the SMD(toluene)/M062X method with the 6-311+G(d,p) basis set for nonmetal atoms and the def2-tzvpp for Ti.

С

T	R
4	

Ti	-0.3211	-0.6790	-1.2592	Ti	-0.609668	-0.740380	0.417992	Ti	-0.2013	-0.8132	-1.2476
N	-2 3716	-0 3447	-1.0908	N	-0.624811	-1.085510	-1 726669	N	-2 1922	-0.2427	-1 0874
Ċ	-2 8582	0.0982	0.1175	C	-0.421916	-2 407275	-2 059597	C	-2 6230	0.2207	0.1355
C	2 4208	0.0902	1 0125	C	0.929700	0.420868	2.057577	C C	2 2448	0.1026	1 0240
Č	4 2454	-0.4636	-1.9123	C	-0.838709	-0.429808	-2.809203	C	-3.2440	-0.1930	-1.9249
C	-4.2434	0.2444	0.0490	C	-0.312007	-2.373379	-3.433904	C	-3.9733	0.3042	0.0012
C	-4.6105	-0.1332	-1.2519	C	-0.779312	-1.308450	-3.9/166/	C	-4.3729	0.2984	-1.2579
Н	-3.2984	-0.8304	-2.9290	Н	-1.031664	0.635159	-2.870038	Н	-3.1493	-0.5167	-2.9521
Н	-4.8933	0.5786	0.8466	Н	-0.396720	-3.500898	-3.995852	Н	-4.5802	0.9572	0.8653
Н	-5.6047	-0.1517	-1.6717	Н	-0.914641	-1.039440	-5.008195	Н	-5.3540	0.4383	-1.6860
Ν	1.6995	-0.3207	-0.9101	Ν	1.523914	-0.584347	0.024734	Ν	0.0987	1.3305	-1.3410
С	2.1261	0.9853	-0.8450	С	1.914424	0.685142	-0.341978	С	1.3605	1.7266	-0.9497
Č	2 7900	-1 0987	-0 7688	Č	2 634565	-1 321408	0.096614	Č	-0.6503	2 4355	-1 4019
C C	3 5086	1.0260	0.6515	C C	3 311014	0.734001	0.504604	Č	1 3074	3 1200	0.7752
c	2.0220	0.2102	-0.0513	C	3.311014	0.734001	-0.304004	C	1.39/4	2 5745	1.0676
C	3.9329	-0.3103	-0.6053	C	3.//1003	-0.550201	-0.224579	C	0.1119	3.5745	-1.00/0
Н	2.7055	-2.1/66	-0.7909	Н	2.592499	-2.366038	0.376935	Н	-1.69/4	2.3829	-1.6/32
Н	4.1151	1.9162	-0.5615	Н	3.892653	1.599362	-0.787871	Н	2.2559	3.7059	-0.4781
Н	4.9413	-0.6711	-0.4709	Н	4.792693	-0.899960	-0.245204	Н	-0.2418	4.5944	-1.0562
С	-1.9045	0.2815	1.1560	С	-0.231068	-3.310541	-0.994741	С	-1.6538	0.2849	1.1775
Н	-2.2204	0.6538	2.1313	Н	-0.072249	-4.370806	-1.191645	Н	-1.9268	0.6775	2.1581
C	1 1 3 0 6	1 9860	-1.0181	C	0.903299	1 663508	-0 422924	C	2 3226	0 7 1 0 7	-0.8060
н	1 3962	3 0/18	-0.9550	н	1 1/8516	2 689729	-0.696864	н	3 3/85	0.9676	-0 5/60
C	1 1002	2 5 9 2 0	1 2607	C II	1.252527	2.007727	0.011010	C II	2 0005	1 5010	1 0054
C	-1.1065	2.3650	-1.3097	C	-1.552527	2.311203	-0.211212	C	2.9903	-1.3210	-1.0934
C	-2.0697	2.4495	-2.3745	C	-2.295114	2.390319	0.816253	C	2.7202	-2.8436	-0./335
С	-1.1963	3.6472	-0.4683	С	-1.444757	3.174470	-1.305736	С	4.2586	-1.2074	-1.6019
С	-3.0947	3.3783	-2.4848	С	-3.306661	3.339548	0.754813	C	3.7084	-3.8157	-0.8255
Н	-2.0016	1.6123	-3.0589	Н	-2.224768	1.700545	1.650294	Н	1.7259	-3.1014	-0.3982
С	-2.2263	4.5753	-0.5860	С	-2.465280	4.117595	-1.362095	С	5.2434	-2.1840	-1.6856
н	-0.4698	3.7333	0.3328	Н	-0.730822	3.089285	-2.118099	Н	4.4670	-0.2092	-1.9684
С	-3 1777	4 4 4 4 6	-1 5921	C	-3 396655	4 206053	-0 332340	C	4 9791	-3 4914	-1 2901
н	-3 8365	3 26/18	-3 2669	н	-4.032208	3 400239	1 557998	ч	3 1771	-1 8352	-0.5370
11	2 2010	5 2051	0.1202	11	-4.032200	4 778020	2 219116	11	6 0170	1.0217	2 0010
п	-2.2910	5.5951	0.1203	п	-2.334779	4.778939	-2.218110	п	0.2178	-1.9217	-2.0819
Н	-3.9833	5.1642	-1.6/63	H	-4.192236	4.940136	-0.380479	Н	5./4/1	-4.2518	-1.3662
С	0.3148	0.2250	1.9084	С	-0.062154	-3.757537	1.316030	С	0.5598	0.0059	1.9043
С	1.3063	-0.7346	2.1262	С	-0.902707	-3.687729	2.429258	С	1.4231	-1.0666	2.1375
С	0.3335	1.4144	2.6418	С	0.988658	-4.677660	1.297261	С	0.7540	1.2123	2.5797
С	2.2950	-0.5120	3.0740	С	-0.705844	-4.550179	3.499660	С	2.4551	-0.9410	3.0580
Н	1.2904	-1.6472	1.5424	Н	-1.700557	-2.953170	2.443215	Н	1.2742	-1.9895	1.5877
C	1 3262	1 6292	3 5934	C	1 182650	-5 532919	2 376679	C	1 7892	1 3308	3 5014
ц	0.4168	2 1746	2 4514	ц	1.102050	4 706960	0.447651	ч	0.1100	2.0613	2 3467
С	2 2000	2.1740	2.4314	С	0.226525	-4.700900	2 470202	С	0.1199	2.0013	2.3407
	2.3099	0.0705	5.8109	C II	0.330333	-3.4/40//	3.479292	C	2.0405	0.2375	5.7450
Н	3.0611	-1.2623	3.2322	Н	-1.365840	-4.496163	4.35/941	Н	3.1199	-1.//86	3.2356
Н	1.3368	2.5559	4.1556	Н	2.004889	-6.238928	2.357399	Н	1.9398	2.2724	4.0169
Н	3.0874	0.8440	4.5454	Н	0.492708	-6.139389	4.320027	Н	3.4496	0.3563	4.4586
Ν	-0.0848	1.6107	-1.2718	Ν	-0.327339	1.336148	-0.127944	N	1.9723	-0.5386	-0.9945
Ν	-0.6661	-0.0229	0.9187	Ν	-0.277267	-2.866955	0.234337	N	-0.4545	-0.1339	0.9296
0	-0.2324	-0.7021	-3.0359	0	-0.260636	-0.521642	2.154969	0	-0.1941	-1.0275	-3.0070
0	-0.3342	-2.3906	-0.7726	0	-2.393213	-0.822888	0 402755	0	-0 4397	-2,4762	-0.6194
Č	0 2335	0.0293	-4 1569	Č	0.752071	-0 131294	3.065668	Ċ	-0.1338	-0.3074	-4 2275
Č	1 6870	-0.3363	-4 4200	Č	1 020458	-1 268///8	4.038851	č	1 2073	0.1466	-1 1718
C	0.0070	-0.3303	-4.4200	C	0.205961	1 1 4 5 9 5 4	4.058851	C	0.6560	1 1005	-4.4/10
C	-0.000/	-0.2/19	-5.3445	C	0.305861	1.145854	3./0124/	C	-0.0509	-1.1985	-5.5428
Н	0.1723	1.0991	-3.9161	Н	1.666473	0.070687	2.493174	Н	-0.7788	0.5751	-4.1265
Н	2.3062	-0.1043	-3.5500	Н	1.342112	-2.165419	3.503790	Н	1.6280	0.8087	-3.6687
Н	2.0683	0.2223	-5.2787	Н	1.807509	-0.981972	4.741399	Н	1.3671	0.6894	-5.4179
Н	1.7712	-1.4055	-4.6323	Н	0.115813	-1.508442	4.604469	Н	1.9628	-0.7203	-4.5155
Н	-1.7027	-0.0051	-5.1217	Н	0.126902	1.934851	3.026371	Н	-1.6719	-1.5360	-5.1228
н	-0.6286	-1 3383	-5.5825	н	-0.618946	0.970346	4 317937	н	-0.0173	-2.0783	-5 4505
н	-0 3458	0 2949	-6 2220	н	1 073699	1 491623	4 457984	н	-0.6692	-0.6551	-6 2908
C	0.7056	2 2719	0.2220	C II	2 506260	1.491023	0.20/162		1 1200	2 2540	0.2700
	0.1930 0.1970	27640	0.2370		1 200575	0.024005	0.574103		7 5270	2 5 407	0.3420
C C	-2.18/3	-3./040	-0.1322	C	-4.3805/5	0.034005	-0.029109	C	-2.55/9	-3.540/	-0.1019
C	0.2009	-4.4103	0.38/0	C	-4.254890	-2.311//1	0.306809	C	-0.354/	-4.53/6	0.6076
Н	-0.8525	-2.7112	1.1796	Н	-3.130285	-1.550165	-1.359440	Н	-1.1921	-2.6713	1.2710
Н	-2.8806	-2.9251	-0.2285	Н	-3.817400	0.823408	-1.132924	Н	-3.0791	-2.6113	-0.3508
Н	-2.5661	-4.4424	0.6366	Н	-5.238175	-0.232550	-1.252525	Н	-3.0927	-4.1216	0.5792
Н	-2.1534	-4.2990	-1.0849	Н	-4.749134	0.425686	0.323057	Н	-2.4929	-4.1124	-1.0929
Н	1.1904	-4.0289	0.6506	Н	-3.599695	-3.173426	0.455612	Н	0.6227	-4.3345	1.0524
н	0.2826	-4.9623	-0.5530	н	-4.615453	-1.973695	1.282333	н	-0.2078	-5.0857	-0.3272
н	-0.1224	-5.0995	1.1711	н	-5.112575	-2.630319	-0.291192	н	-0.9105	-5,1743	1.3003
**		2.0775		11	2	_	J	11	0.7105	2.27.13	1.0000

ы.
11.
_

Ti 0.057797	-0.219898	-0.021294	Ti	-0.159192	-0.527454	0.156698
N -2.017062	-0.404372	0.313339	N	-2.222323	-0.035860	0.423591
C -2.872993	-0.099810	-0.726580	С	-2.796037	0.395263	-0.764435
C -2.763666	-1.036475	1.246049	С	-3.178313	0.086396	1.361464
C -4 168780	-0.520527	-0.427056	Č	-4 129077	0.767671	-0.551100
C 4.005073	1 124268	0.927255	C	4.120077	0.572620	0.900036
C -4.093973	-1.124208	0.65/555	C II	-4.3/1434	0.373039	0.809030
H -2.319683	-1.404393	2.158968	Н	-2.995004	-0.16/061	2.394359
Н -5.037293	-0.413118	-1.060443	Н	-4.810384	1.141251	-1.302027
Н -4.902095	-1.575596	1.395485	Н	-5.287884	0.759074	1.347951
N 0.064825	-0.107695	2.084910	N	1.967416	-0.906803	0.377884
C 1.219290	-0.471456	2.746953	С	2.302863	-1.126235	1.696964
C -0.725781	0 492913	3 002037	Ċ	3 120230	-0.752135	-0 285576
C 1136254	-0 123917	4 094287	C	3 698989	-1 123947	1 850793
C 0.111412	-0.123717	4.054207	C	4 221749	-1.123747	0.592(51
C -0.111415	0.498005	4.255077	C II	4.221/48	-0.880930	0.382031
H -1.693/28	0.886/51	2.729598	Н	3.13/210	-0.552/36	-1.348058
H 1.895926	-0.288843	4.844537	Н	4.238539	-1.283304	2.772992
Н -0.527081	0.906770	5.164434	Н	5.261839	-0.814233	0.301823
C -2.272581	0.372683	-1.924709	С	-2.003044	0.467945	-1.933735
H -2.881721	0.659188	-2.783036	Н	-2.456427	0.804794	-2.866735
C 2.284377	-0.951037	1 937240	С	1 246739	-1 324790	2.611070
Н 3 21/27/	1 306054	2 382530	ц	1 458102	1 613000	3 640035
C = 2.080704	1 427100	0.222235	II C	1.024081	1 610929	2 076164
C 3.080794	-1.45/199	-0.225848	C	-1.034981	-1.010858	3.070104
C 3.39340/	-0./13/82	-1.3//456	C	-1.920265	-2.59/352	2.643477
C 3.689718	-2.673744	-0.000047	С	-1.203749	-1.011436	4.322862
C 4.320244	-1.211999	-2.284110	С	-2.969935	-2.989062	3.463592
H 2.908527	0.242129	-1.545611	Н	-1.777679	-3.027091	1.658185
C 4.615457	-3.167968	-0.913360	С	-2.261667	-1.406778	5.137058
H 3 410888	-3.258201	0.870001	н	-0.527584	-0.222609	4 633543
C 4 935054	-2 441458	-2 056280	C	-3 145777	-2 393297	4 711014
U 4567450	0.626025	2.050200	с u	2 657715	2 75 1797	2 1 2 2 9 1 9
П 4.307430	-0.030023	-3.106973	п	-3.037713	-3./34/0/	5.123010
H 5.0/8095	-4.132140	-0./309/1	H	-2.399958	-0.932881	6.102155
H 5.653773	-2.832203	-2.766937	Н	-3.9/158/	-2.693172	5.345215
C -0.288740	0.859173	-3.103823	С	0.099133	0.253868	-2.996523
C 0.860094	0.168320	-3.499889	С	1.129017	-0.679683	-3.146415
C -0.681862	2.000774	-3.808122	С	-0.026132	1.293713	-3.924577
C 1.598879	0.606429	-4.590630	С	2.004115	-0.590476	-4.221829
H 1 161792	-0.714802	-2.948078	Н	1 226489	-1 478304	-2.417871
C 0.065186	2 / 3/581	-/ 898981	C	0.851750	1 372992	_1 998824
U 1551251	2.454561	-4.090901		0.001700	2.051272	2 7010024
П -1.331231	2.302130	-3.465414	п	-0.790210	2.031275	-3./91898
C 1.2066/8	1./42894	-5.293826	C	1.86/385	0.433336	-5.154887
H 2.481971	0.054682	-4.892839	Н	2.793400	-1.325696	-4.330807
Н -0.240550	3.325637	-5.435225	Н	0.749732	2.183508	-5.711212
H 1.787353	2.087796	-6.141038	Н	2.552272	0.504742	-5.991152
N 2.114206	-0.911189	0.658591	N	0.013419	-1.221981	2.199314
N -0.981553	0.391588	-1.966317	Ν	-0.750993	0.131929	-1.878531
0 0.789272	1 384822	-0.268734	0	0.337244	1 196414	0.351565
0 0 205891	-1 820644	-0.832559	Ő	-0.450697	-2 180209	-0 529/3/
C 1 426667	2 527191	0.786621	C	1 202045	2.100209	0.020404
C 1.420007	2.32/101	-0.780021	C	1.203943	2.140339	-0.223227
C 2.6/2/10	2.810037	0.039467	C	2.254545	2.542788	0.805198
C 0.444334	3.689345	-0./64315	С	0.388523	3.33/319	-0./10090
Н 1.712745	2.320011	-1.827854	Н	1.708458	1.686052	-1.084830
H 3.353119	1.961666	0.029524	Н	2.813661	1.663727	1.135635
Н 3.200241	3.687184	-0.357732	Н	2.958899	3.263168	0.380147
H 2.390767	3.017642	1.076402	Н	1.770910	2.998060	1.674000
H -0.465493	3 427704	-1.308228	н	-0.374504	3 008163	-1 419196
Н 0.174516	3 927899	0.268136	н	-0 113485	3 818447	0 133748
II 0.174510	1 575460	1 227100	11	1 020801	4.071402	1 202516
п 0.880107	4.373409	-1.22/100	п	1.030891	4.071495	-1.205510
C -0.292869	-2.098382	-1.81/8/2	C	-0.940989	-2.995925	-1.563269
C -1.479480	-3.472756	-1.261609	С	-2.347293	-3.466193	-1.211021
C 0.842135	-3.612740	-2.259196	С	0.012650	-4.162416	-1.781883
Н -0.631978	-2.101425	-2.675767	Н	-0.992935	-2.395792	-2.483099
H -2.285194	-2.795047	-0.968907	Н	-2.982956	-2.613203	-0.959237
H -1.865605	-4 166453	-2.013591	н	-2 795616	-4.000743	-2.052772
H _1 173070	_4 047206	-0 382862	и Ц	-2 316270	-4 14/800	-0 353550
н 1704005	3 025067	2 501222	11 LT	1 017001	3 805272	2 021472
II 1./04000	-3.02390/	-2.371333	п	1.01/001	-3.003213	-2.0214/3
п 1.1616/4	-4.238634	-1.421552	H	0.075397	-4./0303/	-0.8/2114
н 0.521159	-4.260809	-3.079105	Н	-0.333913	-4.798184	-2.600887

Fig. S6 ¹H NMR spectrum of 2 in CDCl₃ at 298 K.

Fig. S7 ¹H NMR spectrum of **3** in CDCl₃ at 298 K.

Fig. S8 ¹H NMR spectrum of 4 in CDCl₃ at 298 K.

Fig. S9 ¹H NMR spectrum of **5** in CDCl₃ at 298 K.

Fig. S10 ¹H NMR spectrum of 6 in CDCl₃ at 298 K.

Empirical formula	$C_{26}H_{40}N_4O_2Ti$
Formula weight	488.52
Temperature/K	100
Crystal system	monoclinic
Space group	P2 ₁ /c
$a/{ m \AA}$	8.9560(9)
$b/{ m \AA}$	16.7630(17)
$c/{ m \AA}$	18.1781(19)
$\alpha/^{\circ}$	90
$eta/^{\circ}$	75.196(3)
γ/°	90
Volume/Å ³	2638.5(5)
Ζ	4
$ ho_{ m calc} { m g/cm}^3$	1.230
μ/mm^{-1}	2.966
<i>F</i> (000)	1048.0
Crystal size/mm ³	$0.04 \times 0.02 \times 0.02$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	7.288 to 137.29
Index ranges	$-10 \le h \le 10, -20 \le k \le 20, -21 \le l \le 21$
Reflections collected	42047
Independent reflections	4688 [$R_{int} = 0.0705, R_{sigma} = 0.0426$]
Data/restraints/parameters	4688/144/357
Goodness-of-fit on F^2	1.219
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1454, wR_2 = 0.3409$
Final R indexes [all data]	$R_1 = 0.1465, wR_2 = 0.3410$
Largest diff. peak/hole / e Å ⁻³	0.73/-0.58

 Table S1 Crystal data and structure refinement for the complex 2.

Fig. S11 A view of the C–H…C interactions (C16–H16A…C16 and C12–H12…C16) forming between two cyclopentyl moieties representing weak Van der Waals forces between molecules of **2**.

Fig. S12 A view of the chain of the molecules of **2** related by a translational symmetry illustrating the C–H···*C*_g interactions (C3–H3B···*C*_g). Note that, *C*_g is the centroid of the pyrrole ring (N1 and C7 to C10).

Fig. S13 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **2** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S14 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **3** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S15 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **4** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S16 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **5** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S17 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **6** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S18 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **1** at 100 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S19 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\triangledown) for the ROP of *rac*-LA by complex **2** at 100 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S20 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\triangledown) for the ROP of *rac*-LA by complex **3** at 100 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S21 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\triangledown) for the ROP of *rac*-LA by complex **4** at 100 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S22 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\blacktriangledown) for the ROP of *rac*-LA by complex **5** at 100 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S23 Concentration versus time profile for the ¹H NMR resonance decay of *rac*-LA (\blacktriangle) and the growth of PLA (\triangledown) for the ROP of *rac*-LA by complex **6** at 100 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S24 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 70 °C in toluene (400 MHz, CDCl₃) using complex **1**.

Fig. S25 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 70 °C in toluene (400 MHz, CDCl₃) using complex **2**.

Fig. S26 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 70 °C in toluene (400 MHz, CDCl₃) using complex **3**.

Fig. S27 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 70 °C in toluene (400 MHz, CDCl₃) using complex **4**.

Fig. S28 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 70 °C in toluene (400 MHz, CDCl₃) using complex **5**.

Fig. S29 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 70 °C in toluene (400 MHz, CDCl₃) using complex **6**.

Fig. S30 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 100 °C in toluene (400 MHz, CDCl₃) using complex **1**.

Fig. S31 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 100 °C in toluene (400 MHz, CDCl₃) using complex **2**.

Fig. S32 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 100 °C in toluene (400 MHz, CDCl₃) using complex **3**.

Fig. S33 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 100 °C in toluene (400 MHz, CDCl₃) using complex **4**.

Fig. S34 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 100 °C in toluene (400 MHz, CDCl₃) using complex **5**.

Fig. S35 Homonuclear decoupled ¹H NMR spectrum of the methine region of the PLA prepared from *rac*-LA at 100 °C in toluene (400 MHz, CDCl₃) using complex **6**.

Fig. S36 Plot of PCL $M_n(\bullet)$ (versus polystyrene standards) and PDI (O) as a function of monomer conversion for a ε -CL polymerisation using **5** ([ε -CL]₀/[Ti] = 100, toluene, 70 °C).

Fig. S37 Concentration versus time profile for the ¹H NMR resonance decay of ε -CL (\blacktriangle) and the growth of PCL (\triangledown) for the ROP of ε -CL by complex **1** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S38 Concentration versus time profile for the ¹H NMR resonance decay of ε -CL (\blacktriangle) and the growth of PCL (\triangledown) for the ROP of ε -CL by complex **2** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S39 Concentration versus time profile for the ¹H NMR resonance decay of ε -CL (\blacktriangle) and the growth of PCL (\triangledown) for the ROP of ε -CL by complex **3** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S40 Concentration versus time profile for the ¹H NMR resonance decay of ε -CL (\blacktriangle) and the growth of PCL (\triangledown) for the ROP of ε -CL by complex **4** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S41 Concentration versus time profile for the ¹H NMR resonance decay of ε -CL (\blacktriangle) and the growth of PCL (\triangledown) for the ROP of ε -CL by complex **5** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S42 Concentration versus time profile for the ¹H NMR resonance decay of ε -CL (\blacktriangle) and the growth of PCL (\triangledown) for the ROP of ε -CL by complex **6** at 70 °C along with the fits (blue and red lines) and errors determined by COPASI.

Fig. S43 Semilogarithmic plots of $\ln[CL]_0/[CL]_t$ versus time for ϵ -CL polymerization using complex **5** as an initiator at different temperatures in toluene ([ϵ -CL]_0/[Ti] = 100, [ϵ -CL]_0 = 1.25 M. **I**: T = 90 °C, $k_{app} = (32.32 \pm 0.26) \times 10^{-4} \text{ s}^{-1}$; **II**: T = 80 °C, $k_{app} = (18.71 \pm 0.13) \times 10^{-4} \text{ s}^{-1}$; **III**: T = 70 °C, $k_{app} = (9.12 \pm 0.68) \times 10^{-4} \text{ s}^{-1}$; **IV**: T = 60 °C, $k_{app} = (32.32 \pm 0.26) \times 10^{-4} \text{ s}^{-1}$).

Table S2 Kinetic data for the ε -CL	polymerization	s using	complex 5
--	----------------	---------	-----------

Τ (°C)	T (K)	1/T (K ⁻¹)	k _{app} (10 ⁴ s ⁻¹)	$k_{ m p}$	$\ln(k_p/T)$
60	333	0.003003	5.04 ± 0.22	0.040316	-9.01915
70	343	0.002915	9.12 ± 0.68	0.073680	-8.44575
80	353	0.002833	18.71 ± 0.13	0.149675	-7.76576
90	363	0.002755	32.32 ± 0.26	0.258578	-7.24696