Supporting Information

Cobalt Coordination Controlled Carbon Nanospheres Formation and Inclusion of Amorphous Co₃O₄ and AuNPs: Strongly Enhanced Oxygen Evolution Reaction with Excellent Mass Activity

Pandi Muthukumar,^a Shreya Narasimhan,^a Arunprasanth Panneer Selvam,^b Mariappan Mariappan,^b Mohammed A. Assiri^c and Savarimuthu Philip Anthony^{*a}

^{a)}Department of Chemistry, School of Chemical & Biotechnology, SASTRA Deemed

University, Thanjavur-613401, Tamil Nadu, India. Fax: +914362264120;

Tel: +914362264101, E-mail: philip@biotech.sastra.edu.

^{b)}Department of Chemistry, SRM IST, Kattankulathur, Chennai-603203, Tamil Nadu, India.

^{c)}Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia.

Figure S1. Absorption spectra of HBA, HBA@AuNPs, Co²⁺ ions and coordination with HBA ligand.

Figure S2. PXRD pattern of 1, 2 and 3.

Figure S3. HR-TEM images of AuNPs synthesised using HBA.

Figure S4. HR-TEM images (a, b) and EDX spectra (c) of **1**.

Figure S5. HR-TEM images of **2**.

Figure S6. HR-TEM images of **3**.

Figure S7. FE-SEM images of **2**.

Figure S8. XPS survey spectra of 1-3.

Figure S9. High resolution XPS spectra of C, N and O of 1.

Figure S10. High resolution XPS spectra of C, N and O of **2**.

Figure S11. High resolution XPS spectra of C, N and O of **3**.

Figure S12. Elemental mapping of **1**.

Figure S13. Elemental mapping of **2**.

Figure S14. Elemental mapping of **3**.

Figure S15. EDX spectra of (a) 1, (b) 2 and (c) 3.

Catalyst	Element	wt% by EDAX	
1	Au	0.01	
	Со	0.46	
2	Au	0.04	
	Со	1.74	
3	Au	0.05	
	Со	2.86	

Figure S16. Linear sweep OER polarization curve of 2 before and after iR correction.

Catalyst	Overpotential (mV)	Tafel slope (mV/dec)	Stability	Reference	
2	256	52.4	1000 cycle & 48 h	Present work	
Au/NiCo ₂ O ₄	360	63	1000 cycle & 120 min	1	
Au/m Co ₃ O ₄	440	46	2000 cycle	2	
MnO ₂ / AuNP-4.4	390	~200	NA	3	
CNTs-Au@Co ₃ O ₄	350	68	1000 cycle & 25 h	4	
AuNCs@Ni(OH) ₂	375 73		600 cycle & 2 h	5	
AuNCs@Co(OH) ₂	350	72	600 cycle	6	
AuNDs@LDH/GCE	530	53 2000 seconds		7	
NiCeOOH/Au	259		NA	8	
NiFeOOH/Au	267			8	
ZnCo ₂ O ₄ /Au/CNTs	440	46.2	10 h	9	
AuCuCo	596	160	4 h	10	
$Au_{0.89}Fe_{0.11} NPs$	800	163	NA	11	
Au@NiO _x	394	117	2 h	12	

Table S2	OER	data	of	different	catalysts
1 4010 52.	OLIC	uutu	01	uniterent	cutury sts.

Au/FeO _x	439	43	2 h	12
Au@CoFeO _x	328	58	2 h	12
Au-Ni ₁₂ P ₅	340	49	2.78 h	13
Au-Co(OH) ₂	320	119	6 h	14
Au25/CoSe ₂	430	NA	1000 cycle	15
Au-Ru NPs	220	62	NA	16
AuNPs@LDH	510	61	1.5 h	17
Au/NiFe LDH	237	36	2000 cycle & 20	18
			h	
AuNi-Cu ₂ O	532	NA	10 h	19
(after 2 nd OER test)				
AuNi HDs	350	45.9	2 h	20
Au–Fe _x O _y 12	450	132	5 h	21
$Au_{0.10}Ir_{0.90}O_{y}$ -50	241	55.2	5000 cycle	22
Au/Ir NCs	300	52.94	36 h	23
Au-CoFe ₂ O ₄	312	35	8 h	24
3DG-Au-Ni3S2	370 (91.15 j)	106	NA	25
Au-vanadate nanoflute	310	127	NA	26
GMN@Co _x S _y	$MN@Co_xS_y$ 345		6000 seconds	27

Figure S17. Comparison of linear sweep OER polarization curves of **2** synthesised at three different batches.

Figure S18. Comparison of linear sweep OER polarization curves of 2,4 and 5.

Figure S19. PXRD of 2 after heating at 500 °C.

Figure S20. Linear sweep OER polarization curve of **2** after heating at 500 °C.

Figure S21. Linear sweep OER polarization curve of 2.

Figure S22. (a) Chronopotentiometric response and (b) OER polarization curve of RuO₂.

Figure S23. High resolution XPS spectra of (a) Co and (b) Au of 2 after catalytic studies.

Figure S24. (a) CV of **1**, **2** and **3**.

Figure S25. (a) CV of **4** and **5** and capacitive currents as a function of the scan rate for **2** and **4**.

Catalyst	Loading (mg)	Overpotential (mV)	Current density (mA/cm ²)	Mass activity (mA mg ⁻¹)	Ref
2	0.05	300	67.62	1352.5	This work
α-Ni(OH) ₂	0.2	350	30.02	150.1	28
γ-CoOOH	0.15	300	10	66.6	29
CuCo ₂ S ₄	0.7	310	10	14.29	30
NiFe-LDH/CuO NRs/CF	0.70	300	~105	150	31
Ba2CoMo0.5Nb0.5O6-8	0.232	440	~10	~43	32
LaCo _{0.8} Fe _{0.2} O _{3-δ} -700	0.245	293	10	40.80	33
Electrochemically activated Co _x Ni _{1-x} S ₂	0.285	340	60	217	34
CeO ₂ /Co ₃ O ₄	0.35	340	~45	128.6	35
Au/NiFe LDH	2	280	129.8	64.9	18
Co-S-130	0.17	350	~13	76	36
CoOOH-NS	2	320	~45	~22.5	37

Table S3. Comparison of mass activities of different catalysts.

References:

- 1) X. Liu, J. Liu, Y. Li, Y. Li, X. Sun, ChemCatChem 2014, 6, 2501 2506.
- 2) X. Lu, Y. H. Ng, C. Zhao, ChemSusChem 2014, 7, 82 86.
- C.-H. Kuo, W. Li, L. Pahalagedara, A. M. El-Sawy, D. Kriz, N. Genz, C. Guild, T. Ressler, S. L. Suib, J. He, *Angew. Chem. Inter. Ed.* 2015, *127*, 2375-2380.
- Y. Fang, X. Li, Y. Hu, F. Li, X. Lin, M. Tian, X. An, Y. Fu, J. Jin, J. Ma, J. Power Sources 2015, 300, 285-293.
- 5) Y. Zhou, H. C. Zeng, J. Phys. Chem. C 2016, 120, 29348-29357.
- 6) Y. Zhou, H. C. Zeng, J. Phys. Chem. C 2016, 120, 29348-29357.
- 7) M. Taei, E. Havakeshian, F. Hasheminasab, RSC Adv. 2017, 7, 47049–47055.
- P. Chakthranont, J. Kibsgaard, A. Gallo, J. Park, M. Mitani, D. Sokaras, T. Kroll, R. Sinclair, M. B. Mogensen, T. F. Jaramillo, *ACS Catal.* 2017, *7*, 5399–5409.
- 9) H. Cheng, C.-Y. Su, Z.-Y. Tan, S.-Z. Tai, Z.-Q. Liu, J. Power Sources 2017, 357, 1-10.
- 10) H. Gong, W. Zhang, F. Li, R. Yang, Electrochimica Acta 2017, 252, 261–267.
- 11) I. Vassalini, L. Borgese, M. Mariz, S. Polizzi, G. Aquilanti, P. Ghigna, A. Sartorel, V. Amendola, I. Alessandri, *Angew. Chem. Int. Ed.* **2017**, *56*, 6589-6593.
- 12) A. L. Strickler, M. Escudero-Escribano, T. F. Jaramillo, Nano Lett. 2017, 17, 6040-6046.
- 13) Y. Xu, S. Duan, H. Li, M. Yang, S. Wang, X. Wang, R. Wang, *Nano Res.* 2017, 10, 3103-3112.
- 14) M. A. Sayeeda, A. P. O'Mullane, J. Mater. Chem. A 2017, 5, 23776-23784.
- 15) S. Zhao, R. Jin, H. Abroshan, C. Zeng, H. Zhang, S. D. House, E. Gottlieb, H. J. Kim, J. C. Yang, R. Jin, *J. Am. Chem. Soc.* **2017**, *139*, 1077–1080.

- 16) L. Gloag, T. M. Benedetti, S. Cheong, Y. Li, X.-H. Chan, L.-M. Lacroix, S. L. Y. Chang, R. Arenal, I. Florea, H. Barron, A. S. Barnard, A. M. Henning, C. Zhao, W. Schuhmann, J. J. Gooding, R. D.Tilley, *Angew. Chem. Int. Ed.* **2018**, *54*, 10241-10245.
- 17) M. Taei, E. Havakeshian, F. Hasheminasab, J. Electroanal. Chem. 2018, 808, 75-81.
- 18) J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S.Sun, W. Wang, K. M. Lange, B. Zhang, J. Am. Chem. Soc. 2018, 140, 3876–3879.
- 19) H. Gong, S. Lu, P. Strasser, R. Yang, *Electrochimica Acta* 2018, 283, 1411-1417.
- 20) B. Ni, P. He, W. Liao, S. Chen, L. Gu, Y. Gong, K. Wang, J. Zhuang, Li Song, G. Zhou, X. Wang, Small 2018, 14, 1703749.
- 21) S. A. Lone, S. Ghosh, K. K. Sadhu, ACS Omega 2019, 4, 3385-3391.
- 22) S. Moon, Y.-B. Cho, A. Yu, M. H. Kim, C. Lee, Y. Lee, ACS Appl. Mater. Inter. 2019, 11, 1979–1987.
- 23) Z. Ke, L. Li, Q. Jia, Y. Yang, H, Cui, App. Surf. Sci. 2019, 463, 58-65.
- 24) G. Zhu, X. Li, Y. Liu, W. Zhu, X. Shen, App. Surf. Sci. 2019, 478, 206-212.
- 25) H. Glatz, E. Lizundia, F. Pacifico D. Kundu, ACS Appl. Ener. Mater. 2019, 22, 1288-1294.
- 26) B. Das, M. Sharma, A. Hazarika, K. K. Bania, ChemistrySelect 2019, 4, 7042-7050.
- 27) H. D. Mai, V. C. T. Le, H. Yoo, ACS Appl. Nano Mater. 2019, 2, 678-688.
- 28) Minrui Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J. Am. Chem. Soc. 2014, 136, 7077–7084.
- 29) J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, S. Wei, Angew. Chem. Int. Ed. 2015, 54, 8722 –8727.
- 30) M. Chauhan, K. P. Reddy, C. S. Gopinath, S. Deka, ACS Catal. 2017, 7, 5871-5879.
- 31) Q. Zhou, T.-T. Li, J. Qian, W. Xu, Y. Hu, Y.-Q. Zheng, ACS Appl. Ener. Mater. 2018, 1, 1364–1373.
- 32) H. Sun, G. Chen, J. Sunarso, J. Dai, W. Zhou, Z. Shao, *ACS Appl. Mater. Inter.* **2018**, *10*, 16939–16942.
- 33) S. Song, J. Zhou, X. Su, Y. Wang, J. Li, L. Zhang, G. Xiao, C. Guan, R. Liu, S. Chen, H.-J. Lin, S. Zhang J.-Q. Wang, *Ener. Environ. Sci.* 2018, 11, 2945-2953.
- 34) Y.-R. Hong, S. Mhin, K.-M. Kim, W-S. Han, H. Choi, G. Ali, K. Y. Chung, H. J. Lee, S.-I. Moon, S. Dutta, S. Sun, Y.-G. Jung, T. Song, H. Han, *J. Mater. Chem. A* 2019, *7*, 3592-3602.
- 35) B. Qui, C. Wang, N, Zhang, L. Cai, Y. Xiong, Y.Chai, ACS Catal. 2019, 97, 6484-6490.
- 36) S. Ju, Y. Liu, H. Chen, F. Tan, A. Yuan, X. Li, G. Zhu, ACS Appl. Ener. Mater. 2019, 2, 4439-4449.
- 37) J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, S. Zhang, *Ener. Environ. Sci.* 2019, *12*, 739-746.