Electronic Supplementary Information

Redox-triggered reversible modulation of intense near-infrared and visible absorption using paddlewheel-type diruthenium(III) complex

Yusuke Kataoka,*^a, Nanako Imasaki,^a Natsumi Yano,^b Minoru Mitsumi,^c Makoto Handa^a

- ^a Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University.
- ^b Special Course in Science and Engineering, Graduate School of Natural Science and Technology, Shimane University.
- ^c Department of Chemistry, Faculty of Science, Okayama University of Science.

Fig. S1 Full crystal structure of [1] with thermal ellipsoids at a 30% probability (Ru: brown, Cl: green, F: yellow, O: red, N: blue, C: gray, H: white).

Fig. S2 Packing view of [1] along a-axis (thermal ellipsoids at a 30% probability; Ru: brown, Cl: green, F: yellow, O: red, N: blue, C: gray, H: white).

Fig. S3 Temperature dependence of magnetic susceptibility (blue dots) and effective magnetic moments (red dots) of [1]. The solid lines are drawn with the simulated values of g = 2.08, D = 200 cm⁻¹, and ρ (for paramagnetic impurity with S = 3/2 (Ru₂⁵⁺) species). The details of the simulation are described elsewhere [ref. S2]

Fig. S4 Molecular orbitals of [1]. Here, the HOMO, LUMO, and SOMO are highest-occupied MO, lowest unoccupied MO, and singly occupied MO, respectively.

Fig. S5 Solid-state diffuse reflectance spectrum of [1].

Fig. S6 CV measurement of [1] (1.0 mM) in DMF with 0.10 M [*n*-Bu₄N]Cl (scan rate: 50 mVs⁻¹).

Fig. S7 Packing view of [CoCp*₂][1] along b-axis (thermal ellipsoids at a 20% probability; Ru: brown, Cl: green, F: yellow, O: red, N: blue, C: gray, H: white).

Fig. S8 Temperature dependence of magnetic suscep tibility (blue dots) and effective magnetic moments (red dots) of $[CoCp*_2][1]$. The solid lines are drawn with the simulated values of g = 2.00 and D = 60 cm⁻¹. The details of the simulation are described elsewhere [ref. S3].

	[1]	[CoCp* ₂][1]	
Formula	$C_{27}H_{22}Cl_2F_{12}N_8ORu_2$	$C_{44}H_{46}Cl_2CoF_{12}N_8Ru_2$	
$M_{\rm r} ({\rm g \ mol}^{-1})$	975.56	1246.86	
Crystal system	triclinic	monoclinic	
Space group	<i>P</i> -1	$P 2_1/n$	
<i>a</i> (Å)	10.661(5)	14.0204(5)	
<i>b</i> (Å)	11.254(6)	10.3722(4)	
<i>c</i> (Å)	15.836(7)	16.8406(6)	
α (deg)	100.225(5)	90	
β (deg)	90.827(6)	96.297(3)	
$\gamma(\text{deg})$	112.350(6)	90	
$V(Å^3)$	1722.3(14)	2434.22(16)	
Ζ	2	2	
D_{calc} (g cm ⁻³)	1.881	1.701	
μ (mm ⁻¹)	1.134	1.147	
<i>F</i> (000)	956	1246	
$R_1 (I > 2\sigma(I))$	0.0605	0.0799	
$wR_2(I > 2\sigma(I))$	0.1380	0.1883	
R_1 (all data)	0.0788	0.0840	
w R_2 (all data)	0.1574	0.1898	
GOF on F^2	0.973	1.358	

Table S1. Crystallographic data of [1] and $[CoCp*_2][1]$.

Bond lengths (A)				
Ru(1)-Ru(1')	2.3296(15)	Ru(2)-N(2')	2.3307(12)	
$\operatorname{Ru}(1)$ - $\operatorname{Cl}(1)$	2.510(2)	Ru(2)- $Cl(2)$	2.5186(19)	
Ru(1)-N(1')	2.094(5)	Ru(2)-N(5')	2.066(6)	
Ru(1)-N(2)	2.011(5)	Ru(2)-N(6)	1.973(6)	
Ru(1)-N(3')	2.081(6)	Ru(2)-N(7')	2.069(6)	
Ru(1)-N(4)	1.995(6)	Ru(2)-N(8)	2.007(6)	
C(1)-N(1)	1.375(8)	C(13)-N(5)	1.381(9)	
C(1)-N(2)	1.301(8)	C(13)-N(6)	1.338(8)	
C(7)-N(3)	1.374(9)	C(19)-N(7)	1.371(9)	
C(7)-N(4)	1.327(9)	C(19)-N(8)	1.337(8)	
Bond angle (°)				
Ru(1')-Ru(1)-Cl(1)	170.44(5)	Ru(2')-Ru(2)-Cl(2)	167.81(6)	
N(1')-Ru(1)-Ru(1')	90.62(14)	N(5')-Ru(2)-Ru(2')	92.38(14)	
N(2)-Ru(1)-Ru(1')	88.04(15)	N(6)-Ru(2)-Ru(2')	86.38(15)	
N(3')-Ru(1)-Ru(1')	90.85(14)	N(7')-Ru(2)-Ru(2')	91.26(15)	
N(4)-Ru(1)-Ru(1')	87.83(16)	N(8)-Ru(2)-Ru(2')	87.27(15)	
N(1')-Ru(1)-N(3')	90.5(2)	N(5')-Ru(2)-N(7')	87.5(2)	
N(1')-Ru(1)-N(4)	88.9(2)	N(5')-Ru(2)-N(8)	90.1(3)	
N(2)-Ru(1)-N(4)	92.5(2)	N(6)-Ru(2)-N(8)	92.4(3)	
N(2)-Ru(1)-N(3')	88.0(2)	N(6)-Ru(2)-N(7')	89.9(3)	

Table S2. Selected structural parameters (length: Å, angle: °) of crystal structure of [1].

Wavelength	Oscillator		Observed absorption	
(nm)	Strength	Excitation characters	bands (nm)	
1301.8 0.0068	0.00(9	$S(\alpha)[\pi(amtfmp)] \rightarrow L(\alpha)[\delta^*(Ru_2)] (67\%)$	1350-1160	
	0.0068	H-1(β)[π(amtfmp)] → L(β)[δ*(Ru ₂)] (24%)		
		$\text{H-1}(\alpha)[\pi(\text{amtfmp})] \rightarrow L(\alpha)[\delta^*(\text{Ru}_2)] (58\%)$		
998.3	0.0067	H-2(β)[π(amtfmp)] → L(β)[δ*(Ru ₂)] (19%)		
		H-1(β)[π(amtfmp)] → L(β)[δ*(Ru ₂)] (11%)		
		H-4(β)[π(Ru ₂)] → L+1(β)[π*(Ru ₂)] (31%),		
		$H(\beta)[\delta(Ru_2)/\pi(amtfmp)] \rightarrow L(\beta)[\delta^*(Ru_2)] (19\%),$	9%),	
987.8	0.0123	$\text{H-3}(\beta)[\sigma(\text{Ru}_2)] \rightarrow \text{L+1}(\beta)[\pi^*(\text{Ru}_2)] \ (13\%),$		
		$\text{H-1}(\beta)[\pi(\text{amtfmp})] \rightarrow \text{L+1}(\beta)[\pi*(\text{Ru}_2)] (15\%)$		
		H-1(α)[π (amtfmp)] \rightarrow L(α)[δ *(Ru ₂)] (9%)		
923.7		$\text{H-3}(\alpha)[\sigma(\text{Ru}_2)] \rightarrow L(\alpha)[\delta^*(\text{Ru}_2)] \text{ (31\%)}$		
	0.0066	$\text{H-3}(\beta)[\sigma(\text{Ru}_2)] \rightarrow \text{L}(\beta)[\delta^*(\text{Ru}_2)] \ (41\%)$	880	
		$H(\beta)[\delta(Ru_2)/\pi(amtfmp)] \rightarrow L(\beta)[\delta^*(Ru_2)] (9\%)$		
	0.0139	$\text{H-3}(\beta)[\sigma(\text{Ru}_2)] \rightarrow \text{L+2}(\beta)[\pi^*(\text{Ru}_2)] (24\%)$		
		$\text{H-3}(\alpha)[\sigma(\text{Ru}_2)] \rightarrow L(\alpha)[\delta^*(\text{Ru}_2)] \ (23\%),$		
900.2		$S-1(\alpha)[d(Ru_2)/\pi(amtfmp)] \rightarrow L(\alpha)[\delta^*(Ru_2)] (12\%),$		
		H-5(β)[π(Ru ₂)] → L+2(β)[π*(Ru ₂)] (10%),		
		H-1(β)[π(amtfmp)] → L+1(β)[π*(Ru ₂)] (10%),		
		$H(\beta)[\delta(Ru_2)/\pi(amtfmp)] \rightarrow L(\beta)[\delta^*(Ru_2)] (12\%)$		
863.8	0.0023	$\text{H-3}(\beta)[\sigma(\text{Ru}_2)] \rightarrow \text{L+2}(\beta)[\pi^*(\text{Ru}_2)] (68\%)$		
		$\text{H-1}(\beta)[d(\text{Ru}_2)/\pi(\text{amtfmp})] \rightarrow \text{L+1}(\beta)[\pi^*(\text{Ru}_2)] (15\%)$		
(20.2	0.1402	H-2(β)[π (amtfmp)] \rightarrow L(β)[δ *(Ru ₂)] (70%),		
030.5		$S-1(\alpha)[d(Ru_2)/\pi(amtfmp)] \rightarrow L(\alpha)[\delta^*(Ru_2)] (20\%)$	672	
622.8	0.0079	H-2(β)[π(amtfmp)] → L+2(β)[π*(Ru ₂)] (70%)		

Table S3. Result of TDDFT calculation of [1]. Here, H, L, and S are HOMO, LUMO, and SOMO, respectively.

Bond lengths (Å)						
Ru(1)-Ru(1')	2.3066(16)	Ru(1)-Cl(1)	2.539(3)			
Ru(1)-N(1')	2.091(8)	C(1)-N(1)	1.375(12)			
Ru(1)-N(2)	2.025(8)	C(1)-N(2)	1.313(13)			
Ru(1)-N(3')	2.076(9)	C(7)-N(3)	1.372(14)			
Ru(1)-N(4)	2.031(8)	C(7)-N(4)	1.320(13)			
Bond angle (°)						
Ru(1')-Ru(1)-Cl(1)	171.38(8)	N(1')-Ru(1)-N(3')	90.8(3)			
N(1')-Ru(1)-Ru(1')	91.6(2)	N(1')-Ru(1)-N(4)	88.8(3)			
N(2)-Ru(1)-Ru(1')	87.6(2)	N(2)-Ru(1)-N(4)	90.6(3)			
N(3')-Ru(1)-Ru(1')	90.9(2)	N(2)-Ru(1)-N(3')	89.8(3)			
N(4)-Ru(1)-Ru(1')	88.5(2)					

Table S4. Selected structural parameters (length: Å, angle: °) of crystal structure of $[CoCp*_2][1]$.