Supporting information

Facile preparation of a polyoxometalate nanoparticle via solid-state chemical reaction for

aerobic oxidation desulfurization catalysis

Hang Yu, Wenwen Bu, Zijia Wang, Zhuoyue Zhao, Mehwish Jadoon and Xiaohong Wang*

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,

Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China, Tel.:

0086-431-85098531; Fax: 0086-431-85099759, E-mail address: wangxh665@nenu.edu.cn

Figure Caption

Table S1 The comparison between various POM catalysts under aerobic conditions.

Table S2 Results of elemental analysis of catalysts (theoretical calculated values in brackets).

Fig. S1 FTIR spectra of (NH₄)₅H₆PMo₄V₈O₄₀, AgPMo₄V₈ powder and AgPMo₄V₈ nanoparticle.

Fig. S2 The XRD patterns of (NH₄)₅H₆PMo₄V₈O₄₀ and AgPMo₄V₈ nanoparticle.

Fig. S3 The ³¹P MAS NMR spectra of $(NH_4)_5H_6PMo_4V_8O_{40}$, AgPMo₄V₈ powder and AgPMo₄V₈ nanoparticle.

Fig. S4 Cyclic voltammograms of AgPMo₄V₈ nanoparticle and AgPMo₄V₈ powder.

Fig. S5 The SEM image of AgPMo₄V₈ powder.

Fig. S6 XPS spectra of AgPMo₄ V_8 powder (a); spectra of V2p elements (b) and Ag3d elements (c) of AgPMo₄ V_8 powder.

Fig. S7 Cyclic voltammograms of AgPMo₄V₈ nanoparticle in nitrogen and oxygen atmosphere.

Fig. S8 DR-UV spectra of $AgPMo_4V_8$ nanoparticle in N_2 and in O_2 .

Fig. S9 The gasoline before the reaction (left) and after (right) treatment.

Fig. S10 UV spectrum of reaction mixture after separating catalyst.

Fig. S11 The dissolving test of AgPMo₄V₈ nanoparticle in AODS of DBT.

Fig. S12 The IR, XRD, SEM and XPS of AgPMo₄V₈ nanoparticle before and after the reaction.

Fig. S13 The precipitation of DBTO₂ after aerobic oxidative treatment.

Fig. S14 XPS spectra of V2p elements (a) and Ag3d elements (b) of $AgPMo_4V_8$ nanoparticle after reaction.

Materials

All chemicals and solvents used in this work were AR grade or better without further purification. For oxidation desulfurization, thiophene, DBT, BT and 4,6-DMDBT were prepared from the stock solution.

Physical measurements

IR spectra (4000-400 cm⁻¹) were recorded in KBr disks on a Nicolet Magna 560 IR spectrometer. UV-Vis spectra (200-800 nm) were recorded on a Cary 500 UV-Vis-NIR spectrophotometer. DR-UV-Vis spectra (200-800 nm) were obtained on a UV-2600 UV-Vis spectrophotometer (Shimadzu). The UV-visible spectra were recorded on T1810. XPS were recorded on an Escalab-MK II photoelectronic spectrometer with Al K α (1200 eV). Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDAX) spectroscopy were performed using a XL30 ESEM FEG at 25 kV (PhilipsXL-30). EDAX was performed to take into account of the P, V, Mo, C, N, Ag and O elements. Elemental analysis was carried out using a Leeman Plasma Spec (I) ICP-ES and a P-E 2400 CHN elemental analyzer. The XRD patterns of the samples were collected on a Japan Rigaku Dmax 2000 X-ray diffractometer with Cu K α radiation ($\lambda = 0.154178$ nm). The Cyclic voltammetry curve was performed using Shanghai Chenhua Instrument Co., Ltd. CHI600E electrochemical Workstation. The particle-size distribution was to use Zetasizer Nano ZSE test analysis. The BET surface area was carried out using American Mike ASAP2020M gas adsorption analyzer and AUTOSORB-IQ-MPXR gas adsorption analyzer. The ³¹P MAS NMR spectrum of (NH₄)₅H₆PMo₄V₈O₄₀, AgPMo₄V₈ powder and AgPMo₄V₈ nanoparticle were obtained using a Bruker AVANCE III spectrometer at 400 MHz. The identification and quantification of DBT, 4,6DMDBT, BT and thiophene in decalin were performed by Gas Chromatography (GC). The sulfur content in real diesel was tested by ICP-AES (ICAP 6300).

Catalyst and usage	Solvent	Substrate	Oxidant	Т (°С)	Reaction time (h)	Con. (%)
[C ₈ H ₁₇ N(CH ₃) ₃] ₃ H ₃ V ₁₀ O ₂₈ 40 mg	Decalin	DBT	O ₂	97	7	100
M ₂ (PcTN) ₂ /W-HZSM-5 (M = Fe, Co, Ni, Cu, Zn and Mn) 100 mg	-	T BT DBT	O ₂	60	3	> 85
[(C ₁₈ H ₃₇) ₂ N(CH ₃) ₂] ₃ Co(OH) ₆ Mo ₆ O ₁₈ 11 mg	Decalin	4,6-DMDBT DBT BT	O ₂	80	5 7 12	100 100 65
[C ₈ H ₁₇ N(CH ₃) ₃] ₃ HIV ₉ O ₂₈ 40 mg	Decalin	DBT 4,6-DMDBT	O ₂	90 90	6 7	100 100
[Cu ₂ (BTC) _{4/3} (H ₂ O) ₂] ₆ [H ₅ PV ₂ Mo ₁₀ O ₄₀] 44 mg	Decalin	DBT	O ₂	80	1.5	100
(NH ₄) ₅ H ₆ PV ₈ Mo ₄ O ₄₀ 20 mg	Decalin	DBT 4,6-DMDBT BT T	O ₂	100	6 6 11 12	100 100 100 97
IMo ₆ @iPAF-1 10 mg	Decalin	DBT 4,6-DMDBT BT T	O ₂	90	5 5 7 10	100 100 100 97.6
[PyPS] ₃ Co(OH) ₆ Mo ₆ O ₁₈ and Benzenesulfonic acid and polyethylene glycol 20 mg	Decalin	DBT 4,6-DMDBT BT	O ₂	60	4 6 8	100 100 100
Na ₃ Fe(OH) ₆ Mo ₆ O ₁₈ and Benzenesulfonic acid and polyethylene glycol 20 mg	Decalin	DBT 4,6-DMDBT BT	O ₂	60	3 3 6	99 99 95
Na ₃ H ₆ CrMo ₆ O ₂₄ and PEG (polyethylene glycol)/SSA (5- sulfosalicylic acid) 20 mg	Decalin	DBT 4,6-DMDBT	O ₂	60	2 3	100 100
(NH ₄) ₃ Co(OH) ₆ Mo ₆ O ₁₈ and p- toluenesulfonic acid 20 mg	Decalin	DBT	O ₂	70	0.5	100
Ag ₆ (NH ₄) ₅ PMo ₄ V ₈ O ₄₀ 20 mg	Decalin	DBT 4,6-DMDBT BT T	O ₂	100	3.5 2 6 8	100 100 100 97

 Table S1 The comparison between various POM catalysts under aerobic conditions.

Catalysts –	Elementary results (calculated values in parenthesis)/%							
	Ag	Ν	Н	Р	Mo	V		
Ag ₆ (NH ₄) ₅ PMo ₄ V ₈ O ₄₀	29.43	3.18	0.92	1.41	17.45	18.53		
powder	(29.02)	(3.58)	(0.88)	(1.32)	(17.33)	(18.55)		
Ag ₆ (NH ₄) ₅ PMo ₄ V ₈ O ₄₀	29.42	3.17	0.91	1.42	17.54	18.53		
nanoparticle	(29.02)	(3.58)	(0.88)	(1.32)	(17.33)	(18.55)		

Table S2 Results of elemental analysis of catalysts (theoretical calculated values in brackets).

Fig. S1 FTIR spectra of $(NH_4)_5H_6PMo_4V_8O_{40}$, AgPMo $_4V_8$ powder and AgPMo $_4V_8$ nanoparticle.

Fig. S2 The XRD patterns of $(\rm NH_4)_5\rm H_6\rm PMo_4\rm V_8\rm O_{40}$ and $\rm AgPMo_4\rm V_8$ nanoparticle.

Fig. S3 The ³¹P MAS NMR spectra of $(NH_4)_5H_6PMo_4V_8O_{40}$, AgPMo₄V₈ powder and AgPMo₄V₈ nanoparticle.

Fig. S4 Cyclic voltammograms of $AgPMo_4V_8$ nanoparticle and $AgPMo_4V_8$ powder.

Fig. S5 The SEM image of $AgPMo_4V_8$ powder.

Fig. S6 XPS spectra of AgPMo₄ V_8 powder (a); spectra of V2p elements (b) and Ag3d elements (c) of AgPMo₄ V_8 powder.

Fig. S7 Cyclic voltammograms of $AgPMo_4V_8$ nanoparticle in nitrogen and oxygen atmosphere.

Fig. S8 DR-UV spectra of $AgPMo_4V_8$ nanoparticle in N_2 and in O_2 .

Fig. S9 The gasoline before the reaction (left) and after (right) treatment.

Fig. S10 Uv spectrum of reaction mixture after separating catalyst.

Fig. S11 The dissolving test of $AgPMo_4V_8$ nanoparticle in AODS of DBT.

Fig. S12 The IR (a), XRD (b), XPS (c) and SEM (d) of AgPMo₄V₈ nanoparticle before and after the reaction.

Fig. S13 The precipitation of $DBTO_2$ after aerobic oxidative treatment.

Fig. S14 XPS spectra of V2p elements (a) and Ag3d elements (b) of $AgPMo_4V_8$ nanoparticle after reaction.