Supporting Information

Assembling γ -graphyne surrounding TiO₂ nanotube arrays: An efficient p-n heterojunction for boosting photoelectrochemical water splitting

Dong Qiu, Chengli He, Yuxuan Lu, Qiaodan Li, Yang Chen*, Xiaoli Cui*

Department of Materials Science, Fudan University, Shanghai 200433, P. R. China

*Corresponding author, E-mail: yangchen@fudan.edu.cn, xiaolicui@fudan.edu.cn

Figure S1 (a, b) TEM images of γ -graphyne. (c) EDS spectrum of 0.3GY/TiO₂.

Note: The detected carbon content in 0.3GY/TiO₂ is 6.07% (Fig. S1c), which contains non-negligible surface carbon contaminations. The content of carbon contaminations is estimated to be $3.5\pm1.6\%$ ^{1,2}. Considering γ -graphyne as an all-carbon material ignoring a few surficial oxygen-containing groups, the content of γ -graphyne in 0.3GY/TiO₂ is approximately 2.6 wt.%.

Figure S2 XRD patterns of TiO₂ and 0.3GY/TiO₂.

Figure S3 UV-vis absorbance spectra of TiO₂, GY and 0.3GY/TiO₂.

Figure S4 (a-d) Cyclic voltammetry curves at various scan rates and (e) corresponding *i* (cathodic current at V_{oc} in Figure 5c) –v (scan rate) curves. (f) Relative ECSA of TiO₂ and GY/TiO₂.

Photoanodes	Electrolyte	Light intensity (mW cm ⁻²)	Light source	Max. light absorption (nm)	Photo- current density (mA cm ⁻²)	Max. ABPE (%)	Refs.
	Alkaline						
B-doped TiO ₂	1 M KOH	200	35 W Xe lamp	443	1.20 at 1.62 V	0.12 at 1.62 V	³ /2019
S, W-codoped TiO ₂	1 M KOH	200	35 W Xe lamp	/	0.12 at 1.42 V	/	4/2020
TiO ₂ /Au/P- doped g-C ₃ N ₄	1 M KOH	100	300 W Xe lamp, AM 1.5G filter	530	2.03 at 1.23 V	0.68 at 0.70 V	⁵ /2021
TiO ₂ nanorod array/carbon quantum dots	1 M KOH	100	300 W Xe lamp, AM 1.5G filter	/	3.0 at 1.23 V	1.29 at 0.62 V	⁶ /2019
TiO ₂ nanorod array/carbon dots/g-C ₃ N ₄	1 M KOH	100	500 W Xe lamp, AM 1.5G filter	/	1.43 at 1.23 V	0.69 at 0.59 V	⁷ /2020
S-doped TiO ₂ nanotube array/g-C ₃ N ₄	1 M KOH	100	500 W Xe lamp, AM 1.5G filter	486	1.80* at 0.65 V	1.47* at 0.65 V	⁸ /2020
TiO ₂ nanotube/ graphene/CNT	1 М КОН	200	35 W Xe lamp	/	0.13* at 1.62 V	/	⁹ /2021
	Neutral						
TiO ₂ /g-CN	0.5 M Na ₂ SO ₄	100	150 W Xe lamp, AM 1.5G filter	435	0.91 at 1.23 V	0.33 at 0.64 V	¹⁰ /2020
TiO2/N-doped carbon dots	0.2 M Na ₂ SO ₄	100	SLB- 150B solar simulator, 420 nm filter	425	0.15 at 0.3 V	/	11/2020
TiO ₂ /g-C ₃ N ₄ / CNT	0.5 M Na ₂ SO ₄	100	150 W white lamp, 400 nm filter	428	2.94 at 1.23 V	/	¹² /2020

Table S1 The photocurrent response of representative ${\rm TiO}_2$ -based photoanodes.

TiO ₂ nanorod array/N-doped C/g-C ₃ N ₄	0.1 M Na ₂ SO ₄	100	300 W LED lamp, 420 nm filter	508	0.64 at 2.11 V	/	¹³ /2020
TiO ₂ nanotube array/carbon dots	0.1 M PBS**	/	300 W Xe lamp, 380 nm filter	/	0.05 at 1.03 V	/	¹⁴ /2019
TiO ₂ nanotube array/g-C ₃ N ₄	0.1 M Na ₂ SO ₄	/	300 W Xe lamp, 420 nm filter	800	0.72 at 1.23 V	/	¹⁵ /2018
TiO ₂ nanotube array/g-C ₃ N ₄	1 M Na ₂ SO ₄	100	300 W Xe lamp, AM 1.5G filter	450	0.14 at 1.61 V	/	¹⁶ /2020
TiO ₂ nanotube array/graphyne	0.5 M Na ₂ SO ₄	/	500 W Xe lamp	516	4.36 at 0.93 V	3.15 at 0.93 V	¹⁷ /2021
TiO ₂ nanotube array	0.5 M Na ₂ SO ₄	/	500 W Xe lamp	415	3.33* at 0.93 V	2.28 at 0.93 V	¹⁷ /2021
TiO ₂ nanotube array/graphyne	0.5 M Na ₂ SO ₄	100	300 W Xe lamp	458	0.73 at 1.23 V	0.35 at 0.55 V	This work

Note: All potentials are converted to versus reversible hydrogen electrode (vs. RHE).

*Estimated data according to the figures.

**PBS: phosphate buffered saline.

Samples	$R_{ m s}\left(\Omega ight)$	CPE (F)	CPE exponent	$R_{\rm ct}({ m k}\Omega)$
TiO ₂	8.0	3.2×10 ⁻⁵	0.73	10.1
0.1GY/TiO ₂	4.8	6.4×10 ⁻⁵	0.64	8.6
0.3GY/TiO ₂	4.8	9.4×10 ⁻⁵	0.63	6.1
0.5GY/TiO ₂	7.3	4.8×10 ⁻⁵	0.72	7.4

 Table S2 The fitting values of the equivalent circuit model in Figure 6c.

References

- E. Liu, X. Zhang, P. Xue, J. Fan and X. Hu, *Int. J. Hydrogen Energy*, 2020, 45, 9635-9647.
- 2. J. Qin, Z. Cao, H. Li and Z. Su, Surf. Coat. Technol., 2021, 405, 126661.
- M. M. Momeni, M. Taghinejad, Y. Ghayeb, R. Bagheri and Z. Song, *J. Iran. Chem. Soc.*, 2019, 16, 1839-1851.
- M. M. Momeni, M. Akbarnia and Y. Ghayeb, *Int. J. Hydrogen Energy*, 2020, 45, 33552-33562.
- 5. W. Kong, X. Zhang, Y. Guo, G. He, H. Liu, S. Zhang and B. Yang, *Electrochim. Acta*, 2021, **376**, 138036.
- Z. Liang, H. Hou, Z. Fang, F. Gao, L. Wang, D. Chen and W. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 19167-19175.
- 7. W. Kong, X. Zhang, B. Chang, Y. Guo, Y. Li, S. Zhang and B. Yang, *ChemElectroChem*, 2020, 7, 792-799.
- 8. S. Zhou, S. Liu, K. Su and K. Jia, J. Electroanal. Chem., 2020, 862, 114008.
- 9. H. Tavakol, M. M. Momeni and B. Mohammadi, *Environ. Prog. Sustainable Energy*, 2021, **40**, e13613.
- 10. L. Wang, R. Wang, L. Feng and Y. Liu, J. Am. Ceram. Soc., 2020, 103, 6272-6279.
- H. Luo, S. Dimitrov, M. Daboczi, J.-S. Kim, Q. Guo, Y. Fang, M.-A. Stoeckel, P. Samorì, O. Fenwick, A. B. Jorge Sobrido, X. Wang and M.-M. Titirici, *ACS Appl. Nano Mater.*, 2020, **3**, 3371-3381.
- D. Chaudhary, S. Kumar and N. Khare, *Int. J. Hydrogen Energy*, 2020, 45, 30091-30100.
- K. Huang, C. Li, X. Zhang, X. Meng, L. Wang, W. Wang and Z. Li, *Appl. Surf. Sci.*, 2020, **518**, 146219.
- C. He, L. Peng, L. Lv, Y. Cao, J. Tu, W. Huang and K. Zhang, *RSC Adv.*, 2019, 9, 15084-15091.
- L. Xiao, T. Liu, M. Zhang, Q. Li and J. Yang, ACS Sustain. Chem. Eng., 2018, 7, 2483-2491.
- 16. B. Pandey, S. Rani and S. C. Roy, J. Alloys Compd., 2020, 846, 155881.
- B. Gao, M. Sun, W. Ding, Z. Ding and W. Liu, *Appl. Catal. B Environ.*, 2021, 281, 119492.