Electronic Supplementary Information (ESI)

Novel Mn⁴⁺-activated layered oxide-fluoride perovskite KNaMoO₂F₄ red phosphor for wide gamut warm white lightemitting diodes backlight

Jiao Wu¹, Bo Wang^{1*}, Zhiyuan Liu¹, Kang Zhang¹, Xiaoshuang Li¹, Jianhui Huang², Pengfei Liu³ and Qingguang Zeng^{1*}

¹School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China

²College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou,

Jiangxi 341000, PR China

³Dongguan Neutron Science Center, Dongguan 523803, PR China

Corresponding Authors: wangbo312@mails.ucas.ac.cn; zengqg@mail.ustc.edu.cn

Characterizations

The phase composition of KNaMoO₂F₄:Mn⁴⁺ were measured by a powder diffractometer (X' Pert PRO, Cu K α , λ = 1.5418 Å). The photoluminescence (PL) spectra were recorded by Edinburgh Instruments (FLS 980) equipped with 450 W xenon lamps as the excitation source. The diffuse refection (DR) spectra of the samples were carried out on an UV-Vis-NIR spectrophotometer (Lambda 950, Perkin Elmer), using BaSO₄ as a standard reference. The morphologies of the samples were characterized using a scanning electron microscope (SEM, JSM-6700F). The electron paramagnetic resonance (EPR) spectrum of K₃TaOF₆:Mn⁴⁺ was obtained on a JES-FA 200 EPR spectrometer. High-resolution transmission electron microscopy (HRTEM) was recorded using a FEI Tecnai G2S-Twin. To investigate the electronic structures of pure KNaMoO₂F₄, calculations were performed by the plane-wave pseudopotential method^[1] implemented in the CASTEP program based on density functional theory (DFT).^[2] The kinetic energy cutoffs of 380 eV and Monkhorst-Pack *k*-point meshes with a density of (4 × 4 × 1) points in the Brillouin zone were chosen.^[3]

References

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C.
 Payne, *Zeitschrift Fur Kristallographie*, 2005, 22, 567-570.

2. D. Vanderbilt, Phys. Rev. B., 1990, 41, 7892-7895.

3. H. J. Monkhorst, J. D. Pack, Phys. Rev. B., 1976, 13, 5188-5192.

1. Tables and Figures

Table S1. Rietveld refinement of X-ray diffraction data of KNaMoO₂F₄:0.01Mn⁴⁺.

Table S2. Some bond lengths of KNaMoO₂F₄.

 Table S3 S4. Current- and temperature-dependent CCT, Ra and CIE chromaticity

 coordinates of as-fabricated proof-of-concept w-LED.

Fig. S1. XRD patterns of KNaMoO₂F₄:xMn⁴⁺.

Fig. S2. Rietveld refinements of the observed XRD patterns for the KNaMoO₂ F_4 :0.01Mn⁴⁺.

Fig. S3. (a) Calculated energy band structure of $KNaMoO_2F_4$ (b) The DR spectra of $KNaMoO_2F_4$: xMn^{4+} , the inset show the optical energy band based on the DR spectrum.

Fig. S4. (a) Room-temperature PL under 475 nm excitation (b) CIE chromaticity coordinate of the KNaMoO₂F₄:0.01Mn⁴⁺ phosphor (c) (d) Integrated emission intensity and fluorescence decay curve of the KNaMoO₂F₄:xMn⁴⁺ phosphor.

Fig. S5. (a) Tanabe-Sugano energy diagram for Mn^{4+} . (3*d*³) in an octahedral crystal field. (b) The relationship between the Mn^{4+} :²E energy level and the calculated nephelauxetic ratio in different β hosts.

Fig. S6. The PL spectrum of KNaMoO₂ F_4 :0.01Mn⁴⁺ at 4 K.

Formula	KNaMoO ₂ F ₄ :0.01Mn ⁴⁺
Crystal system	tetragonal
Space group	P4/nmm
Lattice parametes	
a=b (Å)	5.875
c (Å)	8.498
α=β=γ ()	90
Cell volume (Å ³)	293.376
R-factors	
R _{wp} (%)	11.69
$R_p(\%)$	8.45

Table S1 Rietveld refinement of X-ray diffraction data of $KNaMoO_2F_4:0.01Mn^{4+}$

Table S2 Some bond lengths of KNaMoO ₂ F
--

Table S2 Some bond lengths of $KNaMoO_2F_4$.									
Atom	Х	у	Z	Bond	Length(Å)	Bond	Length(Å)	Bond	Length(Å)
Na	-0.25	0.75	0.76	$Na-O_1$	2.3408	Na-O ₂	2.3360	Na-F	2.2766
Κ	0.25	0.75	0.50	K-O ₂	2.9327				
Mo	0.25	0.25	0.76	Mo-O ₁	1.6718	Mo-O ₂	2.1110	Mo-F	1.9704

			1	1	
mA	(lm/W)	Х	у	ССТ	Ra
19.95	84.32	0.3394	0.3387	4490	83.5
49.96	81.43	0.3374	0.335	4476	83.3
99.97	75.98	0.335	0.3306	4467	83
149.9	71.19	0.333	0.327	4454	82.9
200	67.25	0.3314	0.3243	4459	82.7
250	63.67	0.33	0.3219	4452	82.5
300	60.17	0.3284	0.3193	4452	82.4
349.9	57.16	0.3276	0.3179	4445	82.2
399.8	53.96	0.3261	0.3155	4445	82.2
449.9	51.1	0.3253	0.3141	4442	82
Temperature (°C)	(lm/W)	Х	у	ССТ	Ra
30	79.66	0.3349	0.3346	4493	83.3
40	78.54	0.332	0.3318	4490	83.4
50	77.25	0.3275	0.3269	4497	83.6
60	76.32	0.323	0.3213	4500	82.2
70	75.47	0.3194	0.3166	4507	81.9
80	74.08	0.314	0.3093	4511	81
90	72.87	0.3102	0.3042	4517	81
100	71.11	0.306	0.2981	4520	81.2

 Table S3 S4. Current- and temperature-dependent CCT, Ra and CIE chromaticity

coordinates of as-fabricated proof-of-concept w-LED.

Fig. S1. XRD patterns of KNaMoO₂F₄:xMn⁴⁺.

Fig. S2. Rietveld refinements of the observed XRD patterns for the KNaMoO₂F₄: $0.01Mn^{4+}$.

Fig. S3. (a) Calculated energy band structure of $KNaMoO_2F_4$ (b) The DR spectra of $KNaMoO_2F_4$: xMn^{4+} , the inset show the optical energy band based on the DR spectrum.

Fig. S4. (a) Room-temperature PL under 475 nm excitation (b) CIE chromaticity coordinate of the $KNaMoO_2F_4:0.01Mn^{4+}$ phosphor (c) (d) Integrated emission intensity and fluorescence decay curve of the $KNaMoO_2F_4:xMn^{4+}$ phosphor.

Fig. S5. (a) Tanabe-Sugano energy diagram for Mn^{4+} . (3*d*³) in an octahedral crystal field. (b) The relationship between the Mn^{4+} :²E energy level and the calculated nephelauxetic ratio in different β hosts.

Fig. S6. The PL spectrum of $KNaMoO_2F_4:0.01Mn^{4+}$ at 4 K.