SUPPORTING INFORMATION

Mechanochemical Synthesis and Structural Analysis of Trivalent Lanthanide and Uranium Diphenylphosphinodiboranates

Taylor V. Fetrow and Scott R. Daly*

Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States

Corresponding email: scott-daly@uiowa.edu

Table of Contents

Tabulated crystallographic data	pp. S2
Molecular structure of 3	pp. S3
¹ H and ¹¹ B NMR spectra	pp. S4 – S11
IR spectra	pp. S12 – S14

	1a	1b	2	3	4	4-THF	5
Formula	$C_{72}H_{96}B_{12}P_6U_2$	$C_{72}H_{96}B_{12}P_6U_2$	C ₇₂ H ₉₆ B ₁₂ Ce ₂ P ₆	$C_{72}H_{96}B_{12}P_6Pr_2$	$C_{72}H_{96}B_{12}Nd_2P_6$	$C_{48}H_{72}B_6NdO_3P_3$	$C_{12}H_{24}B_2I_2O_3PU$
FW (g mol ⁻¹)	1753.08	1753.08	1557.26	1558.84	1565.5	999.06	760.73
crystal system	triclinic	monoclinic	triclinic	monoclinic	monoclinic	triclinic	orthorhombic
space group	P-1	$P2_{1}/c$	P-1	$P2_{1}/c$	$P2_{1}/c$	P-1	Pbcn
a (Å)	11.4764(14)	18.8498(19)	11.4324(11)	37.239(4)	18.826(3)	11.5469(19)	9.5213(11)
b (Å)	12.8102(15)	9.6187(10)	12.7542(13)	9.6296(10)	9.6646(17)	14.970(3)	15.3494(17)
c (Å)	15.1334(18)	23.960(2)	28.438(3)	23.924(2)	23.904(4)	17.592(3)	15.8099(18)
α (deg)	104.030(5)	90	94.057(5)	90	90	97.233(5)	90
β (deg)	100.044(5)	109.622(5)	94.695(5)	107.636(5)	109.675(5)	96.868(5)	90
γ (deg)	107.371(5)	90	107.346(5)	90	90	111.125(5)	90
volume (Å) ³	1985.5(4)	4091.9(7)	3924.9(7)	8175.9(14)	4095.3(12)	2768.9(9)	2310.6(5)
Ζ	1	2	2	4	2	2	4
$\rho_{calc} (g \text{ cm}^{-3})$	1.466	1.423	1.318	1.266	1.27	1.198	2.187
μ (mm ⁻¹)	4.232	4.107	1.306	1.332	1.408	1.059	9.77
F (000)	862	1724	1588	3184	1596	1038	1372
θ range (deg)	2.521/26.407	2.396/26.446	2.8725/27.865	1.703/26.431	2.293/26.313	2.061/26.352	2.517/28.278
R (int)	0.0488	0.0801	0.0508	0.1012	0.1449	0.0877	0.0427
data/restraints/par ameters	8109/0/367	8365/625/399	18483/0/841	16695/42/712	8303/195/324	11206/24/493	2777/2/88
GOF	1.005	1.026	1.038	1.012	1.012	1.034	1.084
$\mathbf{R}_1 \left[I > 2\sigma(I) \right]^a$	0.0384	0.0474	0.0381	0.0575	0.0679	0.0658	0.0548
wR2 (all data)b	0.0787	0.1143	0.0704	0.124	0.1726	0.1634	0.1727
Largest Peak/Hole (e · Å- ³)	1.916/-1.872	1.662/-1.989	2.151/-2.047	2.054/-1.241	0.775/-1.618	2.474/-1.268	4.078/-3.495
Temp (K)	150(2)	150(2)	100(2)	150(2)	150(2)	150(2)	150(2)

Table S1. Single-crystal X-ray diffraction data for $U(H_3BPPh_2BH_3)_3$ (1a) and (1b), $Ce(H_3BPPh_2BH_3)_3$ (2), $Pr(H_3BPPh_2BH_3)_3$ (3), $Nd(H_3BPPh_2BH_3)_3$ (4), $Nd(H_3BPPh_2BH_3)_3$ (THF), $U(H_3BPH_2BH_3)I_2$ (THF)₃ (5).

^aR₁ = $\Sigma |F_o| - |F_c| | / | \Sigma |F_o|$ for reflections with $F_o^2 > 2\sigma(F_o^2)$.

 ${}^{b}wR_{2} = [\Sigma w (F_{o}{}^{2} - F_{c}{}^{2})^{2} / \Sigma (F_{o}{}^{2})^{2}]^{1/2}$ for all reflections.

Figure S1. Molecular structure of $Pr(H_3BPPh_2BH_3)_3$ (**3**) with thermal ellipsoids shown at 35% probability. All phenyl hydrogen atoms were omitted from the figure.

NMR Spectra

Figure S2. a) ¹¹B NMR spectra of crystalline Nd(H₃BPPh₂BH₃)₃ (4) in THF. b) ¹¹B NMR spectrum of NdI₃ and three equiv. of K(H₃BPPh₂BH₃) stirred in 20 mL of THF for 24 h. The \dagger is assigned to a small amount of hydrolysis.

Figure S3. ¹H NMR spectrum of the phenyl resonances for $U(H_3BPPh_2BH_3)_3$ (1a) and (1b). The * symbol indicates resonances assigned to residual silicon grease, pentane, and Et₂O.

Figure S4. ¹H NMR spectrum of the BH₃ resonances for U(H₃BPPh₂BH₃)₃(1a) and (1b).

Figure S5. ¹¹B NMR spectrum of the BH₃ resonances for $U(H_3BPPh_2BH_3)_3$ (**1a**) and (**1b**). The * symbol indicates a resonance assigned to borosilicate within the instrument.

Figure S6. ¹H NMR spectrum of the phenyl resonances for $Ce(H_3BPPh_2BH_3)_3$ (2). The * symbol indicates resonances assigned to residual silicon grease, pentane, and Et_2O .

Figure S7. ¹H NMR spectrum of the BH₃ resonances for Ce(H₃BPPh₂BH₃)₃ (2).

Figure S8. ¹¹B NMR spectrum of the BH₃ resonances for Ce(H₃BPPh₂BH₃)₃ (**2**). The large broad feature extending from δ 80 to -50 is assigned to borosilicate inside of the instrument.

Figure S9. ¹H NMR spectrum of the phenyl resonances for $Pr(H_3BPPh_2BH_3)_3$ (3).

Figure S10. ¹H NMR spectrum of the BH₃ resonances for Pr(H₃BPPh₂BH₃)₃ (3).

Figure S11. ¹¹B NMR spectrum of the BH₃ resonances for $Pr(H_3BPPh_2BH_3)_3$ (**3**). The * symbol indicates a resonance assigned to borosilicate within the instrument.

Figure S12. ¹H NMR spectrum of the phenyl resonances for $Nd(H_3BPPh_2BH_3)_3$ (4). The * symbol indicates resonances assigned to residual silicon grease and pentane.

Figure S13. ¹H NMR spectrum of the BH₃ resonances for Nd(H₃BPPh₂BH₃)₃ (4).

Figure S14. ¹¹B NMR spectrum of the BH₃ resonances for $Nd(H_3BPPh_2BH_3)_3$ (4). The * symbol indicates a resonance assigned to borosilicate within the instrument.

Figure S15. ¹H NMR spectrum of the phenyl and THF resonances for $Nd(H_3BPPh_2BH_3)_3(THF)_3$ (**4-THF**). The * symbol indicates resonances assigned to residual Et₂O and pentane.

Figure S16. ¹H NMR spectrum of the BH₃ resonances for Nd(H₃BPPh₂BH₃)₃(THF)₃ (4-THF).

Figure S17. ¹¹B NMR spectrum of the BH₃ resonances for $Nd(H_3BPPh_2BH_3)_3(THF)_3$ (**4-THF**). The * symbol indicates a resonance assigned to borosilicate within the instrument.

Figure S18. FTIR spectrum (ATR) for U(H₃BPPh₂BH₃)₃ for 1a and 1b.

Figure S19. FTIR spectrum (ATR) for Ce(H₃BPPh₂BH₃)₃ (2).

Figure S20. FTIR spectrum (ATR) for Pr(H₃BPPh₂BH₃)₃ (3).

Figure S21. FTIR spectrum (ATR) for Nd(H₃BPPh₂BH₃)₃ (4).

Figure S22. FTIR spectrum (ATR) for Nd(H₃BPPh₂BH₃)₃(THF)₃ (4-THF).

Figure S23. FTIR spectrum (ATR) for $U(H_3BPH_2BH_3)_3I_2(THF)_3$ (5).