Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Five-Coordinate Iridium(III) Complex with ΔΛ Chirality

Kazuyoshi Takimoto,† Yutaka Watanabe,† Jun Yoshida,‡ and Hisako Sato†*

Table of contents

- 1. NMR and MS spectra of [Ir(2-Bubzq)₂Cl]
- 2. X-ray analysis data of [Ir(2-Bubzq)₂Cl]
- 3. Optical resolution of [Ir(2-Bubzq)₂Cl]
- 4. Thermal stability of [Ir(2-Bubzq)₂Cl]
- 5. Experimental and calculated VCD and IR data of [Ir(2-Bubzq)₂Cl]
- 6. X-ray analysis of [Ir(2-Bubzq)₂(EtOH)Cl]
- 7. Solvent effects of [Ir(2-Bubzq)₂Cl]
- 8. Reaction with carbon monoxide
- 9. Reaction with 1,10-phenanthroline
- 10. References

[†]Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan

[‡] Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

^{*}Corresponding authors: Hisako Sato

1. NMR and MS spectra of [Ir(2-Bubzq)₂Cl]

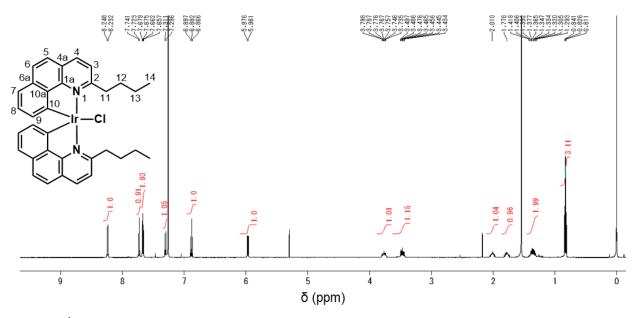


Figure S1. ¹H NMR spectrum of [Ir(2-Bubzq)₂Cl] in CDCl₃ (500 MHz, 27 °C).

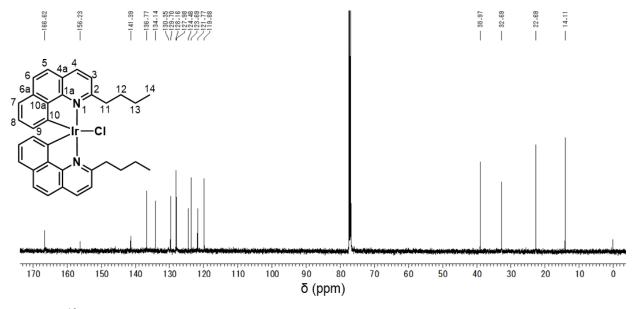
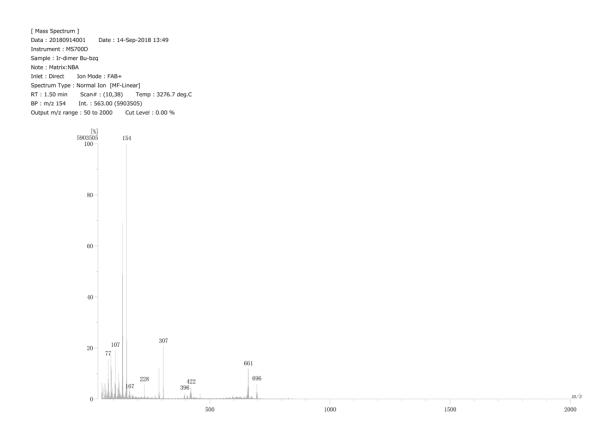
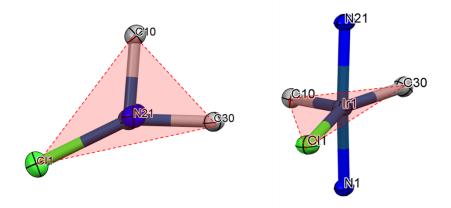



Figure S2. ¹³C NMR spectrum [Ir(2-Bubzq)₂Cl] in CDCl₃ (126 MHz, 27 °C).


Figure S3. LRMS spectrum of [Ir(2-Bubzq)₂Cl] (FAB⁺, 3-nitrobenzyl alcohol (3-NBA) as a matrix).

2. X-ray analysis data


2.1 X-Ray analysis of [Ir(2-Bubzq)₂Cl]

Table S1. Selected bond distances (Å) and angles (deg) of [Ir(2-Bubzq)₂C1].

Distance (Å)			
Ir1 – C10	1.975 (4)	Ir1 – N1	2.057 (3)
Ir1 – C30	2.001 (4)	Ir1 – N2	2.112 (3)
<u>Ir1 – Cl1</u>	2.4341 (10)		
Angle (deg)			
C30—Ir1—N21	81.26 (16)	N21—Ir1—Cl1	102.27 (10)
C30—Ir1—N1	91.07 (15)	N1—Ir1—Cl1	86.68 (9)
C10—Ir1—N21	92.65 (15)	C10—Ir1—Cl1	119.21 (12)
C10—Ir1—N1	82.37 (15)	C30—Ir1—C11	152.28 (11)
C10—Ir1—C30	87.75 (16)		

Figure S4. The distorted square pyramidal structure is deduced from the X-ray analysis: (left) the top view and (right) the side view. The space between C30 and C11 looks like a vacant coordination site.

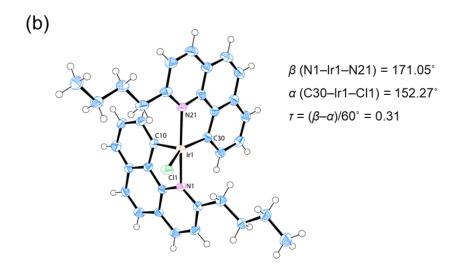
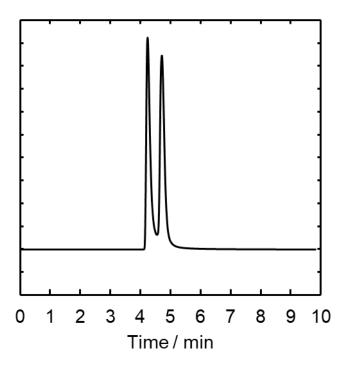

Figure S5. Crystal structures of [Ir(2-Bubzq)₂Cl] viewed along (A) the a axis, (B) the b axis, and (C) the c axis, respectively.

Table S2. Structure information of [Ir(2-Bubzq)₂Cl].

Compound	[Ir(2-Bubzq) ₂ C1]
Recrystallization solvent	Dichloromethane
Formula	C ₃₄ H ₃₂ IrN ₂ Cl
FW	696.29
Crystal system	Triclinic
Space group	P-1
a [Å]	9.4178 (6)
<i>b</i> [Å]	11.1107 (8)
c [Å]	14.0254 (6)
$a [\deg]$	79.931 (4)
eta [deg]	79.001 (4)
γ [deg]	68.307 (6)
V[Å ³]	1329.82 (15)
Z	2
$\mu~[ext{mm}^{-1}]$	10.84
Crystal size	$0.16 \times 0.10 \times 0.06$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.074, 1.07
wR_2	0.074 (all data)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13583, 5254, 4941
No. of parameters	345
CCDC No.	1974083


2.2 The τ value of [Ir(2-Bubzq)₂Cl]

To distinguish whether the geometry of the coordination center is SP or TBP, τ value is defined by Addison *et al.* which is the parameters as $(\beta-\alpha)/60$, where β and α ($\beta > \alpha$) are the two greatest bond angles of the coordination center. The τ is zero for an ideal SP geometry, while it is unity for an ideal TBP geometry. As the τ of [Ir(2-Bubzq)₂Cl] is 0.31, the iridium ion is in between SP and TBP geometry. The previously reported bis-chelated five-coordinate iridium complex has $\tau = 0.65$, which means that these structures are classified in between SP and TBP like [Ir(2-Bubzq)₂Cl].

Figure S6. (a) Schematic diagram of the extreme values of τ in a square pyramidal and trigonal bipyramidal geometry. The τ value defined as $(\beta-\alpha)/60$, where β and α ($\beta > \alpha$) are the two greatest bond angles of the coordination center. (b) The molecular structure of [Ir(2-Bubzq)₂Cl] with atom numbering and the τ value.

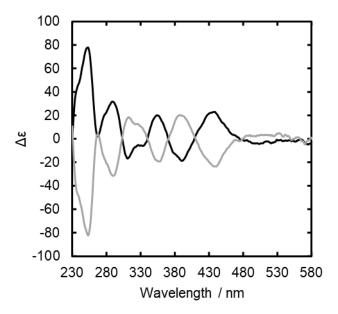

3. Optical resolution of [Ir(2-Bubzq)₂Cl]

Figure S7. The HPLC chromatogram of [Ir(2-Bubzq)₂Cl] was eluted on a 4 mm (i.d.) \times 25 cm chiral column (IG Daicel, Japan) at a flow rate of 0.75 ml/min. The eluent was dichloromethane. The monitoring wavelength was 511 nm. The vertical axis is the intensity in terms of arbitrary unit.

4. Thermal stability of [Ir(2-Bubzq)₂Cl]

The thermal stability of the enantiomers of [Ir(2-Bubzq)₂Cl] was examined by heating the toluene solution (3.2 mM) at 70 °C for 8 h. No racemization was confirmed by the measurement of ECD and HPLC.

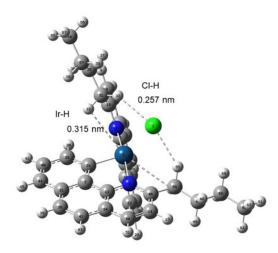
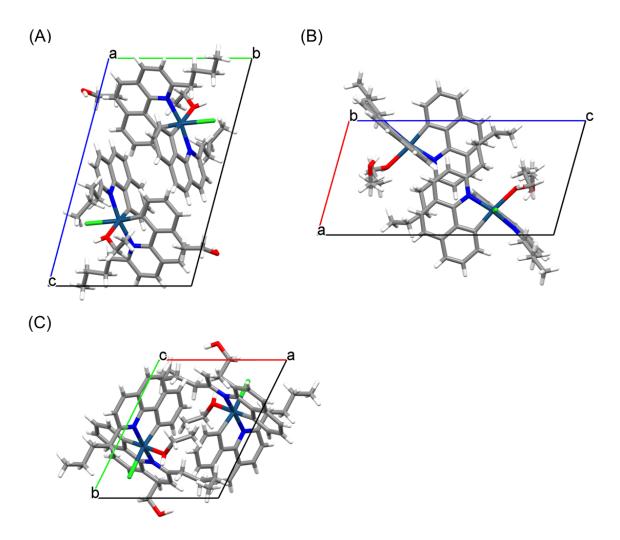


Figure S8. The ECD spectra in dichloromethane of [Ir(2-Bubzq)₂Cl] obtained by the heating experiment. The black and grey curves indicate the fractions collected at 1st and 2nd elution peaks, respectively.

5. Experimental and calculated VCD and IR data of [Ir(2-Bubzq)₂Cl]


Table S3. Assignment of VCD and IR peaks of enantiopure [Ir(2-Bubzq)₂Cl] in CHCl₃

NO	Exp. First peak (optical	Calc. C_2	assignment
	resolution) / cm ⁻¹	symmetry Λ /	_
		cm ⁻¹	
1	1628 (-)	1636 (-) B	bzq (C-C) stretching
2	1594 (+)	1611 (+) A	bzq(C-C-C) stretching
3	1565/1554 (-)	1587 (-) B	bzq(C-C-C) stretching
4	1509 (+)	1519 (+) A	bzq(C-C-C) stretching, C-H (bzq)
5	1502 (-)	1515 (-) B	bzq(C-C-C) stretching, C-H (bzq)
6	1431 (+)	1434 (+) A	bzq(C-C-C) stretching, C-H (bzq), butyl (C-
			C) bending
7	1382 (+)	1391 (+) A	butyl (CH ₃) bending, butyl (C-C-C)
			stretching butyl (CH ₂) bending
8	1375 (-)	1389 (-) B	butyl (CH ₃) bending, butyl (C-C-C)
			stretching butyl (CH ₂) bending (in-phase)
9	1303 (+)	1337 (+) B	butyl (CH ₂) bending (out of phase), bzq(C-
			C-C) stretching
10	1214 (+)	1226 (+) B	bzq and butyl CH bending
11	1197/1190 (-/+)	1194 (+) B	bzq C-H bending
12	1140 (-)	1152 (-) B	bzq C-H bending
13	1117 (+)	1118 (+) A	bzq CH bending
14	1107 (-)	1112 (-) B	butyl CH bending
15	1099(+)	1106 (+) A	butyl C-C-C bending
16	1036 (-)	1038 (-) B	butyl C-C -C bending, bzq C-C bending

Figure S9. The optimized structure of Λ -[Ir(2-Bubzq)₂Cl] in CHCl₃ medium. The complex was assumed to take C_2 symmetry.

6. X-ray analysis of [Ir(2-Bubzq)2(EtOH)Cl]

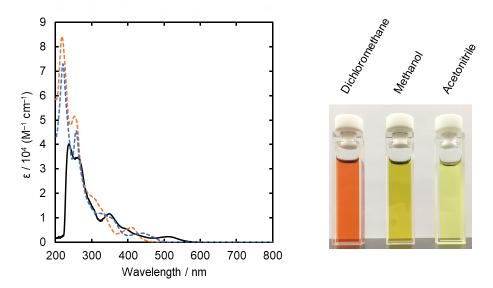
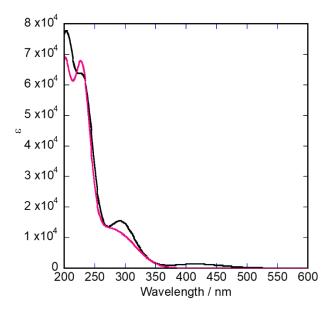

Figure S10. Crystal structures of [Ir(2-Bubzq)₂(EtOH)Cl] viewed along (A) the a axis, (B) the b axis, and (C) the c axis, respectively.

Table S4. Structure information of [Ir(2-Bubzq) $_2$ (EtOH)Cl].


Compound	[Ir(2-Bubzq) ₂ (EtOH)Cl]
Recrystallization solvent	Ethanol
Formula	C ₃₆ H ₃₈ IrN ₂ OCl, EtOH
FW	788.40
Crystal system	Triclinic
Space group	P-1
a [Å]	9.3674 (4)
$b [ext{Å}]$	11.2876 (5)
c [Å]	17.3082 (6)
$\alpha [\deg]$	99.175 (3)
eta [deg]	100.384 (3)
γ [deg]	113.623 (4)
V[Å ³]	1593.84 (12)
Z	2
$\mu~[ext{mm}^{-1}]$	4.310
Crystal size	$0.04 \times 0.04 \times 0.02$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.072, 1.05
wR_2	0.072 (all data)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14272, 7672, 6817
No. of parameters	408
CCDC No.	2085213

7. Solvent effects of [Ir(2-Bubzq)2Cl]

7.1 Experimental and calculated UV-vis spectra of [Ir(2-Bubzq)2Cl]

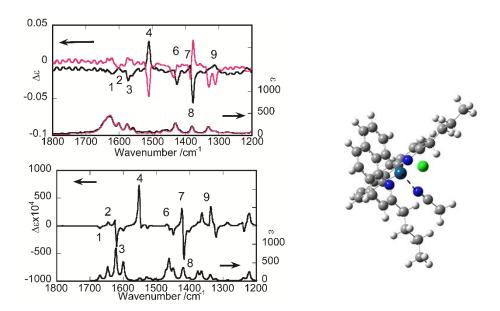


Figure S11. The experimental UV-vis spectra of [Ir(2-Bubzq)₂Cl] in dichloromethane (5.9×10^{-5} M), methanol (4.4×10^{-5} M), and acetonitrile (5.0×10^{-5} M). The black solid, blue dotted and orange dotted lines indicated dichloromethane, methanol, and acetonitrile, respectively.

Figure S12. Calculated UV-vis spectra by TDDFT using the LC-BLYP functional. The black and red show dichloromethane and ethanol solvent, respectively. At the spectral edge of 410 nm, the HOMO-LUMO transition is assigned in CH₂Cl₂ solvent. The calculated UV-vis spectrum in ethanol is calculated as a six-coordination with an ethanol molecule.

7.2 The experimental and calculated VCD and IR spectra of [Ir(2-Bubzq)2Cl]

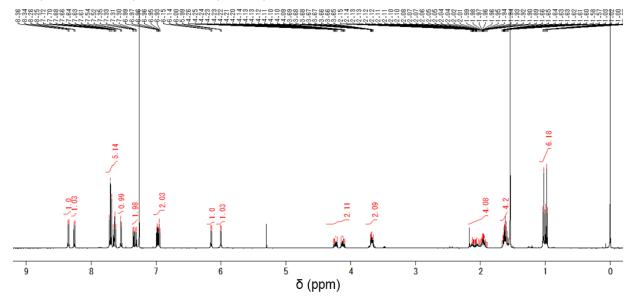


Figure S13. (Upper left) The observed IR (lower) and VCD (upper) spectra of enantiopure [Ir(2-Bubzq)₂Cl] in CD₃CN. The black and red curves indicate the optically resolved 1st and 2nd elution peaks, respectively. The baseline correction was performed for the VCD and IR spectra by subtracting the solvent contribution. (Lower left) the DFT calculation of IR and VCD spectra for an enantiopure six-coordinate Ir(III) complex, Λ -[Ir(2-Bubzq)₂(CH₃CN)Cl], in CH₃CN medium. The scale factor was not included in the calculation. The numbers indicate assignments in VCD bands. (Right) The optimized structure of Λ -[Ir(2-Bubzq)₂(CH₃CN)Cl].

8. Reaction with carbon monoxide

8.1 Reaction of [Ir(2-Bubzq)₂Cl] with carbon monoxide

A solution of [Ir(2-Bubzq)₂Cl] (29.0 μmol) in CH₂Cl₂ was bubbled by carbon monoxide (CO) for 1 minute. After removal of volatile materials by evaporation under reduced pressure, the residue was washed by n-hexane. [Ir(2-Bubzq)₂(CO)Cl] was obtained as a white solid (28.8 μmol, Yield 99%). 1 H NMR (500 MHz; CDCl₃) 0.98 (3H, t, J = 7.5 Hz), 1.02 (3H, t, J = 7.5 Hz), 1.62 (4H, m), 1.96 (2H, m), 2.06 (1H, m), 2.12 (1H, m), 3.67 (2H, m), 4.12 (1H, m), 4.24 (1H, m), 6.00 (1H, d, J = 7.5 Hz), 6.15 (1H, d, J = 7.5 Hz), 6.95 (1H, t, J = 7.5 Hz), 6.98 (1H, t, J = 7.5 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.35 (1H, d, J = 8.5 Hz), 7.54 (1H, d, J = 8.5 Hz), 7.63 (1H, d, J = 8.5 Hz), 7.65 (1H, d, J = 8.5 Hz), 7.69 (2H, d, J = 8.5 Hz), 7.71 (1H, d, J = 8.5 Hz), 8.26 (1H, d, J = 8.5 Hz), 8.35 (1H, d, J = 8.5 Hz); 13 C NMR (126 Hz, CD₂Cl₂) 14.16, 14.30, 22.62, 22.70, 32.37, 33.81, 40.32, 44.19, 121.38, 122.36, 122.44, 124.11, 124.15, 124.54, 126.20, 126.52, 127.74, 127.91, 128.70, 129.08, 129.11, 129.15, 134.54, 134.66, 135.92, 138.69, 138.73, 141.80, 141.99, 157.94, 158.40, 161.98, 163.62, 170.65, 176.82; LRMS(FAB⁺, 3-NBA), m/z = 696 (M–CO).

Figure S14. ¹H NMR spectrum of [Ir(2-Bubzq)₂(CO)Cl] in CDCl₃ (500 MHz, 27 °C).

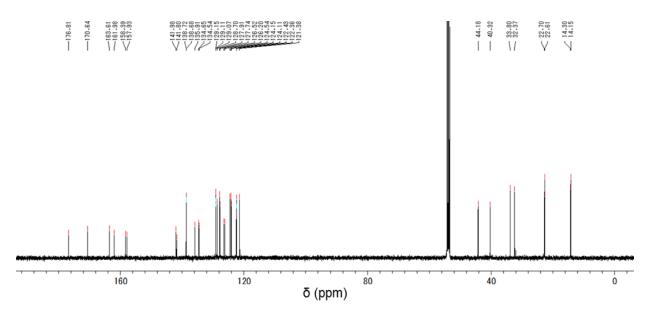
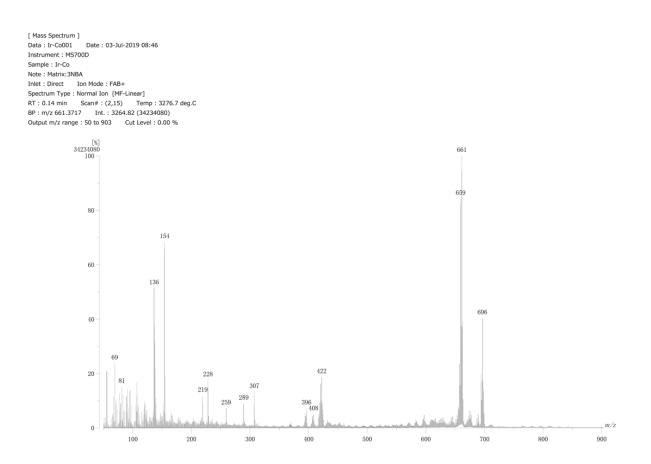



Figure S15. ¹³C NMR spectrum of [Ir(2-Bubzq)₂(CO)Cl] in CD₂Cl₂ (126 MHz, 27 °C).

Figure S16. LRMS spectrum of [Ir(2-Bubzq)₂(CO)Cl] (FAB⁺, 3-nitrobenzyl alcohol (3-NBA) as a matrix).

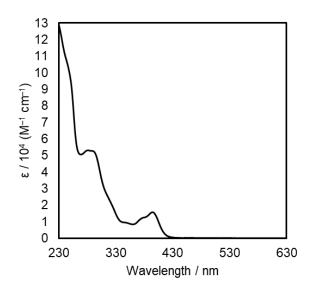
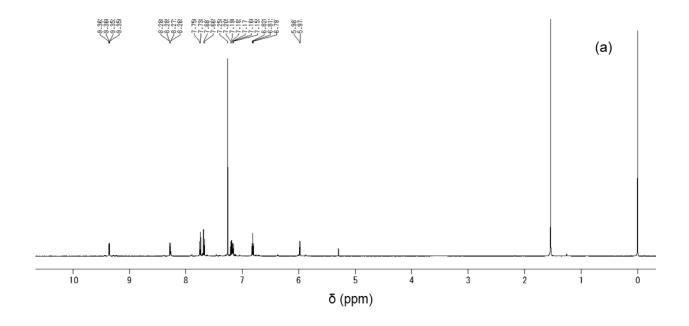
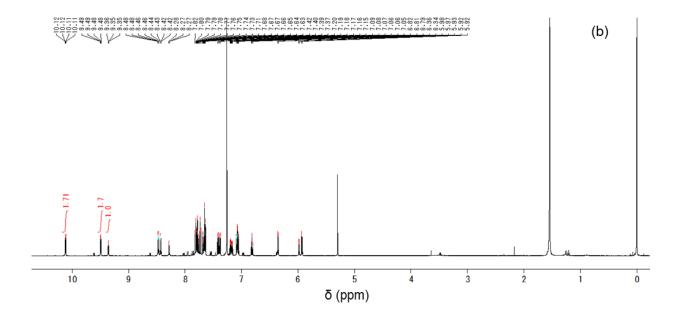
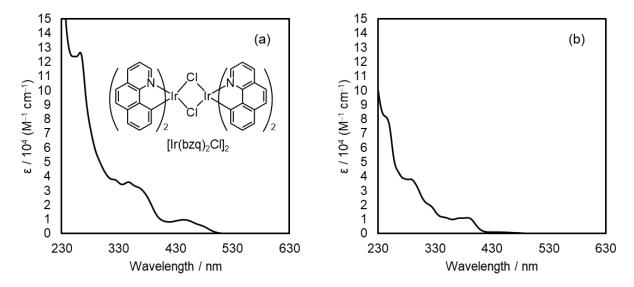




Figure S17. UV-vis spectrum of [Ir(2-Bubzq)₂(CO)Cl] in CH₂Cl₂.


8.2 Reaction of [Ir(bzq)2Cl]2 with carbon monoxide

A solution of [Ir(bzq)₂Cl]₂ in CH₂Cl₂ (7.2 μmol) was bubbled by CO for 1 hour. After removal of volatile materials by evaporation under reduced pressure, the residue was analysed by 1 H NMR. The integrated ratio of the 1 H NMR spectrum showed that 60% of [Ir(bzq)₂Cl]₂ reacted with CO and afforded a new complex. After CO bubbling another 4h, the reaction was completed and [Ir(bzq)₂(CO)Cl] was obtained as a white solid (13.7 μmol, Yield 95%). These results are in agreement with the previous report that [Ir(ppy)₂Cl]₂ (ppyH = 2-phenylpyridine), an analog of [Ir(bzq)₂Cl]₂, reacts with CO 5 h to give the carbonyl complex [Ir(ppy)₂(CO)Cl] quantitatively. The NMR (400 MHz; CDCl₃) 5.93 (1H, d, J = 7.5 Hz), 6.35 (1H, d, J = 7.5 Hz), 7.06 (1H, dd, J = 5.0, 7.5 Hz), 7.08 (1H, dd, J = 5.0, 7.5 Hz), 7.38 (1H, d, J = 8.0 Hz), 7.41 (1H, d, J = 8.0 Hz), 7.64 (1H, d, J = 5.0 Hz), 7.66 (1H, d, J = 5.0 Hz), 7.72 (1H, d, J = 9.0 Hz), 7.77 (1H, d, J = 8.0 Hz), 7.78 (1H, d, J = 8.0 Hz), 7.81 (1H, d, J = 9.0 Hz), 8.43 (1H, d, J = 8.0 Hz), 8.47 (1H, d, J = 8.0 Hz), 9.49 (1H, d, J = 5.0 Hz), 10.12 (1H, d, J = 5.0 Hz); I C NMR (126 Hz, CDCl₃) 121.29, 121.96, 122.19, 122.79, 123.26, 123.69, 127.49, 127.66, 128.16, 128.45, 129.70, 129.94 (2C), 130.60, 134.22, 134.41, 136.87, 137.31, 137.54, 140.26, 140.84, 150.65, 151.75, 157.13, 157.29, 162.00, 172.94; LRMS(FAB⁺, 3-NBA), m/z = 613 (M+1).

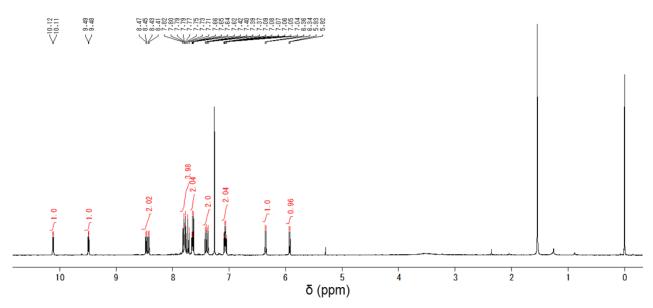


Figure S18. ¹H NMR spectra of (a) [Ir(bzq)₂Cl]₂ and (b) the residue of the reaction between [Ir(bzq)₂Cl]₂ and carbon monoxide in CDCl₃ (500 MHz, 27 °C).

Figure S19. UV-vis spectra of (a) $[Ir(bzq)_2Cl]_2$ and (b) the residue of the reaction between $[Ir(bzq)_2Cl]_2$ and carbon monoxide in CH_2Cl_2 .

Figure S20. ¹H NMR spectrum of [Ir(bzq)₂(CO)Cl] in CDCl₃ (400 MHz, 27 °C).

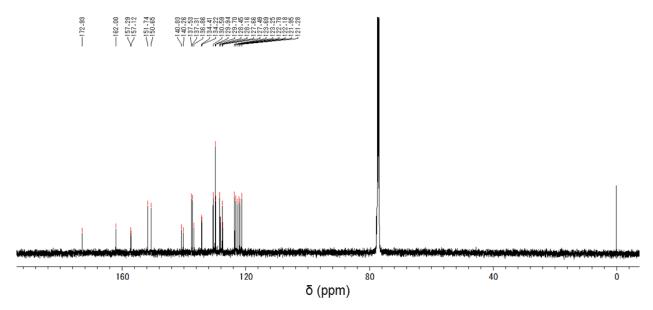


Figure S21. ¹³C NMR spectrum of [Ir(bzq)₂(CO)Cl] in CDCl₃ (126 MHz, 27 °C).

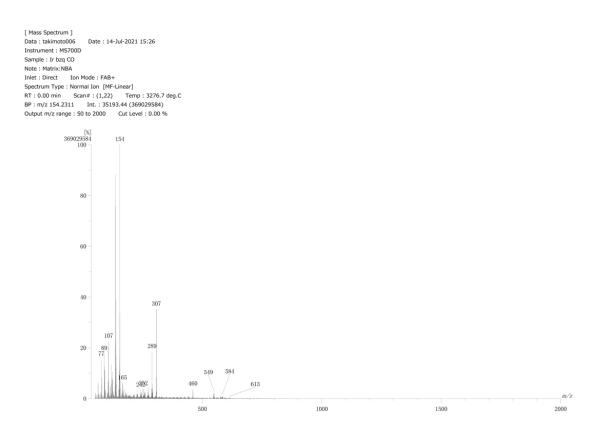
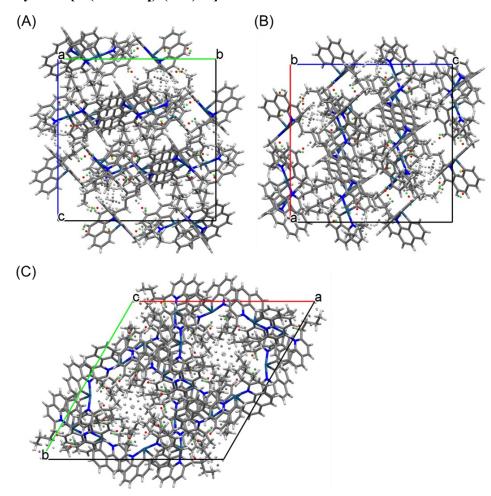



Figure S22. LRMS spectrum of [Ir(bzq)₂(CO)Cl] (FAB⁺, 3-nitrobenzyl alcohol (3-NBA) as a matrix).

8.3 X-Ray analysis of [Ir(2-Bubzq)2(CO)Cl]

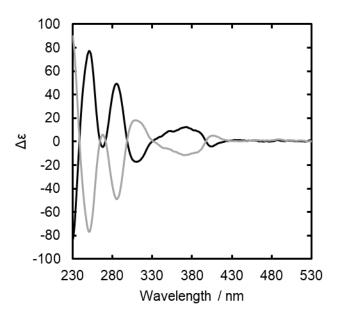


Figure S23. Crystal structures of $[Ir(2-Bubzq)_2(CO)C1]$ viewed along (A) the a axis, (B) the b axis, and (C) the c axis, respectively.

Table S5. Structure information of [Ir(2-Bubzq)₂(CO)Cl].

Compound	[Ir(2-Bubzq) ₂ (CO)Cl]
Recrystallization solvent	Dichloromethane/n-Hexane
Formula	C ₃₅ H ₃₂ IrN ₂ OCl
FW	724.27
Crystal system	Trigonal
Space group	R-3
a [Å]	26.0164 (6)
<i>b</i> [Å]	26.0164 (6)
c [Å]	23.1213 (4)
$a [\deg]$	90
β [deg]	90
γ [deg]	120
V[Å ³]	13553.1 (7)
Z	18
$\mu [ext{mm}^{-1}]$	4.552
Crystal size	$0.07\times0.07\times0.06$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.108, 1.07
wR_2	0.108 (all data)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29087, 7270, 6174
No. of parameters	417
CCDC No.	2071813

8.4 ECD spectra of [Ir(2-Bubzq)2(CO)Cl]

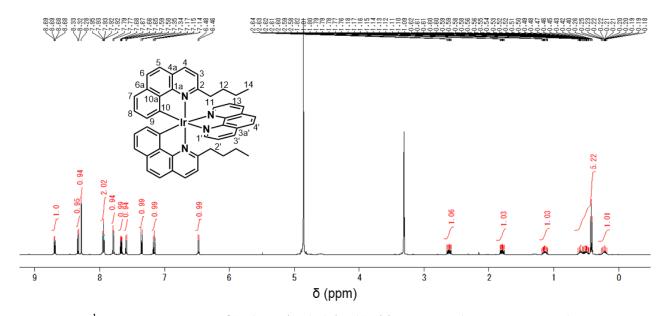


Figure S24. The ECD spectra of $[Ir(2-Bubzq)_2(CO)Cl]$ in dichloromethane. The solid and grey lines correspond to the CO adducts of Λ - and Δ - $[Ir(2-Bubzq)_2Cl]$, respectively.

9. Reaction with 1,10-phenanthroline

9.1 Reaction of racemic [Ir(2-Bubzq)2Cl] with 1,10-phenanthroline

[Ir(2-Bubzq)₂Cl] (15.9 μmol) and 1,10-phenathroline (phen) (17.2 μmol) were dissolved in 2 mL of dichloromethane. After removal of volatile materials by evaporation under reduced pressure, the residue was washed by *n*-hexane to remove the unreacted phen. The product was obtained as a yellow solid (15.9 μmol, Yield 100%). 1 H NMR (500 MHz; CD₃OD) 0.22 (2H, m, H13a), 0.42 (6H, t, J = 7.5 Hz, H14), 0.50 (2H, m, H12a), 0.59 (2H, m, H13b), 1.13 (2H, m, H12b), 1.80 (2H, m, H11a), 2.61 (2H, m, H11b), 6.48 (2H, d, J = 7.5 Hz, H9), 7.16 (2H, t, J = 7.5 Hz, H8), 7.35 (2H, d, J = 8.5 Hz, H3), 7.59 (2H, d, J = 7.5 Hz, H7), 7.67 (2H, dd, J = 5.5, 8.5 Hz, H2'), 7.79 (2H, d, J = 9.0 Hz, H5), 7.93 (2H, dd, J = 1.5, 5.5 Hz, H1'), 7.95 (2H, d, J = 9.0 Hz, H6), 8.28 (2H, s, H4'), 8.33 (2H, d, J = 8.5 Hz, H4), 8.69 (2H, d, J = 1.5, 8.5 Hz, H3'); 13 C NMR (126 Hz, CD₃OD) 13.86, 23.26, 32.90, 39.17, 121.98, 122.64, 125.34, 127.41, 127.80, 129.50, 130.00, 130.05, 131.45, 132.75, 136.41, 139.61, 139.67, 143.75, 145.10, 148.80, 150.86, 159.02, 167.09; LRMS(FAB⁺, 3-NBA), m/z = 841 (M–Cl).

Figure S25. ¹H NMR spectrum of [Ir(2-Bubzq)₂(phen)]Cl in CD₃OD (500 MHz, 27 °C).

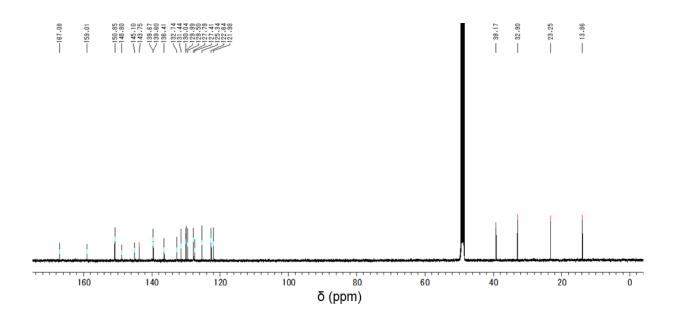
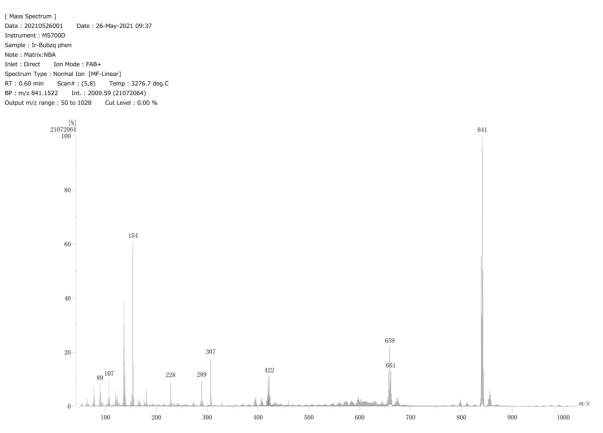
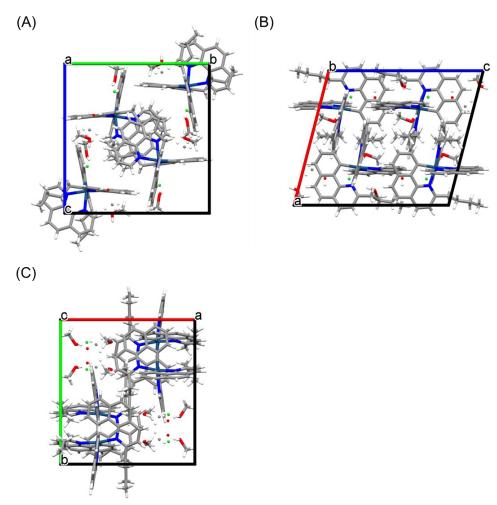




Figure S26. ¹³C NMR spectrum of [Ir(2-Bubzq)₂(phen)]Cl in CD₃OD (126 MHz, 27 °C).

Figure S27. LRMS spectrum of [Ir(2-Bubzq)₂(phen)]Cl (FAB⁺, 3-nitrobenzyl alcohol (3-NBA) as a matrix).

9.2 X-Ray analysis of racemic [Ir(2-Bubzq)2(phen)]Cl

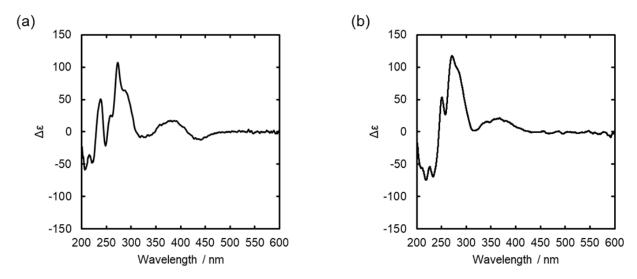


Figure S28. Crystal structures of $[Ir(2-Bubzq)_2(phen)]Cl$ viewed along (A) the a axis, (B) the b axis, and (C) the c axis, respectively.

 $\textbf{Table S6.} \ Structure \ information \ of \ racemic \ [Ir(2\text{-Bubzq})_2(phen)]Cl.$

Compound	[Ir(2-Bubzq) ₂ (phen)]Cl
Recrystallization solvent	Methanol/diethyl ether
Formula	C ₄₆ H ₄₀ IrN ₄ Cl, 1.31(MeOH),
	$C_{0.69}H_{3.07}O_{0.69}$
FW	940.89
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	15.3729 (4)
<i>b</i> [Å]	16.0231 (3)
c [Å]	17.1143 (4)
α [deg]	90
β [deg]	104.488 (3)
γ [deg]	90
$V[Å^3]$	4081.56 (17)
Z	4
$\mu \ [\mathrm{mm}^{-1}]$	3.381
Crystal size	$0.1 \times 0.08 \times 0.02$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.080, 1.10
wR_2	0.080 (all data)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	68718, 9849, 8091
No. of parameters	532
CCDC No.	2099501

9.3 Comparison of the ECD spectra of Λ-[Ir(2-Bubzq)2(phen)]Cl and Λ-[Ir(bzq)2(phen)]ClO₄

Figure S29. The ECD spectra of (a) Λ -[Ir(2-Bubzq)₂(phen)]Cl and (b) Λ -[Ir(bzq)₂(phen)]ClO₄^{S4} in methanol.

10. References

- (S1) A. W. Addison, T. N. Rao, J. Reedijk, J. V. Rijn, G. C. Verschoor J. Chem. Soc., Dalton Trans. 1984, 1349.
- (S2) M. J. Auburn, R. D. Holmes-Smith, S. R. Stobart, P. K. Bakshi, T. S. Cameron *Organometallics* **1996**, *15*, 13, 3032.
- (S3) W. J. Finkenzeller, P. Stößel, H. Yersin, Chem. Phys. Lett. 2004, 397, 289.
- (S4) K. Takimoto, K. Tamura, Y. Watanabe, A. Yamagishi and H. Sato, New J. Chem. 2018, 42, 4818.