Field-induced single-ion magnet performing triaxial anisotropy in an 1D Co(II) coordination polymer with rigid linker ligand 4,4'-(buta-1,3diyne-1,4-diyl)dibenzoate

Catiúcia R. M. O. Matos,^a Charlie V. Sarmiento,^b Henrique C. Silva Jr,^a Glaucio B. Ferreira,^a Guilherme P. Guedes,^a Wallace C. Nunes,^b and Célia M. Ronconi^{*,a}

^aDepartamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Outeiro de São João Batista, s/n, Campus do Valonguinho, Centro, 24020-141, Niterói, RJ, Brazil ^bInstituto de Física, Universidade Federal Fluminense (UFF), Niterói-RJ, 24210-271, Brazil

Corresponding authors: <u>cmronconi@id.uff.br</u>

Electronic Supporting Information

Table of contents

Fig. S1. ATR-FTIR spectra of the H_2L1 proligand and its intermediates 1, 2, 3 and 45
Fig. S2. ¹ H NMR spectrum of the intermediate 1 in CDCl ₃ , at 298 K, in 500 MHz5
Fig. S3. ¹ H NMR spectrum of the intermediate 2 in CDCl ₃ at 298 K, in 500 MHz6
Fig. S4. ¹ H NMR spectrum of the intermediate 3 in CDCl ₃ at 298 K, in 500 MHz6
Fig. S5. ¹ H NMR spectrum of the intermediate 4 in CDCl ₃ , at 298 K, in 500 MHz7
Fig. S6. ¹ H NMR spectrum of the H_2L1 proligand in DMSO-d ₆ at 298 K, in 500 MHz7
Fig. S7. ¹³ C NMR spectrum of the intermediate 1 in CDCl ₃ , at 298 K, in 125 MHz8
Fig. S8. ¹³ C NMR spectrum of the intermediate 2 in CDCl ₃ , at 298 K, in 125 MHz8
Fig. S9. ¹³ C NMR spectrum of the intermediate 3 in CDCl ₃ , at 298 K, in 125 MHz9
Fig. S10. ¹³ C NMR spectrum of the intermediate 4 in CDCl ₃ , at 298 K, in 125 MHz9
Fig. S11. (a) ATR-FTIR spectra with the main band assignments and (b) normalised UV–vis absorption spectra of the H_2L1 proligand and the CoCP10
Table S1. Assignments of the main ATR-FTIR bands of the H2L1 and CoCP 11
Table S2. Crystal data and structure refinement for the CoCP and intermediate 412
Table S3. Selected bond lengths (Å) in CoCP 13
Table S4. Bond Angles (°) in CoCP 13
Crystal structure analyses of the intermediate 4. Suitable needle shaped single crystals of 4 were formed by slow evaporation in CH_2Cl_2 at room temperature. 4 crystallised in the P ¹ with one molecule comprising the asymmetric unit (Fig. S12). The structure of 4 is non-planar as shown by the torsion angle between one phenyl ring and the adjacent phenyl ring is 24.60°. The structure is stabilised by several supramolecular interactions including non-classical hydrogen bonds and π stacking such as: CH···O, CH··· π and π ··· π listed in Fig. S12 13
Fig. S12. (a) Asymmetric unit of 4. Hydrogen atoms were hidden for the sake of clarity. Displacement ellipsoid parameters are drawn at the 50% probability level. Representation of hydrogen bonding (b) I (C13-H13···C9) and II (C5-H5···O4); (c) III (Cg···C1) and IV (Cg2···C8).
Table S5. Selected bond lengths (Å) in 4 15
Table S6. Selected bond angles (°) in 4
Fig. S13. Representation of the interactions (a) III, (b) IV and V in compound CoCP17
Fig. S14 Calculated PXRD generated from single crystal structure of the CoCP (Calc. CoCP)

Table S7. Hydrogen bonds and short contacts in CoCP (distances are given in Å and angles in °)	8
Fig. S15. Relative energies obtained for the CoCP compound: (blue) 3d orbitals; (orange) Kramers doublets; (green) transition energies. All energies are relative to the ground (0.0 cm ⁻¹) energy	9
Table S8. Energy gap between the first 7 excited states and the ground state of compound CoCP 20	0
Table S9. First 12 eigenvalues of the Kramers doublets	0
Table S10. Description of the ground Kramers doublet	0
Fig. S16. Magnetization results obtained for CoCP. The lines represent the fitted values obtained with PHI.	1
Table S11. Selected magnetic results of hexacoordinated octahedral complexes with easy-axis anisotropy. 22	2
Table S12. Percentage composition of the eigenstates for CoCP. 23	3
Table S13. G-tensors of the Kramer doublets for CoCP. 24	4
Fig. S17. Frequency-dependence of AC susceptibility for CoCP measured at zero DC field (lines are guides for the eyes)	4
Table S14. Cole-Cole parameters obtained from fits of the frequency-dependence of χAC (measured at 450 Oe) using a Generalized Debye model and used to reproduce the Cole-Coleplots	5
Fig. S18. Frequency-dependence of AC susceptibility for CoCP measured at 450 Oe (lines represent the fits made using a generalized Debye model)	6
Fig. S19. Cole-Cole plot obtained from the frequency-dependence of χAC susceptibility for CoCP measured at 450 Oe (lines represent the fits made using a generalized Debye model)26	6
Table S15. Cole-Cole parameters obtained from fits of the frequency-dependence of χAC (measured at 1kOe) using a Generalized Debye model	7
Table S16. Cole-Cole parameters obtained from fits of the frequency-dependence of χAC (measured at 2kOe) using a Generalized Debye model and used to reproduce the Cole-Coleplots.28	8
Fig. S20. Frequency-dependence of AC susceptibility for CoCP measured at 2 kOe (lines represent the fits made using a generalized Debye model)	9
Fig. S21. Cole-Cole plot obtained from the frequency-dependence of χAC susceptibility for CoCP (measured at 2 kOe) (lines represent the fits made using a generalized Debye model)29	9
Table S17. Cole-Cole parameters obtained from fits of the frequency-dependence of χAC (measured at 3 kOe) using a Generalized Debye model	0
Fig. S22. Frequency-dependence of AC susceptibility for CoCP measured at 3 kOe (lines represent the fits made using a generalized Debye model)	1
Fig. S23. Cole-Cole plot obtained from the frequency-dependence of χAC susceptibility for CoCP (measured at 3 kOe) (lines represent the fits made by using a generalized Debye model).	1
	÷.

Table S18. Cole-Cole parameters obtained from fits of the frequency-dependence of χAC (measured at 2.7 K) using a Generalized Debye model.	32
Fig. S24. Frequency-dependence of AC susceptibility for CoCP measured at 2.7 K (lines represent the fits made using a generalized Debye model).	33
Fig. S25. Cole-Cole plot obtained from the frequency-dependence of χAC susceptibility for CoCP (measured at 2.7 K) (lines represent the fits made using a generalized Debye model)	33
Table S19. Selected magnetic data of dynamic magnetic properties and structural correlations of hexacoordinated octahedral complexes.	34

Fig. S1. ATR-FTIR spectra of the H_2L1 proligand and its intermediates 1, 2, 3 and 4.

Fig. S2. ¹H NMR spectrum of the intermediate 1 in CDCl₃, at 298 K, in 500 MHz.

Fig. S3. ¹H NMR spectrum of the intermediate 2 in CDCl₃ at 298 K, in 500 MHz.

Fig. S4. ¹H NMR spectrum of the intermediate 3 in CDCl₃ at 298 K, in 500 MHz.

Fig. S5. ¹H NMR spectrum of the intermediate 4 in CDCl₃, at 298 K, in 500 MHz.

Fig. S6. ¹H NMR spectrum of the H_2L1 proligand in DMSO- d_6 at 298 K, in 500 MHz.

Fig. S7. ¹³C NMR spectrum of the intermediate 1 in CDCl₃, at 298 K, in 125 MHz.

Fig. S8. ¹³C NMR spectrum of the intermediate 2 in CDCl₃, at 298 K, in 125 MHz.

Fig. S9. ¹³C NMR spectrum of the intermediate 3 in CDCl₃, at 298 K, in 125 MHz.

Fig. S10. ¹³C NMR spectrum of the intermediate 4 in CDCl₃, at 298 K, in 125 MHz.

Fig. S11. (a) ATR-FTIR spectra with the main band assignments and (b) normalised UV-vis absorption spectra of the H_2L1 proligand and the CoCP.

H_2L1	CoCP	Assignments
1678	_	v(C=O)
-	1618 and 1600	$\nu_a(COO^-)$
_	1579-1445	v(CC/CN)
-	1398 and 1375	v _s (COO ⁻)
929	_	δ(O-H)

Table S1. Assignments of the main ATR-FTIR bands of the H_2L1 and CoCP

Compounds	4	СоСР
Empirical formula	$C_{20}H_{14}O_4$	C ₂₈ H ₂₀ CoN ₂ O ₅
Formula weight	318.31	523.39
Temperature/K	298(2)	298(2)
Crystal system	Triclinic	Monoclinic
Space group	$P^{\overline{1}}$	$P2_1/n$
Unit cell dimensions	a = 7.0604(4) Å	8.6551(3) Å
	b = 10.6647(7) Å	17.7754(5) Å
	c = 11.8334(7) Å	16.1528(5) Å
	$\alpha = 75.773(3)^{\circ}$	$lpha=90^{\circ}$
	$\beta = 73.159(2)^{\circ}$	β=103.4240(10)°
	$\gamma = 74.351(3)^{\circ}$	$\gamma = 90^{\circ}$
Volume/Å ³	807.50(9)	2417.18(13)
Ζ	2	4
ho calc./g cm ⁻³	1.3091	1.438
μ/mm^{-1}	0.091	0.752
F(000)	332.2	1076.0
Crystal size/mm ⁻³	0.280 x 0.254 x 0.164	0.313 x 0.167 x 0.162
Radiation	Mo Ka ($\lambda = 0.71073$)	Mo Ka ($\lambda = 0.71073$)
2⊖ range for data collection/°	4.928 to 50.048°	4.584 to 50.046°
Reflections collected	23446	28501
Index ranges	$-8 \le h \le 8, -12 \le k \le 12,$ $-14 \le 1 \le 14$	$\begin{array}{c} \text{-10} \leq h \leq 10, \text{-20} \leq k \leq 21, \text{-19} \leq \\ 1 \leq 19 \end{array}$
Independent reflections	2853 [$R_{int} = 0.0438$, $R_{sigma} = 0.0227$]	4277 [$R_{int} = 0.0334$, $R_{sigma} = 0.0198$]
Data/restraints/parame ters	2853/0/220	4277/1/328
Goof = S	1.112	1.036
Final <i>R</i> indexes [I $\geq = 2\sigma$ (I)]	$R_1 = 0.0553, wR_2 = 0.1416$	$R_1 = 0.0281, wR_2 = 0.0651$
Final <i>R</i> indexes [all data]	$R_1 = 0.0735, wR_2 = 0.1583$	$R_1 = 0.0343, wR_2 = 0.0688$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.20	0.34/-0.21

Table S2. Crystal data and structure refinement for the CoCP and intermediate 4

Bond length			
Co1-OW	2.0877(14)	Co1-N2	2.1600(16)
Co1-O1	2.0239(12)	Col-O3	2.1165(12)
Co1-N1	2.1348(15)	Co1-O4	2.3650(13)

 Table S3. Selected bond lengths (Å) in CoCP

Table S4. Bond Angles (°) in CoCP

Bond angles			
OW-Col-O3	90.68(6)	N1-Co1-O4	148.82(5)
OW-Co1-O4	87.85(5)	N1-Co1-N2	94.39(6)
OW-Co1-N1	87.83(6)	N2-Co1-O4	91.72(5)
OW-Co1-N2	176.36(6)	C18-O3-Co1	95.93(11)
O3-Co1-O4	58.11(5)	C18-O4-Co1	84.90(11)
O3-Co1-N1	91.09(6)	C1-O1-Co1	130.18(13)
O3-Co1-N2	92.16(6)	C23-N1-Co1	119.57(13)
O1-Co1-OW	87.36(6)	C19-N1-Co1	122.07(14)
O1-Co1-O3	177.39(6)	C24-N2-Co1	120.65(14)
O1-Co1-O4	120.04(5)	C28-N2-Co1	123.01(14)
01-Co1-N1	90.57(6)		
O1-Co1-N2	89.73(6)		

Crystal structure analyses of the intermediate 4. Suitable needle shaped single crystals of **4** were formed by slow evaporation in CH_2Cl_2 at room temperature. **4** crystallised in the P¹ with one molecule comprising the asymmetric unit (Fig. S12). The structure of **4** is non-planar as shown by the torsion angle between one phenyl ring and the adjacent

phenyl ring is 24.60°. The structure is stabilised by several supramolecular interactions including non-classical hydrogen bonds and π stacking such as: CH- \cdot O, CH- $\cdot\pi$ and π - π listed in Fig. S12.

Fig. S12. (a) Asymmetric unit of 4. Hydrogen atoms were hidden for the sake of clarity. Displacement ellipsoid parameters are drawn at the 50% probability level. Representation of hydrogen bonding (b) I (C13-H13···C9) and II (C5-H5···O4); (c) III (Cg···C1) and IV (Cg2···C8).

Fig. S12-b represents some non-classical hydrogen bonds type C-H--O and C-H-- π named I (C13-H13--C9) and II (C5-H5--O4) with donor--acceptor distances of 3.940(4) Å and 3.194(4) Å, respectively. Fig. S12-c shows π -- π stacking and C-H-- π interactions named III (Cg1--C1) and IV (Cg2--C8) with distances 3.82(2) Å and 3.52(1) Å, respectively. These intermolecular interactions govern the crystal packing of the intermediate **4**.

Bond length			
O1-C1	1.445(3)	C7-C8	1.201(3)
O1-C2	1.328(3)	C8-C9	1.368(3)
O2-C15	1.333(3)	C9-C10	1.204(3)
O2-C16	1.439(3)	C10-C11	1.428(3)
O3-C15	1.197(3)	C11-C12	1.390(3)
O4-C2	1.193(3)	C11-C17	1.392(3)
C2-C3	1.486(3)	C12-C13	1.377(3)
C3-C4	1.381(3)	C13-C14	1.387(3)
C3-C19	1.390(3)	C14-C15	1.486(3)
C4-C5	1.377(3)	C14-C18	1.382(3)
C5-C6	1.396(3)	C17-C18	1.383(3)
C6-C7	1.429(3)	C19-C20	1.376(3)
C6-C20	1.386(3)		

Table S5. Selected bond lengths (\AA) in 4

Table S6. Selected bond angles (°) in 4 $\,$

Bond angles			
C2-O1-C1	116.73(19)	C9-C10-C11	178.8(3)
C15-O2-C16	115.9(2)	C12-C11-C10	121.0(2)
O1-C2-C3	112.41(19)	C12-C11-C17	119.1(2)
O4-C2-O1	122.7(2)	C17-C11-C10	119.9(2)
O4-C2-C3	124.9(2)	C13-C12-C11	120.4(2)
C4-C3-C2	122.2(2)	C12-C13-C14	120.4(2)
C4-C3-C19	119.3(2)	C13-C14-C15	118.2(2)
C19-C3-C2	118.44(19)	C18-C14-C13	119.4(2)
C5-C4-C3	120.3(2)	C18-C14-C15	122.3(2)
C4-C5-C6	120.5(2)	O2-C15-C14	112.7(2)
C5-C6-C7	119.5(2)	O3-C15-O2	123.0(2)
C20-C6-C5	118.9(2)	O3-C15-C14	124.3(2)
C20-C6-C7	121.7(2)	C18-C17-C11	120.1(2)
C8-C7-C6	176.5(3)	C14-C18-C17	120.5(2)
C7-C8-C9	178.9(3)	C20-C19-C3	120.5(2)
C10-C9-C8	178.7(3)	C19-C20-C6	120.5(2)

Fig. S13. Representation of the interactions (a) III, (b) IV and V in compound CoCP.

Fig. S14. Calculated PXRD generated from single crystal structure of the CoCP (Calc. CoCP) compared with experimental data (Exp. CoCP).

Table S7. Hydrogen bonds and short contacts in CoCP (distances are given in Å and angles in $^{\circ}$).

Interaction	d (D…H/A)	d (D-H) ^a	d (H···A) ^b	d (D····A) ^c
I	OW-HWA…O4	0.80(3)	2.02(3)	2.774(2)
Ш	OW-HWB…O2	0.80(3)	1.83(3)	2.629(2)
Ш	С23-Н23…С9	-	-	3.430(3)
IV	C25-H25…Cg1	-	-	3.57(1)
v	Cg2····Cg2	-	-	3.78(2)

^a Distance between the donor atom and the hydrogen atom.

^b Distance between the acceptor atom and the hydrogen atom.

^c Distance between the donor atom and the acceptor atom for I, II and III or the distance between the donor atom and the centroid (Cg) for IV and V.

Fig. S15. Relative energies obtained for the **CoCP** compound: (blue) 3d orbitals; (orange) Kramers doublets; (green) transition energies. All energies are relative to the ground (0.0 cm⁻¹) energy.

STATE	ROOT	MULT	DE/eV	DE/cm ⁻¹
1	1	4	0.024	195.5
2	2	4	0.16	1290.6
3	3	4	0.863	6958.9
4	4	4	1.082	8729
5	5	4	1.11	8953
6	0	2	1.228	9903.6
7	1	2	1.635	13189.5

Table S8. Energy gap between the first 7 excited states and the ground state of compound **CoCP**

 Table S9. First 12 eigenvalues of the Kramers doublets

Eigenvalues	cm ⁻¹	eV
0	0	0
1	0	0
2	246.54	0.0306
3	246.54	0.0306
4	555.32	0.0689
5	555.32	0.0689
6	866.9	0.1075
7	866.9	0.1075
8	1700.25	0.2108
9	1700.25	0.2108
10	1777.96	0.2204
11	1777.96	0.2204
12	7344.9	0.9107

Table S10. Description of the ground Kramers doublet

	Eigenvector											
	Weight	Block	Root	Spin	Ms							
	0.559	0	0	3/2	3/2							
VD 0	0.360	0	1	3/2	3/2							
KD 0	0.035	0	2	3/2	1/2							
	0.020	0	0	3/2	-1/2							
	0.013	0	1	3/2	-1/2							

Fig. S16. Magnetization results obtained for CoCP. The lines represent the fitted values obtained with PHI.

Compound	σ	λ / cm^{-1}	$\Delta_{\rm ax}/{\rm cm}^{-1}$	$\Delta_{\rm rh}/{\rm cm}^{-1}$	<i>zJ</i> /cm ⁻¹	Ab Initio	Ref
СоСР	-1.5	-146.8(4)	-1054(5)	-151.4(5)		Yes	This work
cis-[Co(hfac) ₂ (H ₂ O) ₂]	1.34	-147.2	-499.7	136.3		Yes	1
$[Co(dca)_2(bim)_4]$	-1.18	-132.0	-416.3			No	2
$[Co(dca)_2(bim)_2]_n$	-1.16	-134.1	-402.7			No	2
$[Co(dca)_2(bmim)_2]_n$	-1.24	-134.0	-605.8			No	2
$[Co(dca)_2(atz)_2]_n$	-1.18(1)	-125(1)	-509(10)			No	3
$[Co(ppad)_2]_n$	-1.48(1)	-147(1)	-428(5)			No	4
$[Co(AcO)_2(py)_2(H_2O)_2]$	-1.5	-170	-279	109		Yes	5
[Co(pydm) ₂](dnbz) ₂	-0.61	-187	-585			Yes	6
(NBu ₄)[Co(piv) ₃]	1.33	-170	-713.2	66.3		Yes	7

Table S11. Selected magnetic results of hexacoordinated octahedral complexes with easy-axis anisotropy.

Abbreviations: hfac = hexafluoroacetylacetonate; dca = dicyanamide; bim = 1-benzylimidazole; bmim = 1-benzyl-2-methylimidazole; atz = 2-amino-1,3,5-triazine; ppad = N3-(3-pyridoyl)-3-pyridinecarboxamidrazone; AcO = acetate anion; py = pyridyl; pydm = 2,6-pyridinedimethanol; dnbz = 3,5-dinitrobenzoato(1-); ac = acetato; Melm = 1-methylimidazole; piv = pivalato

E/cm ⁻¹		0.0	0.0	185.3	185.3	533.4	533.4	785.8	785.8	1551	1551	1607	1607
$m_{\rm S}$	m_L												
-1.5	-1.0	3.39	0.00	0.59	0.00	0.00	0.17	95.75	-	0.00	0.00	0.09	-
-1.5	0.0	-	0.02	0.00	0.80	5.89	0.12	-	0.01	0.42	90.42	-	2.32
-1.5	1.0	84.44	0.00	8.45	0.00	0.01	0.36	3.72	-	0.10	0.00	2.92	-
-0.5	-1.0	0.00	0.64	0.01	18.46	72.59	1.43	-	0.03	0.03	6.30	-	0.51
-0.5	0.0	4.91	0.00	1.97	0.00	0.03	1.46	0.31	-	2.70	0.01	88.61	-
-0.5	1.0	0.00	6.60	0.03	69.70	17.59	0.35	-	0.18	0.00	0.01	-	5.54
0.5	-1.0	6.60	0.00	69.70	0.03	0.35	17.59	0.18	-	0.01	0.00	5.54	-
0.5	0.0	0.00	4.91	0.00	1.97	1.46	0.03	-	0.31	0.01	2.70	-	88.61
0.5	1.0	0.64	0.00	18.46	0.01	1.43	72.59	0.03	-	6.30	0.03	0.51	-
1.5	-1.0	0.00	84.44	0.00	8.45	0.36	0.01	-	3.72	0.00	0.10	-	2.92
1.5	0.0	0.02	-	0.80	0.00	0.12	5.89	0.01	-	90.42	0.42	2.32	-
1.5	1.0	0.00	3.39	0.00	0.59	0.17	0.00	-	95.75	0.00	0.00	-	0.09

Table S12. Percentage composition of the eigenstates for CoCP.

E/cm ⁻¹	g _X	$g_{\rm Y}$	gz
0.0	1.9	2.5	7.5
185.3	1.7	2.5	4.4
533.4	0.4	3.1	3.9
785.8	0.2	0.2	3.2
1551	0.7	0.9	5.3
1607	1.6	2.1	3.6

Table S13. G-tensors of the Kramer doublets for CoCP.

Fig. S17. Frequency-dependence of AC susceptibility for **CoCP** measured at zero DC field (lines are guides for the eyes).

Temperature (K)	χ_{S} (emu/K Oe)	χ_T (emu/K Oe)	α	τ(s)
2.75	0.52	0.65	0.12	2.81×10^{-4}
3.00	0.48	0.60	0.10	2.40×10^{-4}
3.25	0.44	0.56	0.11	1.88×10^{-4}
3.50	0.41	0.52	0.11	1.56×10^{-4}
3.75	0.39	0.49	0.08	1.27×10^{-4}
4.00	0.36	0.46	0.08	1.04×10^{-4}
4.25	0.34	0.44	0.07	8.41×10^{-5}
4.50	0.33	0.42	0.06	6.73×10^{-5}
4.75	0.31	0.39	0.06	5.35×10^{-5}
5.00	0.30	0.38	0.05	4.32×10^{-5}
5.50	0.27	0.34	0.04	2.70×10^{-5}

Table S14. Cole-Cole parameters obtained from fits of the frequency-dependence of χ_{AC} (measured at 450 Oe) using a Generalized Debye model and used to reproduce the Cole-Cole plots.

Fig. S18. Frequency-dependence of AC susceptibility for **CoCP** measured at 450 Oe (lines represent the fits made using a generalized Debye model).

Fig. S19. Cole-Cole plot obtained from the frequency-dependence of χ_{AC} susceptibility for **CoCP** measured at 450 Oe (lines represent the fits made using a generalized Debye model).

Temperature (K)	χ_{S} (emu/K Oe)	χ_{T} (emu/K Oe)	α	$\tau(s)$
2.25	0.55	0.99	0.15	4.25×10^{-4}
2.50	0.50	0.94	0.13	3.83×10^{-4}
2.75	0.46	0.90	0.12	3.28×10^{-4}
3.00	0.41	0.85	0.11	2.70×10^{-4}
3.25	0.38	0.80	0.11	2.21×10^{-4}
3.50	0.36	0.76	0.10	1.87×10^{-4}
3.75	0.33	0.72	0.10	1.52×10^{-4}
4.00	0.31	0.68	0.09	1.22×10^{-4}
4.25	0.30	0.64	0.08	9.82×10^{-5}
4.50	0.28	0.61	0.08	7.82×10^{-5}
4.75	0.27	0.58	0.06	6.17×10^{-5}
5.00	0.25	0.55	0.06	4.82×10^{-5}
5.50	0.23	0.50	0.05	2.91×10^{-5}
6.00	0.21	0.46	0.04	1.79×10^{-5}

Table S15. Cole-Cole parameters obtained from fits of the frequency-dependence of χ_{AC} (measured at 1kOe) using a Generalized Debye model.

T (K)	X _{s,τ} (emu/K)	$\Delta \chi_{\tau_1}$ (emu/K)	$\tau_{1}(s)$	α ₁	$\Delta \chi_{T2}$ (emu/K)	$\tau_{2}(s)$	α2
2.0	0.196	0.285	3.08×10^{-4}	0.175	0.822	0.40	0.54
2.2	0.179	0.313	2.96×10^{-4}	0.152	0.556	0.21	0.55
2.4	0.164	0.352	2.86×10^{-4}	0.149	0.730	1.15	0.57
2.6	0.153	0.386	2.68×10^{-4}	0.149	0.707	1.65	0.51
2.8	0.142	0.398	2.45×10^{-4}	0.141	0.559	3.11	0.55
3.0	0.133	0.413	2.23×10^{-4}	0.146	0.816	4.24	0.37
3.2	0.125	0.411	1.98×10^{-4}	0.140	-	-	-
3.4	0.118	0.406	1.74×10^{-4}	0.137	-	-	-
3.6	0.112	0.396	1.51×10^{-4}	0.132	-	-	-
3.8	0.107	0.383	1.30×10^{-4}	0.124	-	-	-
4.0	0.103	0.368	1.12×10^{-4}	0.112	-	-	-
4.5	0.095	0.335	0.74×10^{-4}	0.091	-	-	-
5	0.089	0.304	0.48×10^{-4}	0.065	-	-	-
5.5	0.083	0.279	0.30×10^{-4}	0.049	-	-	-
6	0.078	0.256	0.19×10^{-4}	0.0372	-	-	-

Table S16. Cole-Cole parameters obtained from fits of the frequency-dependence of χ_{AC} (measured at 2kOe) using a Generalized Debye model and used to reproduce the Cole-Cole plots.

Fig. S20. Frequency-dependence of AC susceptibility for **CoCP** measured at 2 kOe (lines represent the fits made using a generalized Debye model).

Fig. S21. Cole-Cole plot obtained from the frequency-dependence of χ_{AC} susceptibility for **CoCP** (measured at 2 kOe) (lines represent the fits made using a generalized Debye model).

T (K)	$\chi_{\rm S,T}$	$\Delta \chi_{_{T1}}$	$\tau_{1}(s)$	α ₁	$\Delta \chi_{_{T2}}$	$\tau_{2}(s)$	α2
	(emu/K)	(emu/K)			(emu/K)		
2.0	0.092	0.242	1.65×10^{-4}	0.238	0.39	0.05	0.33
2.2	0.083	0.237	1.63×10^{-4}	0.173	4.34	57.9	0.60
2.4	0.075	0.267	1.69×10^{-4}	0.151	3.59	88.3	0.63
2.6	0.072	0.319	1.76×10^{-4}	0.158	5.39	162.8	0.57
2.8	0.068	0.350	1.73×10^{-4}	0.151	5.61	200.3	0.55
3.0	0.065	0.376	1.67×10^{-4}	0.148	6.06	260.1	0.52
3.2	0.061	0.394	1.57×10^{-4}	0.147	-	-	-
3.4	0.058	0.402	1.44×10^{-4}	0.144	-	-	-
3.6	0.055	0.405	1.31×10^{-4}	0.140	-	-	-
3.8	0.052	0.400	1.16×10^{-4}	0.135	-	-	-
4.0	0.051	0.391	1.02×10^{-4}	0.125	-	-	-
4.5	0.048	0.364	0.70×10^{-4}	0.102	-	-	-
5	0.047	0.335	0.46×10^{-4}	0.077	-	-	-
5.5	0.045	0.309	0.30×10^{-4}	0.056	-	-	-
6	0.042	0.285	0.19×10^{-4}	0.044	-	-	-

Table S17. Cole-Cole parameters obtained from fits of the frequency-dependence of χ_{AC} (measured at 3 kOe) using a Generalized Debye model.

Fig. S22. Frequency-dependence of AC susceptibility for **CoCP** measured at 3 kOe (lines represent the fits made using a generalized Debye model).

Fig. S23. Cole-Cole plot obtained from the frequency-dependence of χ_{AC} susceptibility for **CoCP** (measured at 3 kOe) (lines represent the fits made by using a generalized Debye model).

H (Oe)	$\chi_{\rm S,T}$	$\Delta \chi_{T1}$	$\tau_{1}(s)$	α ₁	$\Delta \chi_{_{T2}}$	τ_{2} (s)	α2
	(emu/K)	(emu/K)			(emu/K)		
350	0.61	0.09	2.83×10^{-4}	0.18	-	-	-
450	0.52	0.65	2.81×10^{-4}	0.12	-	-	-
550	0.52	0.17	3.09×10^{-4}	0.12	-	-	-
750	0.44	0.24	3.24×10^{-4}	0.12	-	-	-
1000	0.31	0.62	3.28×10^{-4}	0.12	-	-	-
1100	0.31	0.34	3.27×10^{-4}	0.13	-	-	-
1200	0.29	0.36	3.26×10^{-4}	0.13	-	-	-
1300	0.26	0.37	3.23×10^{-4}	0.13	-	-	-
1400	0.24	0.39	3.20×10^{-4}	0.14	-	-	-
1500	0.22	0.40	3.16×10^{-4}	0.14	-	-	-
1600	0.20	0.40	3.01×10^{-4}	0.13	0.13	0.13	0.25
1700	0.18	0.40	2.93×10^{-4}	0.13	9.35	49.46	0.27
1800	0.17	0.39	2.85×10^{-4}	0.13	2.88	126.34	0.51
1900	0.16	0.40	2.80×10^{-4}	0.13	5.99	48.16	0.34
2000	0.14	0.40	2.69×10^{-4}	0.13	5.66	65.38	0.39
2200	0.12	0.40	2.54×10^{-4}	0.14	8.48	55.25	0.33
2400	0.11	0.39	2.38×10^{-4}	0.14	6.52	69.55	0.39
2600	0.09	0.37	2.17×10^{-4}	0.14	8.09	100.90	0.42
2800	0.08	0.36	2.00×10^{-4}	0.15	9.31	135.11	0.42
3000	0.07	0.35	1.82×10^{-4}	0.14	11.02	166.10	0.43
3200	0.06	0.34	1.67×10^{-4}	0.15	16.24	155.81	0.38
3400	0.05	0.32	1.49×10^{-4}	0.14	20.75	597.11	0.45
3600	0.05	0.31	1.35×10^{-4}	0.15	20.61	211.87	0.39
3800	0.04	0.29	1.21×10^{-4}	0.14	14.09	341.10	0.46
4000	0.04	0.28	1.11×10^{-4}	0.14	18.20	321.97	0.43
4200	0.03	0.27	1.01×10^{-4}	0.14	24.92	311.93	0.39
4400	0.03	0.25	9.09×10^{-5}	0.12	12.05	516.65	0.50
4600	0.03	0.24	8.28×10^{-5}	0.13	16.75	347.63	0.44
4800	0.03	0.22	7.50×10^{-5}	0.12	16.02	608.18	0.48
5000	0.02	0.22	6.83×10^{-5}	0.13	24.92	671.52	0.43

Table S18. Cole-Cole parameters obtained from fits of the frequency-dependence of χ_{AC} (measured at 2.7 K) using a Generalized Debye model.

Fig. S24. Frequency-dependence of AC susceptibility for **CoCP** measured at 2.7 K (lines represent the fits made using a generalized Debye model).

Fig. S25. Cole-Cole plot obtained from the frequency-dependence of χ_{AC} susceptibility for **CoCP** (measured at 2.7 K) (lines represent the fits made using a generalized Debye model).

Compound	τ_0/s	B _{DC} /T	U _{ff} / cm ⁻¹	A/ s ⁻¹ K ⁻¹	<i>C</i> / s ⁻¹ K ⁻	n	$\tau_{\rm QTM}$ / s	Effect	Ref.
					n				
CoCP		0.045		$1.1(8) \ge 10^3$	0.9(2)	6.0(1)	-	QTM	This
		0.1		0.9(4) x 10 ³	0.9(2)	6.0(1)	-	Direct	work
		0.3		0.5(3) x 10 ⁻ 2	0.9(2)	6.0(1)	3(1)x10 ³	Raman	
cis-[Co(hfac) ₂ (H ₂ O) ₂]		0.1		7225.7	106.4	4.9		Direct	1
								Raman	
$[Co(dca)_2(bim)_4]$	0.87 x 10 ⁻⁶	0.25	7.74					Orbach	2
$[Co(dca)_2(bim)_2]_n$	1.54 x 10 ⁻⁶	0.25	5.33					Orbach	2
$[Co(dca)_2(bmim)_2]_n$	0.63 x 10 ⁻⁶	0.25	13.81					Orbach	2
$[Co(dca)_2(atz)_2]_n$	1.7 x 10 ⁻⁶	0.1	5.1					Orbach	3
$[Co(ppad)_2]_n$	5.03 x 10 ⁻⁶	0.2	11.37					Orbach	4
$[Co(AcO)_2(py)_2(H_2O)_2]$	6.7 x 10 ⁻⁷	0.15	25.0				0.011	Orbach	5
								QTM	
$[Co(pydm)_2](dnbz)_2]$	2. 8(4) x 10 ⁻	0.2	44.1(8) ^(a)		72(28) ^(a)	2.3 ^(a)		Raman	6
	9(a)							Orbach	
(NBu ₄)[Co(piv) ₃]		0.1			0.19	8.3		Raman	7

Table S19. Selected magnetic data of dynamic magnetic properties and structural correlations of hexacoordinated octahedral complexes.

Abbreviations: hfac = hexafluoroacetylacetonate; dca = dicyanamide; bim = 1-benzylimidazole; bmim = 1-benzyl-2-methylimidazole; atz = 2-amino-1,3,5-triazine; ppad = N3-(3-pyridoyl)-3-pyridinecarboxamidrazone; AcO = acetate anion; py = pyridyl; pydm = 2,6-pyridinedimethanol; dnbz = 3,5-dinitrobenzoato(1-); ac = acetato; Melm = 1-methylimidazole; piv = pivalato

References

- Korchagin, D. V.; Palii, A. V.; Yureva, E. A.; Akimov, A. V.; Misochko, E. Y.; Shilov, G. V.; Talantsev, A. D.; Morgunov, R. B.; Shakin, A. A.; Aldoshin, S. M.; Tsukerblat, B. S. Evidence of Field Induced Slow Magnetic Relaxation in Cis-[Co(Hfac) 2 (H 2 O) 2] Exhibiting Tri-Axial Anisotropy with a Negative Axial Component. *Dalt. Trans.* 2017, *46*, 7540–7548.
- (2) Anna Świtlicka-Olszewska, J. P.-G.; Klemens, T.; Machura, B.; Vallejo, J.;
 Cano, J.; Lloretb, F.; Julve, M. Dalton Transactions. *Dalt. Trans.* 2016, 45 (25), 10181–10193.
- Palion-gazda, J.; Klemens, T.; Machura, B.; Vallejo, J.; Lloret, F.; Julve, M.
 Single Ion Magnet Behaviour in a Two-Dimensional Network of Dicyanamide-Bridged Cobalt(II) Ions. *Dalt. Trans.* 2015, *44* (7), 2989–2992.
- Liu, X.; Sun, L.; Zhou, H.; Cen, P.; Jin, X.; Xie, G.; Chen, S.; Hu, Q. Single-Ion-Magnet Behavior in a Two-Dimensional Coordination Polymer Constructed from Co. *Inorg. Chem.* 2015, *54* (18), 8884–8886.
- Walsh, J. P. S.; Bowling, G.; Ariciu, A.; Jailani, N. F. M.; Chilton, N. F.;
 Waddell, P. G.; Collison, D.; Tuna, F.; Higham, L. J. Evidence of Slow Magnetic Relaxation in Co(AcO)2 (Py)2(H2O)2. *Magnetochemistry* 2016, *2* (2), 23–33.
- Valigura, D.; Rajnák, C.; Moncol, J.; Titiš, J.; Boča, R. A Mononuclear Co(II)
 Complex Formed from Pyridinedimethanol with Manifold Slow Relaxation
 Channels. *Dalt. Trans.* 2017, 46 (33), 10950–10956.
- (7) Chen, S.-Y.; Hui-Hui Cui, Y.-Q. Z.; Wang, Z.; Ouyang, Z.-W.; Chen, L.; Chen, X.-T.; Hong Yan, A.; Xue, Z.-L. Magnetic Anisotropy and Relaxation Behavior of Six-Coordinate Tris(Pivalato)-Co(II) and -Ni(II) Complexes Shu-Yang. *Dalt. Trans.* 2018, 47 (30), 10162–10171.