Tetra-Substituted Phthalocyanines Bearing Thiazolidine Derivative: Synthesis, Anticancer Activity on Different Cancer Cell Lines, and Molecular Docking Studies

Ahmet T. Bilgiçli^a*, Ceylan Hepokur^b, Hayriye Genc Bilgicli^a, Burak Tüzün^c,

Armağan Günsel^a, Sema Mısır^b, Mustafa Zengin^a, M. Nilüfer Yarasir^a

^aDepartment of Chemistry, Sakarya University, 54140, Esentepe, Sakarya, Turkey

^b Cumhuriyet University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Sivas, Turkey

^cPlant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, 58140, Sivas, Turkey

Content of supplementary material

Fig. S1	¹ H-NMR spectrum of (4R)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid.
Fig. S2	¹ H-NMR spectrum of 2-(3-(3,4-dicyanophenoxy)phenyl)thiazolidine-4-carboxylic
	acid (1).
Fig. S3	FTIR spectra of synthesized compounds (1-4).
Fig. S4	UV-Vis spectra of ZnPc(2) at different concentrations in DMSO (inset: the plot of
	Q band absorbance versus concentration).
Fig. S5	UV-Vis spectra of CoPc(4) at different concentrations in DMSO (inset: the plot
	of Q band absorbance versus concentration).
Fig. S6	UV-Vis spectra of ZnPc (2) in different solvents (inset: The plot of the Q band
	frequency of ZnPc (2) against $(n^2 - 1)/(2n^2 + 1)$)
Fig. S7	UV-Vis spectra of CoPc (4) in different solvents (inset: The plot of the Q band
	frequency of CoPc (4) against $(n^2 - 1)/(2n^2 + 1)$)
Fig. S8	UV-Vis spectra of ZnPc (2) during the titration with Ag(I) ions (Inset: the plot of
	Q-, B-, and J-aggregation bands absorption values versus the amount of Ag(I)
	ions).
Fig. S9	UV-Vis spectra of CoPc (4) during the titration with Ag(I) ions (Inset: the plot of
	Q and B bands absorption values versus the amount of Ag(I) ions).

Fig. S1 ¹H-NMR spectrum of (4R)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid.

Fig. S2 ¹H-NMR spectrum of 2-(3-(3,4-dicyanophenoxy)phenyl)thiazolidine-4-carboxylic acid (1).

Fig. S3 FTIR spectra of synthesized compounds (1-4).

Fig. S4 UV-Vis spectra of ZnPc (2) at different concentration in DMSO (inset: the plot of Q band absorbance versus concentration).

Fig. S5 UV-Vis spectra of CoPc **(4)** at different concentration in DMSO (inset: the plot of Q band absorbance versus concentration).

Fig. S6. UV-Vis spectra of ZnPc (2) in diffrent solvents (inset: The plot of the Q band frequency of ZnPc (2) against $(n^2 - 1)/(2n^2 + 1)$)

Fig. S7. UV-Vis spectra of CoPc (4) in diffrent solvents (inset: The plot of the Q band frequency of CoPc (4) against $(n^2 - 1)/(2n^2 + 1)$)

Fig. S8 UV-Vis spectra of ZnPc (2) during the titration with Ag(I) ions (Inset: the plot of Q-, B- and J-aggregation bands absorption values versus the amount of Ag(I) ions).

Fig. S9 UV-Vis spectra of CoPc (4) during the titration with Ag(I) ions (Inset: the plot of Q and B bands absorption values versus the amount of Ag(I) ions).