Supporting Information (SI)

Effect of Layers on the Photocatalytic Hydrogen Evolution in Dion-Jacobson Layered-Tantalum Perovskites

Peng Wang^{*a,b,#*}, Wenqian Chen^{*a,b,#*,*}, Zihan Wang^{*a,b*}, Ya Tang^{*c,**}, Wenyan Shi^{*a,b*}, Liang Tang^{*a,b**}

- a. Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
- b. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
- c. Department of Chemistry, School of Science, Shanghai University, No. 99, Shangda
 Roda, Baoshan District, Shanghai, China

Correspondence and requests for materials should be addressed to Wenqian Chen (email: wenqianchen@shu.edu.cn, tangya0709@shu.edu.cn, tang1liang@shu.edu.cn).

Samples	Atomic ratios			
	K/Ta	La/Ta	Ca/Ta	
LaTaO ₄	-	0.98(±0.05)	-	
KLaTa ₂ O ₇	0.43(±0.01)	0.59(±0.05)	-	
KCa ₂ Ta ₃ O ₁₀	0.34(±0.01)	-	0.67(±0.04)	

Table S1. Atomic composition of all samples was determined by SEM-EDS.

Fig. S1 XRD patterns of (a) $HLaTa_2O_7$ and (b) $HCa_2Ta_3O_{10}$ protonated perovskites. For comparison, XRD patterns of $KLaTa_2O_7$ and $KCa_2Ta_3O_{10}$ were also given, and in brackets are given (hkl) Miller index.

Samples	H ₂ evolution amount in 3 h (μmol)	Quantum efficiency (%)
LaTaO ₄	12.89	0.006
KLaTa ₂ O ₇	506.97	0.26
KCa ₂ Ta ₃ O ₁₀	298.62	0.15

Table S2. The hydrogen evolution	yield and quantum	efficiency	y of the sam	ples
----------------------------------	-------------------	------------	--------------	------

Fig. S2 TEM images of Pt/LaTaO₄, Pt/KLaTa₂O₇, and Pt/KCa₂Ta₃O₁₀ photocatalysts.

Supporting Information (SI)

Samples	Atomic percentage			
	К	La or Ca	Та	
Pt/KLaTa ₂ O ₇	10.83	9.78	22.75	
Pt/KLaTa ₂ O ₇ -after	2.57	11.15	20.79	
Pt/KCa2Ta3O10	6.13	13.84	22.56	
Pt/KCa ₂ Ta ₃ O ₁₀ -after	2.06	13.50	22.51	

Table S3. Atomic percentage of Pt-loaded samples before and after H₂ evolution reaction was determined by SEM-EDS.

Fig. S3 (a) Time courses of photocatalytic H₂ evolution over Pt/HLaTa₂O₇, and Pt/HCa₂Ta₃O₁₀. Reaction conditions: fresh catalyst, 50 mg; reaction solution, 20 vol % aqueous methanol solution (pH \approx 2.5, 100 mL); light source, 300 W Xe lamp ($\lambda \ge 350$ nm). (b) Time courses of H₂ evolution over Pt/LaTaO₄, Pt/KLaTa₂O₇, Pt/KCa₂Ta₃O₁₀, Pt/HLaTa₂O₇, and Pt/HCa₂Ta₃O₁₀. Reaction conditions: catalyst, 50 mg; reaction solution (pH \approx 2.5, 100 mL); light source, 300 W Xe lamp ($\lambda \ge 350$ nm). (b) Time courses of H₂ evolution over Pt/LaTaO₄, Pt/KLaTa₂O₇, Pt/KCa₂Ta₃O₁₀, Pt/HLaTa₂O₇, and Pt/HCa₂Ta₃O₁₀. Reaction conditions: catalyst, 50 mg; reaction solution, 5 mmol NaI solution (pH \approx 2.5, 100 mL); light source, 300 W Xe lamp ($\lambda \ge 350$ nm).

Fig. S4 XRD patterns of the Pt-loaded samples, along with patterns of samples before and after H_2 evolution reactions in 20 vol % aqueous methanol solution. (a) LaTaO₄, (b) KLaTa₂O₇, (c) KCa₂Ta₃O₁₀, (d) HLaTa₂O₇, (e) HCa₂Ta₃O₁₀.

Fig. S5 (a) XRD patterns of KLaTa₂O₇, HLaTa₂O₇, along with pattern of Pt/KLaTa₂O₇ after H₂ evolution reaction in 20 vol % aqueous methanol solution (pH \approx 2.5). (b) Enlarged XRD patterns at 2 θ = 7-10°.

Fig. S6 SEM images of (a) $Pt/KLaTa_2O_7$, (b) $Pt/KLaTa_2O_7$ after H_2 evolution reaction, (c) $Pt/KCa_2Ta_3O_{10}$, (d) $Pt/KCa_2Ta_3O_{10}$ after H_2 evolution reaction.

Fig. S7 Tauc plot of direct-band gap semiconductor $LaTaO_4$ and indirect-band gap semiconductors $KLaTa_2O_7$, $KCa_2Ta_3O_{10}$.

Fig. S8 VB-XPS spectra of LaTaO₄, KLaTa₂O₇, and KCa₂Ta₃O₁₀.