Electronic Supplementary Information (ESI)

Bifunctional zinc and magnesium Schiff-base complexes containing quaternary ammonium side-arm for epoxide/CO₂ coupling reaction

Arnut Virachotikul,^a Nattiya Laiwattanapaisarn,^a Kittipong Chainok,^b

and Khamphee Phomphrai* a,c

^{*a*} Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand. Email: khamphee.p@vistec.ac.th

.

^b Materials and Textile Technology, Faculty of Science and Technology,

Thammasat University, Khlong Luang, Pathum Thani 12121 Thailand.

^c Research Network of NANOTEC-VISTEC on Nanotechnology for Energy,

Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210 Thailand

Experimental section

Materials

All operations were carried out in a glove box or using standard Schlenk techniques under nitrogen atmosphere. Toluene, dichloromethane (DCM), and tetrahydrofuran (THF) solvents were dried by a solvent purification system (MB SPS-5, MBraun). Dimethylformamide (DMF) was dried over calcium hydride overnight and distilled under nitrogen atmosphere. Zinc bis(bis(trimethylsilyl))amide $(Zn(N(SiMe_3)_2)_2)^1$ magnesium bis(bis(trime- $(Mg(N(SiMe_3)_2)_2)^2$ thylsilyl))amide 2,4-di-tert-butyl-6-(((2-(diethyla-(**HL** $^{1}),^{3}$ mino)ethyl)imino)methyl)phenol 2,4-di-tert-butyl-6-(((2-(diethyla- $(HL^{2}),^{4}$ mino)ethyl)amino)methyl)phenol and 2,4-di-tert-butyl-6-(((2-(diethylamino)ethyl)(methyl)amino)methyl)phenol (**HL**³)⁵ were synthesized according to the reported procedures. Propylene oxide (PO) and cyclohexene oxide (CHO) were dried over calcium hydride overnight, distilled under nitrogen atmosphere, and stored in a freezer at -30 °C in a glove box. Epichlorohydrin (ECH), phenyl glycidyl ether (PGE), 1,3-butadiene monoepoxide (BME), 1,2-epoxyhexane (EH), styrene oxide (SO), cyclopentene oxide (CPO) were obtained from Tokyo Chemical Industry (TCI) Co., Ltd. and used as received. Carbon dioxide gas (99.5% purity) was obtained from Bangkok Industrial Gas (BIG) Co., Ltd. Other reagents were obtained from Sigma-Aldrich, Acros Organics, and Tokyo Chemical Industry (TCI) Co., Ltd.

Measurements

¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AVANCE III HD-600 MHz spectrometer and referenced to protio impurity of commercial benzene-*d*6 (C₆D₆, δ 7.16 ppm), chloroform-*d* (CDCl₃, δ 7.26 ppm), and dimethylsulfoxide-*d*6 (DMSO-*d*6, δ 2.50 ppm) as internal standards. Mass spectrometry of ligands and complexes were acquired by matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry using a Bruker Daltonics Autoflex speed TM mass spectrometer, equipped with laser frequency at 2000 Hz. Solutions of *trans*-2-[3-(4-*tert*-butylphenyl)-2-methyl-2- propylidene]-malononitrile (DCTB) as matrix (40 µL of a 40 g/L DCM solution) and complex (40 µL of a 2.0 g/L DCM solution) were mixed before handed spot to the target followed by solvent

evaporation to prepare a thin film. The samples were measured in refractive positive mode and calibrated by comparison to 5 and 20 kg/mol protein calibration standards I.

X-ray crystallography

The X-ray crystallographic data were collected on a Bruker D8 Venture using Photon II detector and I μ S 3.0 Microfocus Source, Mo K α radiation (λ = 0.71073 Å). Data collection was carried out using the Bruker software suite APEX3. Data integration was performed with the SAINT software, and intensity data were corrected based on the intensities symmetry-related reflections measured at different angular settings (SADABS). The space group was determined with the XPREP software. The crystal structure was solved by a direct method using intrinsic phasing (SHELXT program)⁶ and refined by full-matrix least-squares against F2 using the program SHELXL⁷ base on ShelXle engine or Olex2 software package.⁸ All non-hydrogen atoms were refined anisotropically while the hydrogen atoms were placed in calculated positions and not refined. The crystallographic images were processed by Ortep3 program.⁹

Synthesis of 2-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino)-*N*,*N*,*N*-diethylalkylethanaminium halide (HL_{R-X})

Compound **HL**_{R-X} was synthesized from the applied method from the previous work.¹⁰ The following procedure is for the synthesis of **HL**¹_{Et-I}. The synthesis of complexes **HL**¹_{Me-I}, **HL**¹_{Pr-I}, **HL**¹_{Et-Br}, **HL**²_{Et-I}, **HL**³_{Et-I}, and **HL**⁴_{Et-I} can be carried out similarly using the corresponding Schiff base precursors and alkylhalides (R-X).

Compound HL^1 (1.16 g, 5.0 mmol, 1.0 equiv.) was dissolved in acetonitrile (25mL). Iodoethane (1.17g, 7.5 mmol, 1.5 equiv.) was added into a solution. The solution was stirred at 60 °C overnight. Next, the volatile component was evaporated under vacuum and washed with cold diethyl ether (3 x 50 mL) resulting in a yellow powder. The resulting powder was dissolved in dichloromethane (50 mL), extracted with DI water, and dried over anhydrous NaSO₄. The volatile components were removed under reduced pressure giving a yellow powder.

Compound HL¹_{Et-I} (yellow powder, 77.4 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 12.73 (s, 1H, OH), 8.76 (s, 1H, N=CHAr), 7.40 (d, J = 2.4 Hz, Ar-H), 7.18 (d, J = 2.4 Hz, 1H, Ar-H), 4.25 (t, J = 6.3 Hz, 2H, NCH₂-CH₂N), 3.74 (t, J = 6.3 Hz, 2H, NCH₂-CH₂N), 3.60 (q, J = 7.3 Hz, 6H, N(CH₂CH₃)₃), 1.43 (t, J = 7.3 Hz, 9H, N(CH₂CH₃)₃), 1.40 (s, 9H, C(CH₃)₃), 1.28 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): δ 170.61 (N=CHAr), 157.70, 141.07, 136.77, 128.24, 127.12, 117.62 (Ar*C*), 57.97, 52.53 (N*C*H₂*C*H₂N), 54.67 (N(*C*H₂CH₃)₃), 35.13, 34.31 (*C*(CH₃)₃), 31.57, 29.50 (C(*C*H₃)₃), 8.50 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for $C_{23}H_{41}N_2O^+$ [M – I⁻]⁺ = 361.3269, found 361.2087.

Compound HL¹Me-I (white powder, 99.2 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 12.72 (s, 1H, OH), 8.72 (s, 1H, N=CHAr), 7.41 (d, J = 2.4 Hz, Ar-H), 7.18 (d, J = 2.4 Hz, 1H, Ar-H), 4.24 (t, J = 6.2 Hz, 2H, NCH₂-CH₂N), 3.89 (t, J = 6.2 Hz, 2H, NCH₂-CH₂N), 3.72 (dt, J = 8.6, 6.3 Hz, 4H, N(CH₂CH₃)₂), 3.38 (s, 3H, NCH₃),1.45 (t, J = 7.2 Hz, 6H, N(CH₂CH₃)₂), 1.40 (s, 9H, C(CH₃)₃), 1.29 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): δ 170.59 (N=CHAr), 157.72, 141.12, 136.84, 128.30, 127.10, 117.62 (ArC), 61.10, 52.83 (NCH₂CH₂N), 58.03 (N(CH₂CH₃)₂), 48.90 (NCH₃), 35.15, 34.33 (C(CH₃)₃), 31.58, 29.51 (C(CH₃)₃), 8.66 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₂₂H₃₉N₂O⁺ [M – I]⁺ = 347.3057, found 347.4467.

Compound HL¹_{Pr-I} (white powder, 43.0 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 12.73 (s, 1H, OH), 8.76 (s, 1H, N=CHAr), 7.40 (d, J = 2.4 Hz, Ar-H), 7.19 (s, 1H, Ar-H), 4.26 (t, J = 6.1 Hz, 2H, NC H_2 -C H_2 N), 3.80 (t, J = 6.1 Hz, 2H, NC H_2 -C H_2 N), 3.64 (qd, J = 6.9, 3.3 Hz, 4H, N(C H_2 CH₃)₂), 3.52-3.28 (m, 2H, N(C H_2 CH₂CH₃)), 1.83 (dt, J = 11.9, 7.4 Hz, 2H, N(C H_2 C H_2 CH₃)), 1.44 (t, J = 7.2 Hz, 6H, N(C H_2 C H_3)₂), 1.40 (s, 9H, C(C H_3)₃), 1.29 (s, 9H, C(C H_3)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): δ 170.54 (N=CHAr), 157.58, 140.99, 136.67, 128.17, 127.01, 117.50 (ArC), 60.60 (N(CH₂CH₂CH₃)), 58.53, 52.55 (NCH₂CH₂N), 55.04 (N(CH₂CH₃)₂), 35.00, 34.21 (C(CH₃)₃), 31.45, 29.38 (C(CH₃)₃), 16.03 (N(CH₂CH₂CH₃)), 10.78

(N(CH₂CH₂CH₃)), 8.43 (N(CH₂CH₃)₂). MALDI-TOF MS calcd. for $C_{24}H_{43}N_2O^+$ [M - I⁻]⁺ = 375.3370, found 375.5120.

Compound HL¹_{Et-Br} (yellow powder, 37.1 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 12.78 (s, 1H, OH), 8.72 (d, J = 1.3 Hz, 1H, N=CHAr), 7.42 (d, J = 2.4 Hz, Ar-H), 7.17 (d, J = 2.4 Hz, 1H, Ar-H), 4.28 (t, J = 6.3 Hz, 2H, NCH₂-CH₂N), 3.79 (t, J = 6.3 Hz, 2H, NCH₂-CH₂N), 3.63 (q, J = 7.3 Hz, 6H, N(CH₂CH₃)₃), 1.44 (t, J = 7.3 Hz, 9H, N(CH₂CH₃)₃), 1.41 (s, 9H, C(CH₃)₃), 1.30 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): δ 170.69 (N=CHAr), 157.72, 141.12, 136.79, 128.25, 127.12, 117.66 (ArC), 57.99, 52.51 (NCH₂CH₂N), 54.44 (N(CH₂CH₃)₃), 35.15, 34.33 (*C*(CH₃)₃), 31.58, 29.52 (C(CH₃)₃), 8.28 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₂₃H₄₁N₂O⁺ [M – Br⁻]⁺ = 361.3269, found 361.4918.

Compound HL²_{Et-I} (white powder, 99 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): 7.21 (d, J = 2.4 Hz, Ar-H), 6.91 (s, 1H, Ar-H), 4.06 (s, 2H ArC H_2 NH), 3.61 (t, J = 7.1 Hz, 2H, NC H_2 -C H_2 N), 3.09 (t, J = 7.3 Hz, 2H, NC H_2 -C H_2 N), 3.38 (q, J = 7.3 Hz, 6H, N(C H_2 CH₃)₃), 1.34 (t, J = 7.3 Hz, 9H, N(C H_2 C H_3)₃), 1.39 (s, 9H, C(C H_3)₃), 1.27 (s, 9H, C(C H_3)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): 153.80, 141.52, 136.06, 124.40, 123.53, 120.92 (ArC), 56.80, 53.08 (NC H_2 C H_2 N), 54.37 (N(C H_2 C H_3)₃), 40.95 (ArC H_2 NH) 35.03, 34.35 (C(C H_3)₃), 31.82, 29.78 (C(C H_3)₃), 8.26 (N(C H_2 C H_3)₃). MALDI-TOF MS calcd. for C₂₃H₄₃N₂O⁺ [M – I]⁺ = 363.3370 found 363.3247.

Compound HL³_{Et-I} (white powder, 67.4 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 9.58 (s, 1H, OH), 7.26 (d, *J* = 2.4 Hz, Ar-*H*), 6.93 (d, *J* = 2.4 Hz, 1H, Ar-*H*), 3.81 (s, 2H, ArCH₂NCH₃), 3.44 – 2.95 (m, *J* = 7.3 Hz, 10H, N(CH₂CH₃)₃ + NCH₂-CH₂N), 2.62 (s, 3H, ArCH₂NCH₃) 1.40 (s, 9H, C(CH₃)₃), 1.29 – 1.26 (m, 18H, N(CH₂CH₃)₃ + C(CH₃)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): 153.44, 142.00, 136.08, 124.14, 123.92, 120.80 (ArC), 62.67, 55.29 (NCH₂CH₂N), 54.45 (N(CH₂CH₃)₃), 48.61 (ArCH₂NCH₃), 44.03 (ArCH₂NCH₃), 35.01, 34.39 (*C*(CH₃)₃), 31.79, 29.72 (C(CH₃)₃), 8.23 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₂₄H₄₅N₂O⁺ [M – I⁻]⁺ = 377.3562, found 377.6838.

Compound HL⁴_{Et-I} (yellow powder, 92.3 %). ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 13.34 (s, 1H, OH), 8.53 (s, 1H, N=CHAr), 7.39 (d, J = 2.4 Hz, Ar-H), 7.14 (d, J = 2.4 Hz, 1H, Ar-H), 3.84 (t, J = 6.3 Hz, 2H, NCH₂-CH₂N), 3.53 (t, 2H, NCH₂CH₂CH₂N), 3.48 (q, J = 7.3 Hz, 6H, N(CH₂CH₃)₃), 2.21 (m, 2H, NCH₂CH₂CH₂N), 1.41 – 1.38 (m, 18H, N(CH₂CH₃)₃ + C(CH₃)₃), 1.30 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (600 MHz, CDCl₃, 30 °C): δ 168.66 (N=CHAr), 157.92, 140.83, 136.78, 127.68, 126.63, 117.68 (ArC), 55.98, 55.49 (NCH₂CH₂CH₂N), 54.01 (N(CH₂CH₃)₃), 35.15, 34.32 (C(CH₃)₃), 31.61, 29.51 (C(CH₃)₃), 24.02 (NCH₂CH₂CH₂N) 8.31 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₂₄H₄₃N₂O⁺ [M – I]⁺ = 375.3370, found 375.4977

General method for synthesis of Schiff-base zinc and magnesium complexes with quaternary ammonium iodide side-arm (1–5)

The following procedure is for the synthesis of zinc complex **1Et-I**. The synthesis of other complexes can be carried out similarly by using corresponding Schiff-base ligand and $Zn(N(SiMe_3)_2)_2$ or $Mg(N(SiMe_3)_2)_2$.

Synthesis of complex 1Et-I

Dichloromethane (30 mL) was added to a mixture of ligand HL^{1}_{Et-I} (0.488 g, 1.0 mmol, 2.0 equiv.) and $Zn((N(SiMe_{3})_{2})_{2}$ (0.193 g, 0.5 mmol, 1.0 equiv.). The solution was stirred at room temperature overnight. The volatile components were subsequently removed under vacuum. The solid was washed with dry hexane and dried under vacuum for 2 h giving a yellow powder. Crystals suitable for X-ray crystallography were grown by a slow evaporation in concentrated toluene solution.

Complex 1Et-I. Yellow powder (81.7 %) ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 8.91 (s, 2H, N=CHAr), 7.45 (d, *J* = 2.6 Hz, 2H, Ar-*H*), 7.21 (d, *J* = 2.6 Hz, 2H, Ar-*H*), 4.59 (t, *J* = 12.3, 2H, NCH₂CH₂N), 4.11 (t, *J* = 12.2, 2H, NCH₂CH₂N), 3.97 – 3.81 (m, 2H, NCH₂CH₂N), 3.45 (m, 12H, N(CH₂CH₃)₃), 3.26 (t, *J* = 12.7, 2H, NCH₂CH₂N), 1.37 (s, 18H, C(CH₃)₃), 1.28 (s, 18H, C(CH₃)₃), 1.21 (t, *J* = 7.2 Hz, 18H, N(CH₂CH₃)₃).¹³C{¹H} NMR (150 MHz, CDCl₃, 30 °C): δ 176.88 (N=CHAr), 168.55, 141.07, 137.02, 131.32,

131.00, 117.40 (Ar*C*), 55.61, 53.45 (NCH₂CH₂N), 55.00 (N(CH₂CH₃)₃), 35.70, 34.15 (*C*(CH₃)₃), 31.55, 29.59 (C(*C*H₃)₃), 8.38 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for $C_{46}H_{80}N_4O_2ZnI^+[M-I^-]^+ = 911.4617$, found 911.5478.

Complex 1Me-I. Yellow powder (68.5 %) ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 8.93 (s, 2H, N=CHAr), 7.51 – 7.42 (m, *J* = 2.6 Hz, 2H, Ar-*H*), 7.25 – 7.21 (m, 2H, Ar-*H*), 4.11 – 3.55 (m, 8H, NC*H*₂C*H*₂N), 3.50 – 3.25 (m, 8H, N(C*H*₂CH₃)₂), 3.14 (s, 6H, NC*H*₃) 1.39 (s, 18H, C(C*H*₃)₃), 1.29 (s, 18H, C(C*H*₃)₃), 1.16 (m, *J* = 7.2 Hz, 12H, N(CH₂C*H*₃)₂).¹³C{¹H} NMR (150 MHz, CDCl₃, 30 °C): δ 176.89 (N=CHAr), 168.44, 141.18, 137.11, 131.30, 131.07, 117.33 (ArC), 58.29, 57.73 (NCH₂CH₂N), 58.56, 53.11 (N(CH₂CH₃)₂), 48.58 (NCH₃), 35.74, 34.17 (*C*(CH₃)₃), 31.56, 29.64 (C(*C*H₃)₃), 8.42, 8.32 – 3.81 (N(CH₂CH₃)₂). MALDI-TOF MS calcd. for C₄₄H₇₆N₄O₂ZnI⁺ [M – I⁻]⁺ = 883.4299, found 883.5854.

Complex 1Pr-I. Yellow powder (49.0 %) ¹H NMR (600 MHz, CDCl₃, 30 °C): δ – 3.81 8.94 (s, 2H, N=CHAr), 7.46 (d, *J* = 2.6 Hz, 2H, Ar-*H*), 7.23 (d, *J* = 2.6 Hz, 2H, Ar-*H*), 4.56 (s, 2H, NCH₂CH₂N), 4.10 – 4.04 (br, 4H, NCH₂CH₂N), 3.51 – 3.16 (br, 14H, NCH₂CH₂N+N(CH₂CH₃)₂+N(CH₂CH₂CH₃), 1.6 (s, 2H, N(CH₂CH₂CH₃)), 1.48 (s, 2H, N(CH₂CH₂CH₃)), 1.37 (s, 18H, C(CH₃)₃), 1.29 – 1.25 (s, 30H, C(CH₃)₃ + N(CH₂CH₃)₂), 0.81 (t, *J* = 7.2 Hz, 6H, N(CH₂CH₃)₂).¹³C{¹H} NMR (150 MHz, CDCl₃, 30 °C): δ 177.06 (N=CHAr), 168.59, 141.04, 137.02, 131.30, 131.14, 117.42 (ArC), 60.91, 56.04 (NCH₂CH₂N), 55.4 – 55.8 (br, N(CH₂CH₃)₂), 53.41(NCH₂CH₂CH₃) 35.71, 34.16

 $(C(CH_3)_3)$, 31.55, 29.58 $(C(CH_3)_3)$, 16.05, 8.52 $(N(CH_2CH_2CH_3))$, 10.86 $(N(CH_2CH_3)_2)$. MALDI-TOF MS calcd. for C₄₈H₈₄N₄O₂ZnI⁺ [M – I⁻]⁺ = 939.4925, found 939.6238.

Complex 1Et-Br. Yellow powder (74.4 %) ¹H NMR (600 MHz, DMSO-*d6*, 30 °C): δ 8.64 (s, 2H, N=CHAr), 7.37 (s, 2H, Ar-*H*), 7.09 (s, 2H, Ar-*H*), 4.07 – 3.92 (m, 4H, NC*H*₂C*H*₂N), 3.35 (d, *J* = 7.3, 4H, NC*H*₂C*H*₂N), 3.22 (d, 12H, N(C*H*₂CH₃)₃), 1.36 (s, 18H, C(C*H*₃)₃), 1.26 (s, 18H, C(C*H*₃)₃), 1.06 (t, *J* = 7.2 Hz, 18H, N(CH₂C*H*₃)₃).¹³C{¹H} NMR (150 MHz, DMSO-*d6*, 30 °C): δ 176.32 (N=CHAr), 167.69, 139.94, 135.08, 130.03, 129.42, 117.31 (Ar*C*), 54.63, 51.49 (NCH₂CH₂N), 52.97 (N(CH₂CH₃)₃), 35.06, 33.53 (*C*(CH₃)₃), 31.20, 29.23 (C(CH₃)₃), 6.97 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₄₆H₈₀N₄O₂ZnBr⁺ [M – Br⁻]⁺ = 865.4731, found 865.5880.

Complex 2. Yellow powder (44.4 %) ¹H NMR (600 MHz, DMSO-*d6*, 30 °C): δ 7.09 (d, *J* = 2.6 Hz, 2H, Ar-*H*), 6.93 (d, *J* = 2.6 Hz, 2H, Ar-*H*), 4.98 (t, *J* = 5.9 Hz, 2H, ArCH₂N*H*), 3.94 (d, *J* = 4.4 Hz, 4H, ArCH₂NH), 3.43 (t, J = 8.2 Hz, 4H, NCH₂CH₂N), 3.22 (q, J = 7.2 Hz, 12H, N(CH₂CH₃)₃) 3.16 – 3.05 (m, 4H, NCH₂CH₂N), 1.33 (s, 18H, C(CH₃)₃), 1.24 (s, 18H, C(CH₃)₃), 1.13 (t, *J* = 7.2 Hz, 18H, N(CH₂CH₃)₃). ¹³C{¹H} NMR (150 MHz, DMSO-*d6*, 30 °C): δ 163.60, 137.33, 134.65, 126.12, 123.67, 121.51 (ArC), 53.81, 53.46 (NCH₂CH₂N) + ArCH₂NH), 53.41 (N(CH₂CH₃)₃), 35.29, 34.00 (C(CH₃)₃), 32.25, 30.18

 $(C(CH_3)_3)$, 7.69 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₄₆H₈₄N₄O₂ZnI⁺ [M – I⁻]⁺ = 915.4925, found 915.5941.

Complex 3. Yellow powder (51.8 %) ¹H NMR (600 MHz, DMSO-*d6*, 30 °C): δ 7.10 (m, 2H, Ar-*H*), 6.93 (m, 2H, Ar-*H*), 3.92 (s, 4H, ArCH₂NCH₃), 3.55 – 3.42 (m, 4H, NCH₂CH₂N), 3.11 (t, J = 7.5 Hz, 4H, NCH₂CH₂N), 3.17 (d, J = 7.5 Hz, 12H, N(CH₂CH₃)₃), 2.70 (s, 6H, , ArCH₂NCH₃), 1.23 (s, 18H, C(CH₃)₃), 1.10 (s, 18H, C(CH₃)₃), 1.10 (t, *J* = 7.2 Hz, 18H, N(CH₂CH₃)₃). ¹³C{¹H} NMR (150 MHz, DMSO-*d6*, 30 °C): δ 162.63, 136.75, 134.57, 125.36, 123.25, 120.11 (ArC), 60.48, 49.60 (NCH₂CH₂N), 52.87 (N(CH₂CH₃)₃), 46.51 (ArCH2NCH₃), 42.58 (ArCH₂NCH₃), 34.71, 33.50 (*C*(CH₃)₃), 31.70, 29.59 (C(CH₃)₃), 7.17 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₄₈H₈₈N₄O₂ZnI⁺ [M – I⁻]⁺ = 943.5238, found 943.8280.

Complex 4. Yellow powder (52.4 %) ¹H NMR (600 MHz, CDCl₃, 30 °C): δ 8.84 (s, 2H, N=CHAr), 7.41 (d, J = 2.6 Hz, 2H, Ar-H), 7.14 (d, J = 2.6 Hz, 2H, Ar-H), 4.17 (td, J = 11.9, 4.1 Hz, 2H, NCH₂CH₂CH₂N), 3.77 (td, J = 12.7, 5.0 Hz, 2H, NCH₂CH₂CH₂N), 3.55 (td, J = 12.0, 4.5 Hz, 2H, NCH₂CH₂CH₂N), 3.16 (dp, J = 41.6, 7.2 Hz, 12H, N(CH₂CH₃)₃), 2.58 (td, J = 13.0, 3.2 Hz, 2H, NCH₂CH₂CH₂N), 2.29 (dt, J = 11.2, 5.3 Hz, 2H, NCH₂CH₂CH₂N), 1.81 – 1.68 (m, 2H, NCH₂CH₂CH₂N), 1.41 (s, 18H, C(CH₃)₃), 1.27 (s, 18H, C(CH₃)₃), 1.12 (t, J = 7.2 Hz, 18H, N(CH₂CH₃)₃).¹³C{¹H} NMR (150 MHz, CDCl₃, 30 °C): δ 173.60

(N=CHAr), 168.22, 141.50, 136.14, 130.50, 129.98, 117.13 (ArC), 56.46, 54.73 (NCH₂CH₂CH₂N), 54.18 (N(CH₂CH₃)₃), 35.78, 34.11 (C(CH₃)₃), 31.70, 29.63 (C(CH₃)₃), 23.44 (NCH₂CH₂CH₂N), 7.87 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₄₈H₈₄N₄O₂ZnI⁺ [M – I⁻]⁺ = 939.4925, found 939.6513.

Complex 5. Yellow powder (74 %) ¹H NMR (600 MHz, DMSO-*d6*, 30 °C): δ 8.20 (s, 2H, N=CHAr), 7.22 (d, $J_{\text{HH}} = 2.7$ Hz, 2H, Ar*H*), 6.95 (d, $J_{\text{HH}} = 2.7$ Hz, 2H, Ar*H*), 3.35 – 3.30, (broad, 4H, NC*H*₂C*H*₂N), 2.92-2.75 (broad, 4H, NC*H*₂C*H*₂N), 3.25-2.92 (broad, 12H, N(C*H*₂CH₃)₃), 1.43 (s, 18H, C(C*H*₃)₃), 1.24 (s, 18H, C(C*H*₃)₃), 0.98 (d, $J_{\text{HH}} = 7.2$ Hz, 18H, N(CH₂C*H*₃)₃). ¹³C{¹H} NMR (150 MHz, DMSO-*d6*, 30 °C): δ 172.46 (N=CHAr), 168.38, 139.22, 131.16, 129.05, 127.40, 119.08 (Ar*C*), 56.92, 51.85 (NCH₂CH₂N), 53.03 (N(CH₂CH₃)₃), 35.07, 33.37 (*C*(CH₃)₃), 31.50, 29.78 (C(CH₃)₃), 7.30 (N(CH₂CH₃)₃). MALDI-TOF MS calcd. for C₄₆H₈₀N₄O₂MgI⁺ [M – I⁻]⁺ = 871.5176 found 871.6613.

Synthesis of Schiff-base zinc complex with tertiary amine side arm (7)

Compound **HL**¹ (0.332 g, 1.00 mmol, 2.0 equiv.) was dissolved in dichloromethane (30 mL). Zn((N(SiMe₃)₂)₂ (0.193 g, 0.500 mmol, 1.0 equiv.) was added into a solution. The solution was stirred at room temperature for 6 h. Then the volatile component was evaporated under vacuum and washed with dry hexane. The resulting product was dried under vacuum giving a yellow powder (0.237 g, 65%).¹H NMR (600 MHz, C₆D₆, 30 °C): δ 7.82 (s, 1H, N=CHAr), 7.67 (d, *J* = 2.7 Hz, 1H, Ar-*H*), 6.91 (d, *J* = 2.6 Hz, 1H, Ar-*H*), 3.30 (tq, *J* = 12.0, 6.8, 6.2 Hz, 2H, NCH₂CH₂N), 2.60 – 2.45 (m, 2H, NCH₂CH₂N), 2.31 (qt, *J* = 13.0, 7.0 Hz, 4H, N(CH₂CH₃)₂), 1.73 (s, 9H, C(CH₃)₃), 1.38 (s, 9H, C(CH₃)₃), 0.80 (t, *J* = 7.1 Hz, 6H, N(CH₂CH₃)₂). ¹³C{¹H} NMR (150 MHz, C₆D₆, 30 °C): δ 172.48 (N=CHAr), 169.62, 141.84, 135.03, 129.86, 129.63, 117.94 (ArC), 59.17, 53.92 (NCH₂CH₂N), 57.54

(N(*C*H₂CH₃)₃), 36.03, 34.06 (*C*(CH₃)₃), 31.79, 30.07 (C(*C*H₃)₃), 11.99 (N(CH₂CH₃)₃). Anal. Calcd for C₄₂H₇₀N₄O₂Zn: C,69.25; H, 9.69; N, 7.69. Found: C, 69.25; H, 9.65; N, 7.64.

Representative procedures for epoxide/CO₂ coupling reaction

The following representative reaction is for PO:**1Et-I** ratio of 2000:1, $P_{CO2} = 100$ psi, 75 °C. For other epoxides, the volume of epoxides was fixed to 2.0 mL and the amount of catalyst was adjusted according to molar ratios of epoxide and catalyst. For the study of solvent effect, 1.0 mL of solvent was added into the solution.

The coupling reaction of PO and CO₂ was carried out by charging magnetic bar, complex **1Et-I** (15.4 mg, 14.7 μ mol, 1.0 equiv.), and PO (2.0 mL, 29.5 mmol, 2000 equiv.) into a stainless-steel pressure reactor. Then the reaction was pressurized to 100 psi of CO₂ and submerged with continuous stirring into a preheated oil bath at 75 °C. After a specific time, the reactor was taken out of the oil bath and cooled with ice bath. The excess CO₂ was vented very slowly, and a small amount of sample was taken for ¹H-NMR analysis to calculate conversion. The pure product can be purified using column chromatography (EtOAc/hexanes).

Figure. S1 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL¹Me-I.

Figure. S2 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of ligand HL¹Me-I.

Figure. S3 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL¹Et-I.

Figure. S4 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of ligand HL¹Et-I.

Figure. S5 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL¹Pr-I.

Figure. S6 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of ligand HL¹Pr-I.

Figure. S7 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL¹_{Et-Br}.

Figure. S8 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of ligand HL¹_{Et-Br}.

Figure. S9 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL²_{Et-I}.

Figure. S10¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of ligand HL²Et-I.

Figure. S11 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL³_{Et-I}.

Figure. S12 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of ligand HL³_{Et-I}.

Figure. S13 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of ligand HL⁴_{Et-I}.

Figure. S15 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of complex 1Me-I.

Figure. S16¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of complex 1Me-I.

Figure. S17¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of complex 1Et-I.

Figure. S18¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of complex 1Et-I.

Figure. S19 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of complex 1Pr-I.

Figure. S20¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of complex 1Pr-I.

Figure. S21 ¹H NMR spectrum (DMSO-*d*6, 600 MHz, 30 °C) of complex 1Et-Br.

Figure. S22 ¹³C NMR spectrum (DMSO-*d*6, 150 MHz, 30 °C) of complex 1Et-Br.

Figure. S23 ¹H NMR spectrum (DMSO-*d*6, 600 MHz, 30 °C) of complex 2.

Figure. S24 ¹³C NMR spectrum (DMSO-*d*6, 150 MHz, 30 °C) of complex 2.

Figure. S25 ¹H NMR spectrum (DMSO-*d*6, 600 MHz, 30 °C) of complex 3.

Figure. S26 ¹³C NMR spectrum (DMSO-*d*6, 150 MHz, 30 °C) of complex 3.

Figure. S27 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of complex 4.

Figure. S28 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of complex 4.

Figure. S29 ¹H NMR spectrum (DMSO-*d*6, 600 MHz, 30 °C) of complex 5.

Figure. S30 ¹³C NMR spectrum (DMSO-*d*6, 150 MHz, 30 °C) of complex 5.

Figure. S31 ¹H NMR spectrum (C_6D_6 , 600 MHz, 30 °C) of complex 7.

Figure. S32 ¹³C NMR spectrum (CDCl₃, 150 MHz, 30 °C) of complex 7.

Figure. S33 MALDI-TOF mass spectrum of complex 1Me-I.

Figure. S34 MALDI-TOF mass spectrum of complex 1Et-I.

Figure. S35 MALDI-TOF mass spectrum of complex 1Pr-I

Figure. S36 MALDI-TOF mass spectrum of complex 1Et-Br

Figure. S37 MALDI-TOF mass spectrum of complex 2.

Figure. S38 MALDI-TOF mass spectrum of complex 3.

Figure. S39 MALDI-TOF mass spectrum of complex 4.

Figure. S40 MALDI-TOF mass spectrum of complex 5.

Entry	Solvent (1 mL)	%conversion ^b	TON ^c	$\mathrm{TOF}^{d}(\mathrm{h}^{-1})$
1	-	49	980	163
2	DMF	47	940	157
3	Toluene	42	840	140
4	THF	29	580	97
5	DCM	8	160	27

Table S1. PO and CO₂ coupling reaction using complex 1Et-I as catalysts^a

^{*a*} Reaction conditions: PO (2.0 mL), PO:**1Et-I** ratio = 2000:1, $CO_2 = 100$ psi, T = 75 °C, 6 h. ^{*b*} Determined by ¹H-NMR spectroscopy by comparison of the integrals of PC (4.8 ppm) and PO (3.8 ppm) of the crude sample. ^{*c*} TON = (monomer:catalyst ratio) x % conversion/100 ^{*d*} TOF = TON/time(h).

Figure S41 A plot between TON and reaction time. Reaction conditions: PO (2.0 mL), PO:**1Et-I** ratio = 10000:1, $CO_2 = 300$ psi, T = 100 °C. TON = (PO:**1Et-I** ratio) x %conversion/100.

Figure. S42 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of propylene carbonate.

Figure. S43 ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of propylene carbonate.

Figure. S44 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of 1,2-hexylene carbonate.

Figure. S45 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of 1,2-hexylene carbonate.

Figure. S46 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of 3-phenoxypropylene carbonate.

Figure. S47 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of 3-phenoxypropylene carbonate.

Figure. S48 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of 3-chloropropylene carbonate.

Figure. S49 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of 3-chloropropylene carbonate.

Figure. S50 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of styrene carbonate.

Figure. S51 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of styrene carbonate.

Figure. S52 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of vinyl ethylene carbonate.

Figure. S53 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of vinyl ethylene carbonate.

Figure. S54 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of *cis*-cyclopentene carbonate.

Figure. S55 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of *cis*-cyclopentene carbonate.

Figure. S56 ¹H NMR spectrum (CDCl₃, 600 MHz, 30 °C) of *cis*-cyclohexene carbonate.

Figure. S57 ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz, 30 °C) of *cis*-cyclohexene carbonate.

.X-ray crystallographic data

Compound	6	
CCDC	2090817	
Elemental formula	$C_{24}H_{42}Cl_{3.85}l_{0.15}N_2OZn$	
Formula weight	595.25	
Crystal system	Monoclinic	
Space group	$P2_1c$	
<i>a</i> / Å	13.4677 (7)	
b / Å	8.8859 (4)	
<i>c</i> / Å	24.3901 (13)	
α / \circ	90	
eta/\circ	92.600 (2)	
γ / \circ	90	
Cell volume, $V / Å^3$	2915.8 (3)	
No. of formula units/cell, Z	4	
$ ho_{ m calc}/ m Mg~m^{-3}$	1.356	
<i>F</i> (000)	1245	
Absorption coefficient, μ / mm^{-1}	1.37	
T / K	136	
Crystal colour, shape	Colourless, Block	
Crystal size / mm	$0.22\times0.18\times0.18$	
Total no. of reflections measured (not in-	79140	
cluding absences)		
No. of unique reflections, and R_{int} for	5996, 0.050	
equivalents		
No. of 'observed' reflections ($I > 2\sigma_I$)	5211	
Data/restraints/parameters	5996/320/34	
Goodness-of-fit on F^2 , S	1.05	
R indices ('observed' data)	$R_1 = 0.0307, wR_2 = 0.0661$	
<i>R</i> indices (all data)	$R_1 = 0.0390, wR_2 = 0.0693$	
Largest diff. peak and hole / $e^{A^{-3}}$	0.85 and -0.71	

Table S2 Crystal and structure refinement data for compound 6

References

- 1. Bürger, H.; Sawodny, W.; Wannagat, U., J. Organomet. Chem. 1965, 3, 113-120.
- Engelhardt, L.; Jolly, B.; Junk, P.; Raston, C.; Skelton, B.; White, A., Aust. J. Chem. 1986, 39, 1337-1345.
- 3. Darensbourg, D. J.; Choi, W.; Richers, C. P., *Macromolecules* **2007**, *40*, 3521-3523.
- 4. Wang, B.; Zhang, J.; Zhao, H.; Huang, H.; Zheng, J.; Wang, L.; Sun, J.; Zhang, Y.; Cao, Z., *Applied Organometallic Chemistry* **2017**, *31*, e3688.
- 5. Judmaier, M. E.; Wallner, A.; Stipicic, G. N.; Kirchner, K.; Baumgartner, J.; Belaj, F.; Mosch-Zanetti, N. C., *Inorg Chem* **2009**, *48*, 10211-21.
- 6. Sheldrick, G. M., Acta Crystallogr. A 2015, 71, 3-8.
- 7. Sheldrick, G. M., Acta Crystallogr. C 2015, 71, 3-8.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H., J. Appl. Crystallogr.
 2009, 42, 339-341.
- 9. Farrugia, L. J., J. Appl. Crystallogr. 2012, 45, 849-854.
- 10. Hong, M.; Kim, Y.; Kim, H.; Cho, H. J.; Baik, M. H.; Kim, Y., J. Org. Chem. 2018, 83, 9370-9380.