Electronic Supplementary Information (ESI)

 Choudhury*b and Sanjeev P. Mahanta*a

${ }^{\text {a Department of Chemical Sciences, Tezpur University, Tezpur, Assam, India }}$
${ }^{\text {b }}$ Department of Chemistry, B. Borooah College, Guwahati - 781007, Assam, India.
${ }^{\text {cD Department of Chemistry, Gauhati University, Guwahati - 781014, Assam, India. }}$

Email: digantachoudhury2008@gmail.com, spm@tezu.ernet.in

Colorimetric detection of fluoride ion in aqueous medium by thiourea derivatives: a transition metal ion assisted approach

General Methods

Instrumentation and reagents: All reagents and solvents were obtained from commercial sources and used as received, without further purification. All tetrabutylammonium salts for anion screening experiments were purchased from Sigma-Aldrich $®$ and used as such. Infrared spectra were recorded with a Perkin Elmer Frontier MIRFIR spectrometer.

HRMS data were recorded by electron spray ionization with a Q-TOF mass analyzer. The electrospray ionization mass spectrometry (ESI-MS) spectrum of the receptors was recorded in methanol in Shimadzu-LCMS-2010 mass spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra (100 MHz) were recorded on a 'JEOL' NMR spectrophotometer in DMSO- d_{6} at room temperature. In NMR spectra, chemical shifts are reported in parts per million (ppm) downfield of $\mathrm{Me}_{4} \mathrm{Si}$ (TMS) as internal standard. EPR analysis was carried out with JEOL, Model: JES-FA200 spectrometer. 2D-NMR experiments (COSY, NOESY, HSQC, HMBC NMR) were performed in a 'Bruker' 600 MHz NMR spectrophotometer.

Cyclic Voltammogram and Differential Pulse Voltammetry (DPV) were done using BioLogics SP-300 with EIS facility. UV-Vis experiments were performed with Shimadzu UV2550 spectrophotometer. UV-Vis titrations were carried out in dimethyl sulfoxide solution. The receptor solutions were titrated by adding known quantities of concentrated solution of the anions in question. Cyclic voltammetry experiments were carried out in a standard three electrode apparatus with a platinum working electrode, $\mathrm{Ag} / \mathrm{Ag}^{+}(0.01 \mathrm{M} \mathrm{AgNO} 3$ in 0.1 M TBAP in DMSO) reference electrode, and a Pt wire auxiliary electrode. The supporting electrolyte is 0.1 M tetrabutylammonium perchlorate (TBAP) in DMSO solution. The cell was maintained oxygen-free by purging dry nitrogen through the solution.

The limit of detection (LOD) value was calculated based on the anion titration of the developed probe under two conditions. To determine the S / N ratio, the absorbance of $\mathbf{C} 2$ without the ion, F^{-}was measured upto ten times and the standard deviation of blank measurements was determined. Similarly, to determine the S / N ratio presence of the metal ion, the absorbance of $\mathbf{C} 2 . \mathrm{Ni}^{2+} / \mathrm{Cu}^{2+}$ mixture without the presence of F^{-}was measured ten times and the value was calculated. So the detection limit of $\mathbf{C 2}$ and $\mathbf{C 2} \cdot \mathrm{Ni}^{2+} / \mathrm{Cu}^{2+}$ for F^{-}were determined from the following equation: $\mathrm{LOD}=\mathrm{K} \times \mathrm{S}_{\mathrm{b}} / \mathrm{S}$ Where $\mathrm{K}=2$ or 3 (we take 2 in this case); S_{b} is the standard deviation of the blank solution; S is the slope of the calibration curve. ${ }^{1}$ The fluoride contaminated groundwater samples collected from Baghpani village (Coordinates: 26.286372, 93.001249), Karbi Anglong, Assam, India was used as such

Synthesis and characterization

C1: $R_{1}=R_{2}=H$
C2: $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$
C3: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH}$
Scheme S1: Reaction scheme for the synthesis of C1-C3.

Synthetic Procedure:

0.1 mol of Potassium thiocyanate was dissolved in acetone. To it, 0.1 mol of the acylating agent i.e. Benzoyl chloride was added slowly with constant shaking. The mixture was then refluxed for 15 min , cooled and filtered. To the filtrate, 0.1 mol of amine dissolved in acetone was slowly added and the mixture was shaken. The mixture was then refluxed for 10 min and thereafter acetone was removed by distillation. In a beaker containing crushed ice, the mixture was added slowly with constant stirring and the reagent was solidified. The crude reagent was filtered and recrystallized from ethanol. C1, C2 and C3 were characterized by FT-IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.

C2

C3

Figure S1: Structure of the receptors C1-C3 chosen for the study.

C1: White solid, Yield: 92%, FT-IR of $\mathbf{C 1}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})=1659$ and $v(\mathrm{C}=\mathrm{S})=1533 .{ }^{1} \mathrm{H}$ NMR of $\mathbf{C 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 12.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.89(\mathrm{~d}, 2 \mathrm{H}), 7.71(\mathrm{~d}, 2 \mathrm{H})$, $7.65(\mathrm{t}, 1 \mathrm{H}), 7.54(\mathrm{t}, 2 \mathrm{H}), 7.42(\mathrm{t}, 2 \mathrm{H}), 7.28(\mathrm{t}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.4,167$, 137.7, 133.8, 131.7, 129.3, 129, 127.5, 127, 124.2; HRMS m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+}$257.0670, found 257.0929.

C2: Orange solid, Yield: 73\%, FT-IR of $\mathbf{C 2}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})=1672$ and $v(\mathrm{C}=\mathrm{S})=1527 .{ }^{1} \mathrm{H}$ NMR of C2 (400 MHz, DMSO- d_{6}): $\delta_{H}(\mathrm{ppm}) 12.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.45$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 10.20 (s , $1 \mathrm{H}, \mathrm{OH}), 8.51(\mathrm{~d}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}), 7.63(\mathrm{t}, 1 \mathrm{H}), 7.50(\mathrm{t}, 2 \mathrm{H}), 7.04(\mathrm{t}, 1 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}), 6.81$ (t, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 178,168.8,149.4,133.6,132.7,129.2,128.9,127$, 126.4, 123.7, 118.8, 115.6; HRMS m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 273.0619$, found 273.0697.

C3: Off white solid, Yield: 41%, FT-IR of $\mathbf{C 3}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})=1674, v(\mathrm{C}=\mathrm{S})=1536 .{ }^{1} \mathrm{H}-$ NMR of C3 (400 MHz, DMSO- d_{6}): $\delta_{H} 12.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $7.94(\mathrm{~d}, 2 \mathrm{H}), 7.62(\mathrm{t}, 1 \mathrm{H}), 7.50(\mathrm{t}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}), 6.64(\mathrm{~d}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 179.1,168.8,158,139.4,133.6,132.6,130,129.2,128.9$, 115, 113.9, 111.4; HRMS m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$273.0619, found 273.0694.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C 1}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C 2}$ (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C 3}$ (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S5: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{C 1}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{C} 2$ (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S7: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{C 3}$ (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S8: HRMS of C1

Figure S9: HRMS of C2

Figure S10: HRMS of C3

Figure S11: Stack plot of FT IR spectra for C1-C3. "IR spectra measured as KBr discs
a)

b)

Figure S12: a) ORTEP diagram of C2 with 50% probability ellipsoid; b) ORTEP diagram of C3 with 50\% probability ellipsoid
a)

Figure S13: Packing diagram of $\mathbf{C 2}$ viewed along b axis. The dashed lines indicate hydrogen bonds.

Figure S14: Packing diagram of C3 viewed along b axis. The dashed lines indicate hydrogen bonds.

Compound	C2	C3
CCDC number	2065030	2065031
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight (g/mol)	272.32	272.32
Temperature/K	296	296
Crystal system	Monoclinic	Monoclinic
Space group	P $21 / \mathrm{n}$	$P 2{ }_{1} / \mathrm{c}$
a/Å	9.7375(17)	12.2027(10)
b/Å	5.1423(9)	7.3419(6)
c/Å	25.972(5)	15.7431(13)
$\alpha /{ }^{\circ}$	90.00	90.00
$\beta /{ }^{\circ}$	95.230(5)	112.224(2)
$\gamma^{/ 0}$	90.00	90.00
Volume/ \AA^{3}	1295.1(4)	1305.66(19)
Z	4	4
Density, calcg $^{\text {c/ }} \mathrm{cm}^{3}$	1.397	1.385
Absorption coefficient, μ / mm^{-1}	0.249	0.247
F(000)	568	568
Crystal size/mm ${ }^{3}$	$0.250 \times 0.090 \times 0.070$	$0.260 \times 0.150 \times 0.120$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073$ A $)$	$\operatorname{MoK} \alpha(\lambda=0.71073$ A $)$
2Θ range for data collection/ ${ }^{\circ}$	4.040 to 25.025	1.803 to 25.022
Index ranges	$\begin{aligned} & -10 \leq \mathrm{h} \leq 11,-6 \leq \mathrm{k} \leq 6, \\ & -30 \leq 1 \leq 30 \end{aligned}$	$\begin{aligned} & -14 \leq h \leq 14,-8 \leq k \leq 8, \\ & -18 \leq 1 \leq 18 \end{aligned}$
Reflns. Collected	20726	17381
Unique Reflns.	2257	2284
Observed Reflns.	1579	2014
Data/restraints/parameters	2257/1/184	2284/1/184
Goodness-of-fit on F^{2}	1.025	1.047
Final R indexes [$1>=2 \sigma$ (I$)$]	$\mathrm{R}=0.0418 ; \mathrm{wR}=0.1036$	$\mathrm{R}=0.0344 ; \mathrm{wR}=0.0939$
Final R indexes [all data]	$\mathrm{R}=0.0659 ; \mathrm{wR}=0.1192$	$\mathrm{R}=0.0395 ; \mathrm{wR}=0.0983$

Table S1: The crystallographic parameters for compound $\mathbf{C} 2$ and $\mathbf{C 3}$.

Figure S15: Stack plot for C1-C3 recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$).

2D NMR analysis

For C2:

In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{C 2}$, we observed a doublet and two triplets at $\delta 7.94,7.62$ and 7.50 ppm for $2 \mathrm{H}, 1 \mathrm{H}$ and 2 H respectively. As there is no other possibility for a doublet and triplet with integration value of 2 H , so the signal at $\delta 7.94$ and 7.50 ppm must be for H_{h} and H_{i} respectively. Additionally, a correlated spectroscopy (COSY) correlation is observed between triplets at $\delta 7.62$ and 7.50 ppm , thereby pointing the triplet at $\delta 7.62 \mathrm{ppm}$ for H_{j}. Based on the correlations observed in HSQC spectrum, the signals arising at $\delta 128.9,133.6$ and 129.2 can be assigned to C-10, C-12 and C-11 respectively. Furthermore, the ${ }^{13} \mathrm{C}$-NMR spectrum shows signals for $\mathrm{C}-1$ and $\mathrm{C}-2$ at $\delta 168.8$ and 178 ppm respectively for
the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ moiety. Moreover, in the HSQC spectrum we did not observe any correlations corresponding to the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ signals at $\delta 149.4,132.7$ and 126.5 ppm , which gave us the impression that these signals might be either for C-4, C-9 or C-3 atom. The HMBC confirmed the signal at $\delta 132.7 \mathrm{ppm}$ to be for the $\mathrm{C}-9$ atom as it showed a correlation with the signal for H_{i} protons. In the aromatic region, $\mathrm{C}-4$ being the highly deshielded carbon atom on being attached to the hydroxyl group can be assigned to signal appearing at $\delta 149.4$, which does not show any correlation in HSQC spectrum but shows very good correlations with proton signal appearing at $\delta 8.51 \mathrm{ppm}$ in HMBC. Similarly, the C-3 carbon atom can be assigned to the signal appearing at $\delta 126.6 \mathrm{ppm}$, which is further confirmed by the correlation observed in HMBC with the proton signal appearing at $\delta 6.32 \mathrm{ppm}$. Thus, the proton signal at $\delta 8.51$ and 6.92 ppm can be assigned to H_{g} and H_{d} proton respectively. Likewise, the proton signal at $\delta 7.04$ and 6.81 ppm show good HMBC correlation with C-4 and C-3 carbon atoms respectively, helping us to assign them for H_{e} and H_{f} protons.

Figure S16: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY-NMR (600 MHz) spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}.

Figure S17: Expanded ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY-NMR (600 MHz) spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}.

Figure S18: Expanded HSQC spectrum $(600 \mathrm{MHz})$ of $\mathbf{C 2}$ in DMSO- d_{6}.

Figure S19: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC-NMR $(600 \mathrm{MHz})$ spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}.

Figure S20: Expanded ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC-NMR (600 MHz) spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}.

Lastly in the NOESY spectrum, the proton signal at $\delta 11.45 \mathrm{ppm}$ shows a correlation with the signals for H_{h}, pointing it to be the signal for NH_{a}. Similarly, the proton signal at δ 10.20 ppm shows a NOESY correlation with signals assigned for H_{d} protons, confirming the signal for OH_{c}. Naturally, the signal proton signal at $\delta 12.92 \mathrm{ppm}$ is assigned to NH_{b} proton.

Figure S21: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY-NMR (600 MHz) spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}

For C3:

The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{C} \mathbf{3}$ shows a doublet and two triplets at $\delta 7.98,7.67$ and 7.54 ppm for $2 \mathrm{H}, 1 \mathrm{H}$ and 2 H respectively. As there is no other possibility for a doublet and triplet with integration value of 2 H , so the signal at $\delta 7.98$ and 7.54 ppm must be for H_{h} and H_{i} respectively. Additionally, a correlated spectroscopy (COSY) correlation is observed between triplets at $\delta 7.67$ and 7.54 ppm , thereby pointing the triplet at $\delta 7.67 \mathrm{ppm}$ for H_{j}. A singlet at $\delta 7.29 \mathrm{ppm}$ for 1 H unambiguously corresponds to H_{c} as the signals for other possible singlets
$\left(\mathrm{NH}_{a}, \mathrm{NH}_{b}\right.$ and $\left.-\mathrm{OH}_{c}\right)$ are much more deshielded and appear downfield. Similarly, the triplet at $\delta 7.21 \mathrm{ppm}$ for 1 H can be attributed to signal for H_{f}.

Figure S22: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY-NMR $(400 \mathrm{MHz})$ spectrum of complex $\mathbf{C 3}$ in DMSO- d_{6}.

Figure S23: Expanded ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY-NMR $(400 \mathrm{MHz})$ spectrum of complex $\mathbf{C 3}$ in DMSO- d_{6}.

In the NOESY spectrum, the signal at $\delta 11.52 \mathrm{ppm}$ shows a correlation with H_{h} protons, pointing it to be the signal for NH_{a}. Similarly, the signal at $\delta 12.59 \mathrm{ppm}$ shows NOESY correlation with signal for NH_{a} and H_{c}, confirming the signal for NH_{b}. The assignment of NH_{a} and NH_{b} settles the signal at $\delta 9.66 \mathrm{ppm}$ to OH_{c} proton. At this point the signals at $\delta 7.05$ and 6.68 ppm can be designated to the H_{g} and H_{e} protons respectively owing to the NOESY correlation of OH_{c} proton with the signal at $\delta 6.68 \mathrm{ppm}$. As the signals for NH_{a} and NH_{b} could be clearly designated from COSY and NOESY NMR experiments, so we did not proceed towards complex Hetro-nuclear correlation spectroscopy.

Figure S24: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY-NMR $(600 \mathrm{MHz})$ spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}.

Figure S25: Expanded ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY-NMR (600 MHz) spectrum of complex $\mathbf{C} 2$ in DMSO- d_{6}.

Figure S26: Important NOE interactions observed in C2 (top) and C3 (bottom).

Figure S27: Stack plot for C1-C3 recorded by ${ }^{1} \mathrm{H}$ NMR with designation of NH_{a} and NH_{b} peaks (DMSO- $\left.d_{6}, 298 \mathrm{~K}\right)$.

Figure S28: Changes in the ${ }^{1} \mathrm{H}$ NMR spectrum of receptor a) $\mathbf{C 1}, \mathrm{b}$) $\mathbf{C} 2$ and c) $\mathbf{C 3}$ (with particular interest to the position of NH_{a} and NH_{b} protons) in CDCl_{3} and DMSO- d_{6}.

Figure S29: Chemical shift of the $\mathrm{NH}_{a}, \mathrm{NH}_{b}$ and OH resonances for C1-C3 in DMSO- d_{6} and CDCl_{3}. (DA: Do not Appear)

Figure S30: Changes in the ${ }^{1} \mathrm{H}$ NMR spectrum of receptor $\mathbf{C 2}$ in DMSO- d_{6} upon sequential addition of $\mathrm{D}_{2} \mathrm{O}$ (absolute intensity).

Figure S31: UV-Vis spectra for $\mathbf{C 1}\left([\mathbf{C 1}]=4.7 \times 10^{-5} \mathrm{M}\right)$ in presence of different anion $(50 \mathrm{x}$ $10^{-3} \mathrm{M}$) as their tetraalkylammonium salt in DMSO as the solvent.

Figure S32: a) UV-Vis spectra for $\mathbf{C 2}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M}\right)$ in presence of different anions $\left(50 \times 10^{-3} \mathrm{M}\right)$ as their tetraalkylammonium salt in DMSO as the solvent; b) Bar diagram representing UV-Vis response of $\mathbf{C} \mathbf{2}$ in presence of different anion at $\lambda_{\max }=380 \mathrm{~nm}$.

Figure S33: UV-Vis spectra for $\mathbf{C 3}\left([\mathbf{C 3}]=4.7 \times 10^{-5} \mathrm{M}\right)$ in presence of different anion $(50 \times$ $\left.10^{-3} \mathrm{M}\right)$ in DMSO as the solvent.

Figure S34: Image showing colorimetric response of the three receptors (C1-C3) in presence of different anions as their tetraalkylammonium salts in DMSO.

Figure S35: a) UV-Vis changes upon gradual addition of fluoride ($50 \times 10^{-3} \mathrm{M}$) solution in presence of $\mathbf{C 2}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M}\right)$ in DMSO; b) Calibration for the titration data of $\mathbf{C 2}$ versus TBAF in DMSO at $\lambda_{\text {max }}=380 \mathrm{~nm}$.

Figure S36: Comparative study of UV-Vis spectrum for C1-C3 ($6.2 \times 10^{-5} \mathrm{M}$) in presence of a) F^{-}, b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$and c) CN^{-}as their tetraalkylammonium salts $\left(50 \times 10^{-3} \mathrm{M}\right)$ in DMSO.

Figure S37: Comparative study of change in absorbance upon addition of different equivalents of TBAF $\left(50 \times 10^{-3} \mathrm{M}\right)$ and $\operatorname{TBAOH}\left(50 \times 10^{-3} \mathrm{M}\right)$ solution to $\mathbf{C 2}\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M}\right)$ w.r.t absorbance at $\lambda=380 \mathrm{~nm}$ in DMSO.

Figure S38: Change in the UV-Vis spectra of C1-C3 $\left(6.2 \times 10^{-5} \mathrm{M}\right)(\mathrm{a}-\mathrm{c})$ in DMSO solution upon addition of different metal salts ($3.8 \times 10^{-4} \mathrm{M}$) $\left(\mathrm{NaCl}, \mathrm{MgSO}_{4}, \mathrm{VCl}_{3}, \mathrm{MnCl}_{2}, \mathrm{FeSO}_{4}\right.$, $\left.\mathrm{CoCl}_{2}, \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnCl}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaSO}_{4}, \mathrm{CdCl}_{2}, \mathrm{PbSO}_{4}\right)$ as aqueous solution.

Figure S39: Change in the UV-Vis spectra of $\mathbf{C 1} . \mathrm{A}^{-}\left([\mathbf{C 1}]=4.7 \mathrm{x} 10^{-5} \mathrm{M}\right.$ and $\mathrm{A}=\mathrm{F}^{-}, \mathrm{CN}^{-}$, $\left.\mathrm{CH}_{3} \mathrm{COO}^{-} ;\left[\mathrm{F}^{-}\right]=7.8 \times 10^{-4} \mathrm{M},\left[\mathrm{CN}^{-}\right]=7.8 \times 10^{-4} \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=7.8 \times 10^{-4} \mathrm{M}\right)$ in DMSO solution upon addition of different metal salts $\left(\mathrm{NaCl}, \mathrm{MgSO}_{4}, \mathrm{VCl}_{3}, \mathrm{MnCl}_{2}, \mathrm{FeSO}_{4}\right.$, $\left.\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnCl}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaCl}_{2}, \mathrm{CdCl}_{2}, \mathrm{PbSO}_{4}\right)$ as aqueous solution ($3.8 \times 10^{-4} \mathrm{M}$).

Figure S40: Change in the UV-Vis spectra of C3. $A^{-}\left([\mathbf{C 3}]=4.7 \mathrm{x} 10^{-5} \mathrm{M}\right.$ and $\mathrm{A}=\mathrm{F}^{-}, \mathrm{CN}^{-}$, $\left.\mathrm{CH}_{3} \mathrm{COO}^{-} ;\left[\mathrm{F}^{-}\right]=1.5 \times 10^{-3} \mathrm{M},\left[\mathrm{CN}^{-}\right]=1.5 \times 10^{-3} \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=1.5 \times 10^{-3} \mathrm{M}\right)$ in DMSO solution upon addition of different metal salts $\left(\mathrm{NaCl}, \mathrm{MgSO}_{4}, \mathrm{VCl}_{3}, \mathrm{MnCl}_{2}, \mathrm{FeSO}_{4}\right.$, $\left.\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnCl}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaSO}_{4}, \mathrm{CdCl}_{2}, \mathrm{PbSO}_{4}\right)$ as aqueous solution ($3.8 \times 10^{-4} \mathrm{M}$).

Figure S41: a) Change in the UV-Vis spectra of C2.F ${ }^{-}\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times 10^{-}\right.$ ${ }^{3} \mathrm{M}$) in DMSO solution upon addition of different metal salts $\left(\mathrm{NaCl}, \mathrm{MgSO}_{4}, \mathrm{VCl}_{3}, \mathrm{MnCl}_{2}\right.$, $\left.\mathrm{FeSO}_{4}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnCl}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaSO}_{4}, \mathrm{CdCl}_{2}, \mathrm{PbSO}_{4}\right)$ as aqueous solution; b) Image showing colorimetric response of $\mathbf{C} 2 . \mathbf{F}^{-}\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]\right.$ $=0.15 \times 10^{-3} \mathrm{M}$) in presence of different metal ions (as their aqueous salt solution) in DMSO.

Figure S42: Bar diagram corresponding to the absorbance at 405 nm for $\mathbf{C 2} . \mathrm{F}^{-}([\mathbf{C 2}]=6.2 \mathrm{x}$ $10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times 10^{-3} \mathrm{M}$) solution in DMSO solution in presence of different metal ions screened.

Figure S43: a) Change in the UV-Vis spectra of $\mathbf{C} 2$ solution $\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M}\right)$ in DMSO upon sequential addition of aqueous $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}\left(\left[\mathrm{Ni}^{2+}\right]=3.8 \times 10^{-4} \mathrm{M}\right)$ solution and different anions $\left(\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{CN}^{-}, \mathrm{I}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}\right.$) as their tetraalkylammonium salt (50 x $10^{-3} \mathrm{M}$) in DMSO; b) Photograph showing colorimetric change upon sequential addition of various anions as their tetraalkylammonium salt to $\mathbf{C 2}: \mathrm{Ni}^{2+}$ mixture in $\mathrm{DMSO} /$ water; c) Change in the UV -Vis spectra of $\mathbf{C} 2$ solution $\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M}\right)$ in DMSO upon sequential addition of aqueous $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\left(\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-4} \mathrm{M}\right)$ solution and different anions $\left(\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{CN}^{-}\right.$, $\mathrm{I}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}$) as their tetraalkylammonium salt ($50 \times 10^{-3} \mathrm{M}$) in DMSO; d) Photograph showing colorimetric change upon sequential addition of various anions as their tetraalkylammonium salt to $\mathbf{C 2}: \mathrm{Cu}^{2+}$ mixture in DMSO /water.

Figure S44: a) Evolution of UV-Vis spectra of $\mathbf{C} 2$ and $\mathrm{Ni}^{2+}\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{Ni}^{2+}\right]=7.5\right.$ $\times 10^{-4} \mathrm{M}$) mixture in DMSO/water upon gradual addition of F^{-}ion $\left(50 \times 10^{-3} \mathrm{M}\right)$ in DMSO; b) Evolution of UV-Vis spectra of $\mathbf{C 2}$ and $\mathrm{Ni}^{2+}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{Ni}^{2+}\right]=7.5 \times 10^{-4} \mathrm{M}\right)$ mixture in DMSO/water upon gradual addition of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion $\left(50 \times 10^{-3} \mathrm{M}\right)$ in DMSO.

Figure S45: a) Evolution of UV-Vis spectra of $\mathbf{C 2}$ and $\mathrm{Cu}^{2+}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{Cu}^{2+}\right]=3.8\right.$ $\times 10^{-5} \mathrm{M}$) mixture in DMSO/water upon gradual addition of F^{-}ion ($50 \times 10^{-3} \mathrm{M}$) in DMSO; b) Evolution of UV-Vis spectra of $\mathbf{C} 2$ and $\mathrm{Cu}^{2+}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-5} \mathrm{M}\right)$) mixture in $\mathrm{DMSO} /$ water upon gradual addition of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ion $\left(50 \times 10^{-3} \mathrm{M}\right)$ in DMSO.

Figure S46: UV-Vis spectra of $\mathbf{C} 2$ and $\mathrm{Cu}^{2+}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-5} \mathrm{M}\right)$ mixture in DMSO/water upon gradual addition of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion $\left(50 \times 10^{-3} \mathrm{M}\right)$ in DMSO.

Figure S47: a) Job's plot for C2.F ${ }^{-}\left([\mathbf{C 2}]=4.6 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=4.6 \times 10^{-5} \mathrm{M}\right) \mathrm{DMSO} /$ water mixture and $\mathrm{Ni}^{2+}\left(4.6 \times 10^{-5} \mathrm{M}\right)$ in DMSO; b) Job's plot for C2.F ${ }^{-}\left([\mathbf{C} 2]=4.6 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=\right.$ $\left.4.6 \times 10^{-5} \mathrm{M}\right) \mathrm{DMSO} /$ water mixture and $\mathrm{Cu}^{2+}\left(4.6 \times 10^{-5} \mathrm{M}\right)$ in DMSO.

Figure S48: Bar graph of anti-interference performance of $\mathbf{C} 2$ for F^{-}in presence of other anion solutions in DMSO.

Figure S49: a) Absorption spectrum of $\mathbf{C 2}$ in presence of F^{-}in DMSO with the presence of various cations (5 equiv.) and Ni^{2+} (5 equiv.) as aqueous salt solutions. The green bars represent the absorption intensity of $\mathbf{C} \mathbf{2}$ in the presence of other metal ions (5 equiv.); the blue bars represent the absorption intensity of $\mathbf{C 2}$ in the presence of the indicated metal ions, followed by 5 equiv. of Ni^{2+} ion; b) Absorption spectrum of $\mathbf{C 2}$ in presence of F^{-}in DMSO with the presence of various cations (5 equiv.) and Cu^{2+} (5 equiv.) as aqueous salt solutions. The green bars represent the absorption intensity of $\mathbf{C 2}$ in the presence of other metal ions (5 equiv.); the blue bars represent the absorption intensity of $\mathbf{C} 2$ in the presence of the indicated metal ions, followed by 5 equiv. of Cu^{2+} ion.

Figure S50: UV-Vis response upon sequential addition of aqueous metal chloride salt solutions $\left(\left[\mathrm{Ni}^{2+}\right]=7.5 \times 10^{-4} \mathrm{M}\right.$ and $\left.\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-5} \mathrm{M}\right)$ to $\mathbf{C 2 . F ^ { - }}\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times\right.$ $\left.10^{-3} \mathrm{M}\right)$ mixture in a) Chloroform $\left(\mathrm{CHCl}_{3}\right)$ b) Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and c) methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$.

Figure S51: a) EPR spectra (100K, DMSO) [black: addition of CuCl_{2} (aq) to $\mathbf{C 2}$ solution; red: addition of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ to $\mathbf{C} 2$ solution followed by TBAF in DMSO; b) EPR spectra (100K, DMSO) [black: addition of NiCl_{2} (aq) to $\mathbf{C} 2$ solution; red: addition of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (aq) to $\mathbf{C} 2$ solution followed by TBAF in DMSO.

Figure S52: Titration of $\mathbf{C 1}\left(5.62 \times 10^{-2} \mathrm{M}\right)$ with TBAF ($0-2$ eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO-d $d_{6}, 298 \mathrm{~K}$).

Figure S53: Titration of $\mathbf{C 2}\left(7.32 \times 10^{-2} \mathrm{M}\right)$ with $\operatorname{TBAF}\left(0-2\right.$ eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$)

Figure S54: Titration of $\mathbf{C 3}\left(7.32 \times 10^{-2} \mathrm{M}\right)$ with TBAF ($0-2$ eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO-d $6,298 \mathrm{~K}$).

Figure S55: Expanded spectrum (with emphasis on the $\mathrm{H}_{g}, \mathrm{H}_{e}, \mathrm{H}_{d}$ and H_{f} protons) of titration of $\mathbf{C 2}$ ($7.32 \times 10^{-2} \mathrm{M}$) with TBAF ($0-2$ eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- d_{6}, 298 K).

Figure S56: Expanded spectrum (with emphasis on $-\mathrm{OH}_{c}$ proton) of titration of $\mathbf{C 2}$ (7.32 x $10^{-2} \mathrm{M}$) with TBAF (0-0.8 eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$).

$$
\mathrm{TBAF}+\mathrm{C} 2
$$

Figure S57: TBAF ($2 \times 10^{-3} \mathrm{M}$) in presence of $\mathbf{C 2}$ (1 eq.) recorded by ${ }^{19} \mathrm{~F}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S58: Expanded spectrum (with emphasis on the H_{c} and H_{e} protons) of titration of C3 ($7.32 \times 10^{-2} \mathrm{M}$) with TBAF (0-2 eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S59: Expanded spectrum (with emphasis on $-\mathrm{OH}_{d}$ proton) of titration of $\mathbf{C 2}$ (7.32 x $10^{-2} \mathrm{M}$) with TBAF (0-0.8 eq.) recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S60: Response of $\mathbf{C 2}\left(7.32 \times 10^{-2} \mathrm{M}\right)$ (with emphasis on $\mathrm{H}_{g}, \mathrm{H}_{e}, \mathrm{H}_{d}$ and H_{f} protons) in presence of $\mathrm{F}^{-}, \mathrm{CN}^{-}$and $\mathrm{CH}_{3} \mathrm{COO}^{-}$recorded by ${ }^{1} \mathrm{H}$ NMR spectroscopy (DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S61: UV-Vis response after sequential addition of $\mathrm{H}_{2} \mathrm{O}$ to the $\mathbf{C 2}$. $\mathbf{F}^{-}\left([\mathbf{C} 2]=6.2 \times 10^{-5}\right.$ $\left.\mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times 10^{-3} \mathrm{M}\right)$ complex followed by addition of aqueous metal chloride salt $\left(\left[\mathrm{Ni}^{2+}\right]\right.$ $=7.5 \times 10^{-4} \mathrm{M}$ and $\left.\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-5} \mathrm{M}\right)$ solution.

Figure S62: UV-Vis spectrum after sequential addition of $\mathrm{TBAOH}\left(\left[\mathrm{OH}^{-}\right]=1.53 \times 10^{-3} \mathrm{M}\right)$ solution to $\mathbf{C 2}\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M}\right)$ in DMSO followed by addition of aqueous metal salt $\left(\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O} / \mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)$ solution.

Figure S63: a) Study on effect of pH on fluoride sensing by $\mathbf{C} 2$ in presence of aqueous NiCl_{2} in HEPES buffer (DMSO:Water $=7: 3, \mathrm{pH}=7.2$) at $\lambda_{\max }=415 \mathrm{~nm}$; b) Study on effect of pH on fluoride sensing by $\mathbf{C 2}$ in presence of aqueous CuCl_{2} in HEPES buffer (DMSO:Water $=$ $7: 3, \mathrm{pH}=7.2$) at $\lambda_{\text {max }}=425 \mathrm{~nm}$.

 +TBAF in DMSO; c) $\mathbf{C 2}+\mathrm{TBAF}+\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ mixture; d) $\mathrm{C} 2+\mathrm{TBAF}+$ $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ mixture.

Figure S65: Changes in the DPV (vs $\mathrm{Ag} / \mathrm{Ag}^{+}$) curves w.r.t. the ligand based peak of $\mathbf{C 2}$ in presence of $n-\mathrm{Bu}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ upon sequential addition TBAF solution followed by aqueous metal salt solution to a $\mathbf{C} 2$ solution in DMSO. Changes in the curves (Black: $\mathbf{C} 2$ solution in DMSO; red: $\mathbf{C} 2+\mathrm{TBAF}$ in DMSO ; blue: $\mathbf{C} 2+\mathrm{TBAF}+\mathrm{NiCl}_{2}$ in DMSO /water mixture; pink: $\mathrm{C} 2+\mathrm{TBAF}+\mathrm{NiCl}_{2}$ in $\mathrm{DMSO} /$ water mixture $)$.

Figure S66: IR spectrum of $\mathbf{C} 2$ and $\left[\mathrm{Ni}(\mathbf{C 2})_{2}\right]$ collected in ATR mode.

Figure S67: ESI mass spectra of $\left[\mathrm{Ni}(\mathbf{C} 2)_{2}\right]$.

Figure S68: ESI mass spectra of $\left[\mathrm{Cu}(\mathbf{C 2})_{2}\right]$.

Figure S69: ${ }^{1} \mathrm{H}$ NMR spectrum of in situ metal complex formed for $\mathbf{C} 2\left(7.32 \times 10^{-2} \mathrm{M}\right)$ in presence of Ni^{2+} ions (0.5 equiv.) and $\mathrm{F}^{-}\left(0.5\right.$ equiv.) in DMSO- d_{6} at 298 K .

Figure S70: ${ }^{1} \mathrm{H}$ NMR spectrum of in situ metal complex formed for $\mathbf{C 2}\left(7.32 \times 10^{-2} \mathbf{M}\right)$ in presence of Cu^{2+} ions (0.5 equiv.) and F^{-}(0.5 equiv.) in DMSO- d_{6} at 298 K .

Figure S71: ${ }^{1} \mathrm{H}$ NMR spectrum of the isolated yellow $\mathrm{Cu}(\mathrm{II})$ complex in $\mathrm{DMSO}-d_{6}$ at 298 K .

Figure S72: a) Calibration curve for determining the concentration of fluoride (as $\mathrm{NaF}_{\text {in }} \mathrm{H}_{2} \mathrm{O}$) in a sample $\lambda_{\text {max }}=406 \mathrm{~nm}$. $[\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M} ;\left[\mathrm{Cu}^{2+}\right]=7.5 \times 10^{-5} \mathrm{M} ;$ b) Calibration curve for determining the concentration of fluoride (as NaF in $\mathrm{H}_{2} \mathrm{O}$) in a sample at $\lambda_{\text {max }}=420 \mathrm{~nm}$. [C2] $=6.2 \times 10^{-5} \mathrm{M} ;\left[\mathrm{Ni}^{2+}\right]=7.5 \times 10^{-5} \mathrm{M}$.

Figure S73: a) UV-Vis spectra of $\left(\mathbf{C} 2+\mathrm{F}^{-}+\mathrm{Ni}^{2+}\right)\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times 10^{-3} \mathrm{M}\right.$, $\left[\mathrm{Ni}^{2+}\right]=7.5 \times 10^{-4} \mathrm{M}$) showing initial increase in the absorbance at $\lambda_{\max }=404 \mathrm{~nm}$ upon addition of $\mathrm{H}_{2} \mathrm{O}$ (upto 10% of total volume); b) UV-Vis spectra of $\left(\mathbf{C} 2+\mathrm{F}^{-}+\mathrm{Ni}^{2+}\right)\left([\mathbf{C} 2]=6.2 \times 10^{-5}\right.$ $\left.\mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times 10^{-3} \mathrm{M},\left[\mathrm{Ni}^{2+}\right]=7.5 \times 10^{-4} \mathrm{M}\right)$ showing subsequent decrease in the absorbance (represented by dotted lines) at $\lambda_{\max }=404 \mathrm{~nm}$ after addition of $\mathrm{H}_{2} \mathrm{O}$ (10% onwards).

Figure S74: UV-Vis spectra of $\left(\mathbf{C} 2+\mathrm{F}^{-}+\mathrm{Cu}^{2+}\right)\left([\mathbf{C} 2]=6.2 \times 10^{-5} \mathrm{M},\left[\mathrm{F}^{-}\right]=1.53 \times 10^{-3} \mathrm{M}\right.$, $\left.\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-5} \mathrm{M}\right)$ showing decrease in the absorbance at $\lambda_{\max }=374 \mathrm{~nm}$ upon addition of $\mathrm{H}_{2} \mathrm{O}$.

Figure S75: a) UV-Vis spectra upon sequential addition of groundwater samples (GW) to C2 $\left([\mathbf{C 2}]=6.2 \times 10^{-5} \mathrm{M}\right)$ in DMSO in presence of aqueous $\mathrm{Ni}^{2+}\left(\left[\mathrm{Ni}^{2+}\right]=7.5 \times 10^{-4} \mathrm{M}\right)$ ions and Cu^{2+} ions $\left(\left[\mathrm{Cu}^{2+}\right]=3.8 \times 10^{-5} \mathrm{M}\right)$. b) Colour change observed upon addition of $20 \mu \mathrm{~L}$ groundwater samples (GW) to $\mathbf{C 2}$ in DMSO in presence of aqueous Ni^{2+} ions and Cu^{2+} ions.

Table S2: Literature reports on transition metal based fluoride sensor

S. No.	Metal receptor system	Fluoride Salt	LOD	Solvent used for study	Reference
1	Copper(II) bis(terpyridine) complex	TBAF	$5.07 \mu \mathrm{M}$	Acetonitrile	P. K. Kar and coworkers, Photochem. Photobiol. Sci., 2018, 17, 815-821.
2	Co(II) Hexacarboxamide Cryptand Complex	TBAF	$2-5 \mathrm{ppm}$	DMF	C. C. Cummins and coworkers, Inorg. Chem. 2017, 56, 7615-7619.
3	Zn (II) tripodal complex	TBAF/ NaF	$\begin{aligned} & 4.84 \times \\ & 10^{-12} \mathrm{M} \end{aligned}$	Water	N. Singh and coworkers, Dalton Trans., 2015, 44, 12589-12597.
4	2,4- dihydroxybenzaldoxime complex of $\mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and Zn (II)	TBAF	$\begin{aligned} & 4.86 \times \\ & 10^{-6} \mathrm{M} \end{aligned}$	DMSO	J. B. Baruah and coworkers, RSC Adv., 2015, 5, 82144-82152.
5	$\mathrm{Ru}(\mathrm{II})$ complex	TBAF	-	Acetonitrile	G. K. Lahiri and coworkers, Dalton Trans., 2012, 41, 4484-4496.
6	Fe (III) complex	NaF	$140 \mu \mathrm{M}$	DMSO/Water (3:7)	Z. Shen and coworkers, Tetrahedron, 2011, 67, 7909-7912.
7	Co (II) thiazoline based complex	NaF	-	DMF/water (9:1)	C.-S. Ha and coworkers, Dalton Trans., 2009, 47, 10422-10425.
8	Zr(IV) EDTA flavonol complex	NaF	$\begin{aligned} & 3 \times 10^{-6} \\ & \mathrm{M} \end{aligned}$	Water	T. M. Suzuki and coworkers, J. Chem. Soc.,

					Perkin Trans. 2, 2002, 759-762.
9	Zn(II)Terpyridine-Triarylb orane Conjugates	TBAF	-	THF	M. H. Lee and coworkers, Organometallics, 2014, 33, 753-762.
10	$\mathrm{Ru}(\mathrm{II})$-bipy based complex	TBAF	$1 \mathrm{ppm}-10$ ppm	Acetonitrile	Z. Bai and co-workers, Dalton Trans., 2006, 30, 3678-3684.
11	amino-naphthoquinone based $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$ complexes	TBAF	$\begin{aligned} & 0.006 \\ & \mu \mathrm{M} \end{aligned}$	DMF/water (3:7)	K. P. Elango and coworkers, RSC Adv., 2016, 6, 91265-91274.
12	$\mathrm{Cu}(\mathrm{I})$ Schiff base complex	$\begin{aligned} & \text { TBAF/ } \\ & \text { NaF } \end{aligned}$	$0.12 \mu \mathrm{M}$	DMSO/Water	S. P. Mahanta.and coworkers, New J. Chem., 2018, 42, 3758-3764.
13	$\mathrm{Cu}(\mathrm{I})$ DPQ complex	TBAF/ NaF	0.15 ppm	DMSO/Water	S. P. Mahanta.and coworkers, New J. Chem., 2019, 43, 3447-3453
14	Al(III) Schiff base complex	$\begin{aligned} & \text { TBAF/ } \\ & \text { KF } \end{aligned}$	$\begin{aligned} & 2 \times 10^{-12} \\ & \mathrm{M} \end{aligned}$	Water	P. Mal and co-workers, Dalton Trans., 2021, 50, 3027-3036
15	This work	TBAF/ NaF	1.07 ppm	DMSO/Water	

Theoretical Studies:

c)

Figure S76: DFT optimized structure of a) C1, b) C2, c) C3.

Figure S77: HOMO and LUMO of C1, C2 and C3.

c)

Figure S78: Structures for interaction of F^{-}with a) $\mathbf{C 1}$, b) $\mathbf{C 2}$ and c) $\mathbf{C 3}$

Figure S79: UV-Vis spectrum of C2.F- complex simulated from the TD- DFT calculation.

395.96	0
355.26	0
345.92	0
333.61	0
326.3	0.0002
290.82	0
284.03	0
279.83	0
277.93	0.4567
267.41	0
265.6	0
259.29	0.09
254.09	0
249.28	0.6141
246.02	0.0846
245.55	0
239.13	0.0403
233.83	0
230.91	0
222.99	0.0531
213.4	0.0844
211.07	0
209.21	0.0124
207.6	0
204.23	0.1537

Table S3: TD f-values of the obtained UV-Vis spectrum for C2.F- complex.

Figure S80: DFT optimized structure of a) $\left[\mathrm{Ni}(\mathbf{C 2})_{2}\right]$ and b) $\left[\mathrm{Cu}(\mathbf{C 2})_{2}\right]$ complex.

Figure S81: a) HOMO and b) LUMO of $\left[\mathrm{Ni}(\mathbf{C 2})_{2}\right]$ complex

Figure S82: a) HOMO and b) LUMO of $\left[\mathrm{Cu}(\mathbf{C 2})_{2}\right]$ complex

Figure S83: UV-Vis spectrum of a) $\left[\mathrm{Ni}(\mathbf{C 2})_{2}\right]$ and b) $\left[\mathrm{Cu}(\mathbf{C 2})_{2}\right]$ complex simulated from the TDDFT calculation

716.67	0.0008
686.64	0.0017
642.72	0.002
610.41	0.0186
589.84	0.0002
588.32	0.0012
565.22	0.0011
562.08	0.0002
557.99	0.007
549.41	0.0015
547.57	0.0004
526.71	0.0013
499.89	0.1401
481.3	0.0054
474.69	0.0006
471.64	0.0048

S54

467.79	0.0023
450.87	0.012
447.62	0.0042
445.4	0.0076
441.6	0.0089
439.88	0.0003
439.54	0.0001
432.61	0.0011
429.2	0.0056
424.29	0.0076
415.56	0.0217
414.71	0.0026
407.51	0.003
405.27	0.0005
397.46	0.0219
395.47	0.0309
392.64	0.004
388.57	0.0418
378.09	0.0034
375.58	0.028
372.69	0.022
371.77	0.0026
369.37	0.1499
366.63	0.0006
365.55	0.0017
360.86	0.0742
359.2	0.0037
358.33	0.0455
4	

Table S4:TD f-values of the obtained UV-Vis spectrum for $\left[\mathrm{Ni}(\mathbf{C 2})_{2}\right]$

671.97	0.0001
505.85	0.0231
469.63	0.0014
449.48	0.1634
361.49	0.0235
360.72	0.0003
354.92	0.0031
354.51	0.0743
348.87	0.0001
346.18	0.0069
338.52	0.0159
332.68	0.009
328.3	0.0013

S55

315.59	0.0841
315.43	0.0915
302.04	0.1404
300.72	0.0627
300.56	0.0018
296.36	0.0091
295.74	0.0123
293.57	0.0025
291.48	0.0453
289.31	0.0058
288.13	0.0081
287.81	0.0609
283.54	0.0297
282.11	0.0196
278.39	0.1647
274.89	0.0612
274.6	0.0216
273.26	0.003
268.35	0.0223
267.61	0.0041
266.56	0.0696
265.76	0.0068
263.19	0.0266
261.18	0.0793
260.28	0.0457
258	0.0297
254.75	0.0167
254.65	0.009
250.64	0.0708

Table S5:TD f -values of the obtained UV-Vis spectrum for $\left[\mathrm{Cu}(\mathbf{C 2})_{2}\right]$

Z-matrix of the Ligand $\mathbf{C 1}$

C	-5.767244000	-0.274963000	0.090635000
C	-5.036419000	0.852362000	0.496190000
C	-3.636432000	0.833208000	0.458242000
C	-2.960970000	-0.319169000	0.013103000
C	-3.696043000	-1.453777000	-0.374229000
C	-5.094704000	-1.429349000	-0.340979000
C	-1.471789000	-0.414705000	-0.043540000
N	-0.778611000	0.780040000	-0.128689000
C	0.621015000	1.010659000	-0.117941000
N	1.367259000	-0.111822000	-0.052440000
C	2.774446000	-0.309205000	0.007973000
C	3.743613000	0.705087000	-0.077599000
C	5.103271000	0.363586000	-0.007706000
C	5.511030000	-0.967799000	0.143728000
C	4.538320000	-1.977837000	0.226129000
C	3.181757000	-1.652431000	0.159013000
O	-0.882343000	-1.526699000	-0.030479000
S	1.109633000	2.644895000	-0.185242000
H	-6.851349000	-0.256351000	0.119757000
H	-5.552981000	1.738004000	0.848538000
H	-3.094016000	1.704034000	0.814860000
H	-3.159073000	-2.340288000	-0.692459000
H	-5.657356000	-2.304305000	-0.646581000
H	-1.301568000	1.640501000	-0.229774000
H	0.816435000	-0.978943000	-0.035345000
H	3.446316000	1.737031000	-0.195652000
H	5.844984000	1.152532000	-0.073543000
H	6.565288000	-1.216172000	0.197569000

H	4.834701000	-3.014503000	0.344227000
H	2.433598000	-2.437806000	0.225892000

Z-matrix of the Ligand $\mathbf{C 2}$

C	3.091787000	-0.268864000	-0.009935000
C	3.807712000	-1.412493000	0.386130000
H	3.254867000	-2.285466000	0.714610000
C	5.206529000	-1.414615000	0.347189000
H	5.754092000	-2.296865000	0.659433000
C	5.898933000	-0.277411000	-0.098648000
H	6.983117000	-0.279407000	-0.132172000
C	5.187197000	0.858822000	-0.512740000
H	5.718389000	1.731396000	-0.875989000
C	3.786922000	0.865757000	-0.469268000
H	3.258790000	1.742582000	-0.832455000
C	1.599177000	-0.338926000	0.051805000
C	-0.456433000	1.140216000	0.125920000
C	-2.661825000	-0.055650000	0.002700000
C	-3.593123000	0.992862000	0.035038000
H	-3.248036000	2.013412000	0.111206000
C	-4.968910000	0.714976000	-0.030874000
H	-5.673712000	1.538194000	-0.005373000
C	-5.430822000	-0.601544000	-0.128212000
H	-6.493517000	-0.809904000	-0.180321000
C	-4.508999000	-1.660463000	-0.159078000
H	-4.852784000	-2.688467000	-0.234323000

C	-3.144256000	-1.382849000	-0.093310000
H	-2.503409000	-3.269869000	-0.185588000
H	1.476073000	1.720523000	0.236368000
H	-0.766528000	-0.860863000	0.035197000
N	0.932237000	0.873102000	0.134865000
N	-1.248877000	0.050862000	0.056482000
O	-2.159675000	-2.365181000	-0.116037000
O	0.988800000	-1.434463000	0.045115000
S	-0.887950000	2.794702000	0.202316000

Z-matrix of the Ligand C3

C	3.316521000	-0.272441000	-0.013162000
C	3.943287000	0.904745000	-0.464467000
H	3.364495000	1.750675000	-0.823822000
C	5.341206000	0.981169000	-0.504959000
H	5.820670000	1.885446000	-0.862385000
C	6.118106000	-0.113545000	-0.095692000
H	7.200474000	-0.050312000	-0.126593000
C	5.494288000	-1.292670000	0.342161000
H	6.093081000	-2.142193000	0.650888000
C	4.097787000	-1.374515000	0.377661000
H	3.598125000	-2.280901000	0.700682000
C	1.832389000	-0.426798000	0.045314000
C	-0.312853000	0.919950000	0.122326000
C	-2.411883000	-0.483371000	-0.014704000
C	-3.409758000	0.497645000	0.042298000

H	-3.176998000	1.547688000	0.140679000
C	-4.753202000	0.100550000	-0.029850000
C	-5.119963000	-1.245827000	-0.156005000
H	-6.165443000	-1.536045000	-0.211917000
C	-4.106864000	-2.215669000	-0.210121000
H	-4.370942000	-3.262694000	-0.308969000
C	-2.763920000	-1.847722000	-0.140883000
H	-1.988408000	-2.606095000	-0.185875000
N	1.094261000	0.740561000	0.134085000
N	-1.016009000	-0.231554000	0.048685000
O	1.286604000	-1.560719000	0.030051000
O	-5.691713000	1.123938000	0.032451000
S	-0.863749000	2.531133000	0.199766000
H	-6.605664000	0.796027000	-0.018921000
H	1.585245000	1.619180000	0.239995000
H	-0.432376000	-1.076710000	0.031075000

Z-matrix of the Ligand C1.F

C	-5.741675000	-0.414017000	-0.013436000
C	-4.982123000	0.757740000	0.127165000
C	-3.583197000	0.700945000	0.104802000
C	-2.939016000	-0.542434000	-0.060218000
C	-3.703540000	-1.716423000	-0.199100000
C	-5.100246000	-1.652499000	-0.176505000
C	-1.458224000	-0.687432000	-0.090254000

N	-0.718118000	0.483307000	-0.009257000
C	0.646243000	0.594031000	0.014475000
N	1.403530000	-0.506063000	-0.086262000
C	2.837277000	-0.556578000	-0.064903000
C	3.602514000	0.210141000	-0.956364000
C	4.999823000	0.112155000	-0.920973000
C	5.626996000	-0.759029000	-0.017024000
C	4.851840000	-1.536299000	0.857302000
C	3.454497000	-1.433686000	0.838951000
O	-0.892512000	-1.809457000	-0.181813000
S	1.285167000	2.222825000	0.215971000
H	-6.825148000	-0.361853000	0.005232000
H	-5.475803000	1.714244000	0.255508000
H	-3.028157000	1.626665000	0.222059000
H	-3.188097000	-2.662356000	-0.322528000
H	-5.684922000	-2.559237000	-0.284471000
H	-1.148215000	1.445343000	0.080866000
H	0.874920000	-1.385978000	-0.149681000
H	3.116298000	0.864613000	-1.670887000
H	5.594924000	0.708635000	-1.603313000
H	6.708551000	-0.834651000	0.003308000
H	5.331399000	-2.212790000	1.555899000
H	2.847308000	-2.018489000	1.521941000
F	-0.934504000	2.920656000	0.265572000

Z-matrix of the Ligand C2.F

C	-3.270912000	-0.318288000	0.010571000
C	-3.851746000	-1.542321000	-0.367389000
H	-3.203804000	-2.352152000	-0.683738000
C	-5.241132000	-1.701267000	-0.326272000
H	-5.685794000	-2.644136000	-0.623680000
C	-6.057136000	-0.642492000	0.103028000
H	-7.133966000	-0.767027000	0.138538000
C	-5.479491000	0.573676000	0.499296000
H	-6.107120000	1.385056000	0.850094000
C	-4.089613000	0.738393000	0.453744000
H	-3.665648000	1.674914000	0.805046000
C	-1.783537000	-0.222192000	-0.054813000
C	0.093983000	1.472669000	-0.122168000
C	2.395264000	0.495969000	-0.007023000
C	3.229756000	1.621453000	0.009815000
H	2.806126000	2.613743000	-0.027325000
C	4.620511000	1.448831000	0.074077000
H	5.253534000	2.329528000	0.087340000
C	5.221993000	0.158650000	0.122260000
H	6.300943000	0.071083000	0.172654000
C	4.433069000	-0.971728000	0.105143000
H	4.846410000	-1.974080000	0.139639000
C	2.996209000	-0.843734000	0.039134000

H	2.908353000	-3.289799000	0.063008000
H	-1.887795000	1.842887000	-0.224173000
H	0.619318000	-0.503755000	-0.055569000
N	-1.249900000	1.063112000	-0.129605000
N	1.005024000	0.459711000	-0.060507000
O	2.213942000	-1.870015000	0.019050000
O	-1.049262000	-1.235737000	-0.060148000
S	0.380612000	3.150067000	-0.192460000
F	3.550336000	-4.022976000	0.095631000

Z-matrix of the Ligand C3.F

C	3.289230000	0.135483000	-0.149639000
C	3.781376000	-1.167605000	-0.362564000
H	3.104057000	-2.011641000	-0.460184000
C	5.158342000	-1.373389000	-0.504312000
H	5.539284000	-2.373322000	-0.677154000
C	6.042739000	-0.284491000	-0.436115000
H	7.109172000	-0.447961000	-0.546709000
C	5.549733000	1.015351000	-0.238252000
H	6.234103000	1.854690000	-0.192895000
C	4.174047000	1.229082000	-0.101186000
H	3.772652000	2.225353000	0.045915000
C	1.836783000	0.410535000	0.000549000
C	-0.330735000	-0.846912000	0.462783000
C	-2.492014000	0.376493000	0.050430000
C	-3.385170000	-0.687135000	-0.128745000

H	-3.071948000	-1.719030000	-0.071318000
C	-4.734203000	-0.399247000	-0.381833000
C	-5.205669000	0.918086000	-0.454695000
H	-6.254612000	1.124173000	-0.648885000
C	-4.295014000	1.970526000	-0.271219000
H	-4.643131000	2.995888000	-0.326262000
C	-2.947936000	1.713088000	-0.021950000
H	-2.247804000	2.531033000	0.113377000
N	1.075912000	-0.577903000	0.554698000
N	-1.099123000	0.238686000	0.298628000
O	1.380469000	1.532835000	-0.409740000
O	-5.567161000	-1.499018000	-0.552696000
S	-0.752172000	-2.493456000	0.574037000
H	-6.491078000	-1.245772000	-0.718981000
H	1.574083000	-1.378441000	0.928085000
H	-0.629722000	1.141728000	0.446065000
F	0.338516000	2.360379000	1.096783000

Z-matrix of the Ligand $\left[\mathrm{Ni}(\mathbf{C} 2)_{2}\right]$

C	6.452574000	-1.721063000	0.477097000
C	7.766549000	-1.903639000	0.009873000
H	8.072354000	-1.402564000	-0.901724000
C	8.656071000	-2.717091000	0.720014000
H	9.665990000	-2.861339000	0.353171000

C	8.241524000	-3.342451000	1.906728000
H	8.931514000	-3.970602000	2.459555000
C	6.937320000	-3.145646000	2.386346000
H	6.622344000	-3.610910000	3.313377000
C	6.042074000	-2.337379000	1.674864000
H	5.052609000	-2.166866000	2.089449000
C	5.557075000	-0.840257000	-0.325816000
C	3.138025000	-0.298801000	-0.726120000
C	2.604763000	1.636532000	-2.195587000
C	2.913383000	1.966055000	-3.523759000
H	3.753979000	1.485585000	-4.016658000
C	2.130442000	2.902737000	-4.206059000
H	2.360329000	3.156829000	-5.234677000
C	1.039013000	3.503373000	-3.548079000
H	0.422623000	4.224059000	-4.076145000
C	0.740216000	3.183092000	-2.221507000
H	-0.100681000	3.622814000	-1.697051000
C	1.530085000	2.250848000	-1.510573000
H	3.874063000	-1.800848000	0.417881000
H	4.476997000	0.861042000	-1.639139000
N	4.189672000	-1.033111000	-0.160879000
N	3.467797000	0.723965000	-1.505677000
O	1.314001000	1.956969000	-0.206300000
O	6.004974000	0.022124000	-1.119815000
S	1.562777000	-0.977243000	-0.371040000
C	-6.452584000	-1.721039000	-0.477151000
C	-7.766583000	-1.903592000	-0.009983000
H	-8.072393000	-1.402573000	0.901642000
C	-8.656116000	-2.716953000	-0.720215000
H	-9.666054000	-2.861184000	-0.353417000
C	-8.241555000	-3.342245000	-1.906961000
H	-8.931554000	-3.970326000	-2.459857000

C	-6.937326000	-3.145464000	-2.386519000
H	-6.622339000	-3.610676000	-3.313572000
C	-6.042070000	-2.337287000	-1.674949000
H	-5.052585000	-2.166788000	-2.089488000
C	-5.557066000	-0.840334000	0.325849000
C	-3.138017000	-0.298893000	0.726135000
C	-2.604725000	1.636338000	2.195730000
C	-2.913292000	1.965829000	3.523923000
H	-3.753841000	1.485311000	4.016856000
C	-2.130363000	2.902536000	4.206201000
H	-2.360211000	3.156597000	5.234835000
C	-1.038993000	3.503236000	3.548178000
H	-0.422607000	4.223937000	4.076228000
C	-0.740251000	3.183000000	2.221583000
H	0.100601000	3.622768000	1.697095000
C	-1.530116000	2.250737000	1.510665000
H	-3.874059000	-1.800900000	-0.417905000
H	-4.476961000	0.860793000	1.639342000
N	-4.189665000	-1.033143000	0.160828000
N	-3.467757000	0.723759000	1.505845000
O	-1.314106000	1.956913000	0.206368000
O	-6.004943000	0.021962000	1.119954000
S	-1.562759000	-0.977291000	0.370902000
Ni	-0.000018000	0.686831000	0.000017000

$\underline{\text { Z-matrix of the Ligand }\left[\mathrm{Cu}(\mathbf{C 2})_{2}\right]}$

C	-5.969826000	-2.213077000	-0.585624000
C	-7.239526000	-1.994017000	-1.149620000
H	-7.676640000	-1.003889000	-1.085628000
C	-7.918307000	-3.043479000	-1.778446000
H	-8.893214000	-2.868764000	-2.219157000
C	-7.337516000	-4.320240000	-1.838377000
H	-7.863513000	-5.134323000	-2.325096000
C	-6.079247000	-4.546921000	-1.259528000
H	-5.636588000	-5.536024000	-1.289320000
C	-5.394756000	-3.497713000	-0.634147000
H	-4.439978000	-3.709883000	-0.161559000
C	-5.300799000	-1.050125000	0.065398000
C	-3.063069000	-0.211301000	0.828327000
C	-2.910569000	2.005973000	1.912524000
C	-3.397569000	2.489435000	3.135615000
H	-4.242157000	1.996611000	3.608613000
C	-2.785163000	3.590422000	3.742601000
H	-3.155051000	3.965297000	4.690260000
C	-1.678998000	4.197575000	3.115607000
H	-1.190383000	5.044155000	3.587568000
C	-1.202716000	3.723550000	1.891652000
H	-0.344888000	4.169924000	1.400981000
		-1000	

C	-1.824150000	2.627267000	1.247516000
H	-3.431117000	-1.922170000	-0.186424000
H	-4.609312000	1.015717000	1.139047000
N	-3.919685000	-1.131466000	0.212873000
N	-3.598043000	0.914228000	1.283991000
O	-1.427382000	2.189208000	0.035063000
O	-5.939282000	-0.040765000	0.448506000
S	-1.404154000	-0.757658000	0.974849000
C	5.969719000	-2.213246000	0.585556000
C	7.239375000	-1.994255000	1.149670000
H	7.676547000	-1.004149000	1.085721000
C	7.918029000	-3.043760000	1.778559000
H	8.892904000	-2.869108000	2.219367000
C	7.337157000	-4.320488000	1.838435000
H	7.863061000	-5.134602000	2.325201000
C	6.078931000	-4.547095000	1.259464000
H	5.636215000	-5.536174000	1.289217000
C	5.394566000	-3.497845000	0.634017000
H	4.439811000	-3.709927000	0.161344000
C	5.300784000	-1.050293000	-0.065547000
C	3.063057000	-0.211367000	-0.828433000
C	2.910700000	2.005964000	-1.912512000
C	3.397821000	2.489572000	-3.135497000
H	4.242415000	1.996758000	-3.608497000
C	2.785520000	3.590674000	-3.742374000
H	3.155494000	3.965663000	-4.689954000
C	1.679357000	4.197809000	-3.115356000
H	1.190828000	5.044492000	-3.587222000
C	1.202980000	3.723641000	-1.891495000
H	0.345174000	4.170014000	-1.400788000
C	1.824302000	2.627225000	-1.247471000
H	3.431093000	-1.922290000	0.186279000

H	4.609381000	1.015529000	-1.139211000
N	3.919656000	-1.131578000	-0.213017000
N	3.598097000	0.914132000	-1.284084000
O	1.427455000	2.189099000	-0.035072000
O	5.939340000	-0.041006000	-0.448714000
S	1.404105000	-0.757648000	-0.974926000
Cu	-0.000036000	0.958594000	0.000027000

