Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supplementary Material (ESI)

A novel 3D Zn-coordination polymer based on a multiresponsive

fluorescent sensor demonstrating outstanding sensitivities and

selectivities for the efficient detection of multiple analytes

Yu Liu,^a Yan Wang,^a Xiao-Sa Zhang,^a Yu-Shu Sheng,^a Wen-Ze Li,^{a*} Ai-Ai Yang,^a

Jian Luan,^{b*} Hong-Zhu Liu^c and Zhong-Gang Wang^d

^a College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

^b College of Sciences, Northeastern University, Shenyang, 100819, P. R. China

^c Post-Doctoral Research Station of Dalian Zhenbang Fluorocarbon Paint Stock Co., Ltd., Dalian, 116036, P. R.

China

^d State Key Laboratory of fine Chemicals, Department of Polymer Science and Materials, School of Chemical

Engineering, Dalian University of Technology, Dalian, 116024, P. R. China

Complex	1
Empirical formula	$C_{34}H_{34}N_4Zn_2O_{14}$
Formula weight	853.39
Crystal system	Monoclinic
Space group	P21/n
<i>a</i> (Å)	8.8708(5)
<i>b</i> (Å)	28.9726(15)
<i>c</i> (Å)	13.5048(7)
α (°)	90
β (°)	91.9020(10)
γ (°)	90
V (Å ³)	3469.0(3)
Ζ	4
$D_c (\mathrm{g}\mathrm{cm}^{-3})$	1.634
$R_{ m int}$	0.0284
GOF	1.008
$R_I^a \left[I > 2\sigma(I)\right]$	0.0358
wR_2^b (all data)	0.0519

 Table S1. Crystallographic data for complex 1.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, ^b $wR_2 = \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{1/2}$.

			-
Zn(1)–O(1W)	1.9695(17)	Zn(2)–O(7)#1	1.9581(16)
Zn(1)-O(4)	1.9734(16)	Zn(2)–O(3)	2.0109(15)
Zn(1)-O(1)	1.9748(17)	Zn(2)–N(4)#2	2.0341(18)
Zn(1)-N(1)	2.0496(19)	N(4)–Zn(2)#4	2.0341(18)
Zn(2)-O(5)	1.9574(17)	O(7)–Zn(2)#5	1.9581(16)
O(1W)-Zn(1)-O(4)	102.05(7)	O(5)–Zn(2)–O(7)#1	100.42(8)
O(1W)-Zn(1)- $O(1)$	105.07(7)	O(5)-Zn(2)-O(3)	116.94(7)
O(4) - Zn(1) - O(1)	133.80(7)	O(7)#1–Zn(2)–O(3)	96.15(7)
O(1W) - Zn(1) - N(1)	102.48(7)	O(5)–Zn(2)–N(4)#2	111.84(8)
O(4) - Zn(1) - N(1)	100.94(7)	O(7)#1-Zn(2)-N(4)#2	130.34(8)
O(1)-Zn(1)-N(1)	108.68(8)	O(3)–Zn(2)–N(4)#2	101.22(7)
Symmetry codes: #1 x +	1/2, -y + 1/2, z +	-1/2; #2 $-x + 1/2$, $y - 1/2 - x$	z + 1/2; #4 - x +
1/2, y + 1/2, -z + 1/2; #5	x - 1/2, -y + 1/2,	z + 1/2.	

Table S2 Selected bond distances (Å) and angles (°) for complex 1.

Table S3 List of CPs utilized in the sensing of Mg^{2+} in water.

СР	Detection limit	Reference
Boron-doped carbon dots (BCDs)	39 µM	S 1
$[Zn_2(3-bpah)(bpta)(H_2O)]$ ·3H ₂ O	10 µM	This work
8-hydroxyquinoline-5-benzothiazole (QB)	$1.40 imes10^{-1}\mu\mathrm{M}$	S2
Quinoline-based fluorescent probe (QC)	$6.28 \times 10^{-2} \mu M$	S 3
[Ln(BIPA-TC) _{0.5} (DMA) ₂ (NO ₃)]·DMA·H ₂ O H ₄ BIPA-TC=tetra-carboxylate ligand	$1.53\times 10^{-4}\mu M$	S4

Table S4 List of CPs utilized in the sensing of $Cr_2O_7^{2-}$ in water.

СР	Detection limit	Reference
$[Zn_4(3-dpyb)_2(odpa)_2(H_2O)_3]\cdot 4H_2O$	41.50 μM	S5
$\{[Zn_2(L_2)_2(H_2O)_4] \cdot H_2O\}$	2.60 µM	S 6
$[Zn_2(TPOM)(NH_2-BDC)_2] \cdot 4H_2O$	3.90 µM	S 7
[Zn(DDB)(DPE)]·H ₂ O	0.64 µM	S 8
$[Zn_2(3-bpah)(bpta)(H_2O)] \cdot 3H_2O$	$1.00 \times 10^{-3} \ \mu M$	This work

СР	Analyte overlap	Reference
$[Zn_4(\mu_3-OH)_2(BTC)_2(BBI4PY)_2] \cdot 10H_2O$	Fe ³⁺ , TNP	S9
g-CNQDs@Zn-MOF		S10
g-CNQDs = graphitic carbon nitrides quantum dots	riboflavin (RF)	
$[Zn_2(NDC)_2(bpy)]$ ·G _x		
NDC = 2,6-naphthalenedicarboxylic acid,	Nitroaromatics	S11
bpy = 4,40-bipyridine, G=guest solvent molecules		
$[Zn(OPE) \cdot 2H_2O]$		S12
OPE = oligo-phenyleneethynylene-dicarboxylic	DSMP	
$[Zn_2(NDC)_2(DPTTZ)]$		
NDC = naphthalene dicarboxylate	Hg^{2+}	S13
DPTTZ = N, N'-di(4-pyridyl)thiazolo-[5,4-d]thiazole		
	Fe ³⁺ , NZF,	C14
$[Zn_3(bpg)_{1.5}(azdc)_3] \cdot (DMF)_{5.9} \cdot (H_2O)_{1.05}$	TNP	S14
	Fe ³⁺ , Cr ³⁺ ,	
[Zn ₃ (DDB)(DPE)]·H ₂ O	$Cr_2O_7^{2-},$	
H5DDB = 3,5-di(2',4'-dicar-boxylphenyl)benzoic acid	CrO ₄ ^{2–} , MnO ₄ [–]	S15
DPE = 1,2-di(4-pyridyl)ethylene)	, 2,6-Dich-4-	
	NA)	
$[Zn_2(IDS)(bipy)_{1.5}]$		
$H_4IDS =$ meso-iminodisuccinic acid	Fe ³⁺ , TNP	S16
bipy = 4,4-bipyridine		
	TNP, 4-NP,	
$[Zn(TIPA)(NO_3))_2(H_2O)] \cdot 5H_2O$ TIPA = tri(4-imidazolylphenyl)amine	RDX, HMX,	S17
	DMNB	
$[Zn(QDA)] \cdot 0.5H_2O \cdot 0.7DMF$	$0.5H_2O \cdot 0.7DMF$ re-2,6-dicarboxylic acid	
$H_2QDA =$ quinoline-2,6-dicarboxylic acid		

 Table S5. Comparison of the overlap between complex 1 and various analytes.

Supplementary Material (ESI)

Zn(DMA)(TBA)	$A1^{3+}$ NACs	\$19
$H_2TBA = 4-(1H-tetrazol-5-yl)-benzoic acid$	711 , 10105	517
(Zn ₂ (DHBDC)(DMF)(H ₂ O) ₂	ΤΟΟΟΛ	S20
H_4 dondc = 1,5-dioxido-2,6-naphthalenedicarboxylic acid	I DDF A	
$[Zn_4(L^{3-})_2(O^{2-})(H_2O)_2] \cdot 4EtOH_n/Tb@Zn-MOF$		
$H_3L = 4,4',4''-[(1,3,5-triazine-2,4,6-triyl)tris-$	PO ₄ ³⁻	S21
(sulfanediyl)]tribenzoic acid		
$[Zn_2(4-bpft)_2(1,3-BDC)_2] \cdot 2H_2O$		
[Zn(4-bpft)(5-MIP)]		
[Zn(4-bpft)(5-HIP)]		
4-bpft = N,N' -bis(4-pyridine formamide)-3,4-thiophene	Hg ²⁺ , Purines	S15
$1,3-H_2BDC = isophthalic acid$		
$5-H_2MIP = 5$ -methylisophthalic acid		
$H_2HIP = 5$ -hydroxyisophthalic acid		
	${\rm Fe}^{3+}$, ${\rm Cr}_2{\rm O}_7^{2-}$,	522
$[2 \Pi_4(3 - \alpha p y 0)_2(0 \alpha p a)_2(\Pi_2 O)_3]^4 \Pi_2 O$	${\rm MnO_4}^-$	522
$[Zn(tptc)_{0.5}(bpy)(H_2O)]$		
bpy = 2,2'-bipyridine, H ₄ tptc = p -terphenyl-2,2",5",5"'-	$Cr_2O_7^{2-}$	S23
tetracarboxylate acid		
$[Zn_8(ad)_4(BPDC)_6 \cdot 2Me_2NH_2 \cdot 8DMF \cdot 11H_2O]$	$E_{2}^{3+} \wedge 1^{3+}$	
ad = adeninate	$\Gamma e^{-}, A\Gamma^{-},$	S24
BPDC = biphenyldicarboxylate	$Cr_2O_7^2$	
	Fe ³⁺ , Mg ²⁺ ,	
	$Cr_2O_7^{2-}$,	This
$[2n_2(3-0pan)(0pta)_2(n_20)]^{-3n_20}$	MnO ₄ ⁻ , NB,	work
	NM	

Fig. S1 The IR spectrum of complex 1.

Fig. S2 The powder X-ray diffraction patterns of simulated 1, fresh sample 1 and complex 1 after grinding.

Fig. S3 The TG curve of complex 1.

Fig. S4 The emission spectra of complex 1, H_4 bpta and 3-bpah in the solid state. (b) The solid excitation and emission spectra of 1.

Fig. S5 UV-Vis adsorption spectrum of the suspension of 1.

Fig. S6 Fluorometric pictures with various metal ions.

Fig. S7 The photoluminescence spectra from ten cycles blank measurements for solid state of 1. (b) Calibration curve with blank measurements after ten cycles (insert: the standard deviation formula, where, and represent the luminescence intensity values of 1 after normalization, the average of the maximum luminescence intensity values of 1 after ten cycles and the cycles of blank measurements, respectively). The luminescence intensity values of 1 after normalization: 0.9979, 0.9977, 1.0002, 0.9996, 0.9989, 1.0035, 0.9989, 0.9983, 1.0023, 1.0036. Calculated standard deviation, $\delta = 0.003887$.

Fig. S8 (a) The emission spectra of complex 1, $1-Fe^{2+}$ and $1-Fe^{3+}$; (b) UV-Vis adsorption spectra of $1-Fe^{2+}$ and $1-Fe^{3+}$ along with the emission spectrum of 1.

Fig. S9 The effect of adding other metal cations on the luminescence intensity of Fe^{3+} (0.1 M) and Mg²⁺ cations (0.1 M).

Fig. S10 (a) Fluorescence spectra of competitive quenching of Fe^{3+} and Mg^{2+} ; (b) Fluorescence spectra of competitive quenching of MnO_4^- and $Cr_2O_7^{2-}$.

Fig. S11 The cyclic response of the luminescence intensities of **1** for detecting Fe^{3+} (a) and Mg^{2+} (b); The PXRD patterns of **1** treated by the Fe^{3+} (c), and Mg^{2+} (d).

Fig. S12 The effect of adding other metal cations on the luminescence intensity of MnO_4^- (0.1 M) and $Cr_2O_7^{2-}$ cations (0.1 M).

Fig. S13 The cyclic response of the luminescence intensities of **1** for detecting $Cr_2O_7^{2-}$ (a) and MnO_4^{-} (b); The PXRD patterns of **1** treated by the $Cr_2O_7^{2-}$ (c), and MnO_4^{-} (d)

Fig. S14 Luminescence recognition experiments of NB (a) and NM (b) in H₂O. K_{sv} plots of 1 for sensing of NB (c) and NM (d). (Insert: the linear correlation at higher concentrations).

Fig. S15 The effect of adding other organic solvents on the luminescence intensity of NB and NM.

Fig. S16 Fluorescence spectra of competitive quenching of Fe^{3+} and Mg^{2+} .

Fig. S17 The cyclic response of the luminescence intensities of **1** for detecting NB (a) and NM (b). The PXRD patterns of **1** treated by the NB(c), and NM (d)

Fig. S18 The PXRD patterns of 1 before and after exposure to different analyzes.

Supplementary Material (ESI)

Fig. S19 XPS spectra of CP 1, 1-Fe³⁺, 1-Mg²⁺, 1-Cr₂O₇²⁻, 1-MnO₄⁻, 1-NB and 1-NM. XPS analysis of the Zn2p (b), N1s (c) and O1s (d) spectra of different samples.

References:

S1 H. K. Sadhanala, S. Pagidi and A. Gedanken, J. Mater. Chem. C, 2021, 9, 1632–1640.

S2 Z. Fu, J. Qin, Y. Wang, Y. Peng, Y. Zhang, D. Zhao and Z. Zhang, *Dyes Pigments*, 2021, **185**, 108896.

S3 J. Qin, M. Wang, Z. Fu and Z. Zhang, J. Photoch Photobio, 2021, 405, 112965.

S4 X. Wang, Y. Wang, X. Wang, K. Lu, W. Jiang, P. P. Cui, H. Hao and F. Dai, *Dalton Trans*, 2020, **49**, 15473–15480.

S5 J. Ma, N. Xu, Y. Liu, Y. Wang, H. Li, G. Liu, X. Wang and J. Li, *Inorg Chem*, 2020, **59**, 15495–15503.

S6 T. W. T. Wiwasuku, J. B. J. Boonmak, K. S. K. Siriwong, V. E. V. Ervithayasuporn and S. Y. S. Youngme, *Sensor Actuat B-Chem.*, 2019, **284**, 403-413.

S7 R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, J. Mater.

Chem. A, 2016, 4, 15494–15500.

S8 X. Wang, D. Feng, J. Tang, Y. Zhao, J. Li, J. Yang, C. K. Kim and F. Su, *Dalton Trans.*, 2019, **48**, 16776–16785.

- S9 X. Y. Guo, Z. P. Dong, F. Zhao, Z. L. Liu and Y. Q. Wang, New J. Chem., 2019,
 43, 2353–2361.
- S10 K. S. Asha, K. Bhattacharyya and S. Mandal, J. Mater. Chem. C, 2014, 2, 10073–10081.
- S11 V. M. Suresh, S. J. George and T. K. Maji, *Adv. Funct. Mater.*, 2013, 23, 5585–5590.
- S12 A. Khatun, D. K. Panda, N. Sayresmith, M. G. Walter and S. Saha, *Inorg. Chem.*, 2019, **58**, 12707–12715.
- S13 K. Siriwong, V. E. V. Ervithayasuporn and S. Y. S. Youngme, *Sensor Actuat. B*, 2019, **284**, 403–413.
- S14 R. Goswami, S. C. Mandal, B. Pathak and S. Neogi, *ACS Appl. Mater. Interfaces*, 2019, **11**, 9042–9053.
- S15 X. Wang, D. Feng, J. Tang, Y. Zhao, J. Li, J. Yang, C. K. Kim and F. Su, *Dalton Trans.*, 2019, **48**, 16776–16785.
- S16 H. Fu, L. Yan, N. Wu, L. Ma and S. Zang, J. Mater. Chem. A, 2018, 6, 9183–9191.
- S17 C. Gogoi, M. Yousufuddin and S. Biswas, Dalton Trans., 2019, 48, 1766–1773.
- S18 X. Zhang, X. Luo, N. Zhang, J. Wu and Y. Huang, *Inorg. Chem. Front.*, 2017, 4, 1888–1894.
- S19 X. Zhang, S. Li, S. Chen, F. Feng, J. Bai and J. Li, *Ecotox. Environ. Safe*, 2020, 187, 109821.
- S20 G. Ji, X. Gao, T. Zheng, W. Guan, H. Liu and Z. Liu, *Inorg. Chem.*, 2018, 57, 10525–10532.
- S21 X. L. Wang, J. X. Ma, N. Xu, Y. Wang, J. Y. Sun and G. C. Liu, *CrystEngComm*, 2021, 23, 4760–4766.
- S22 J. Ma, N. Xu, Y. Liu, Y. Wang, H. Li, G. Liu, X. Wang and J. Li, *Ionrg. Chem.*, 2020, **59**, 15495–15503.

S23 Y. Zhou, L. Cui, Y. Zhang, Y. Liu and D. Ji, J. Fluoresc., 2020, 30, 1225–1232.

S24 W. Liu, S. Li, J. Shao and J. Tian, J. Solid State Chem., 2020, 290, 121580.