Supporting Information

Enhancement of eletrocatalytic abilities toward CO₂ reduction by

tethering redox-active metal complexes to the active site.

Habib Md. Ahsan^{1,2}, Brian K. Breedlove^{1,*}, Cosquer Goulven³ Masahiro Yamashita^{1,4}

¹Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba,

Aramaki, Sendai 980-8578, Japan

²Chemistry Discipline, Science, Engineering and Technology School, Khulna University, Khulna-

9208, Bangladesh.

³Chemistry Department, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima, 739-8526, Japan

⁴School of Materials Science and Engineering, Nankai University, Tiajin 300350, China

Contents and page

1.	¹ H NMR spect	rum of (pic₄cycler)			3	
2.	¹³ C NMR spectrum of (pic ₄ cyclen)4						
3.	¹ H NMR spect	¹ H NMR spectrum of (bn ₄ cyclen)5					
4.	¹³ C NMR spect	trum of (bn₄cycler)			6	
5.	ORTEP diagram	m of (pic)₄cyclen				7	
6.	Crystal data fo	or (pic)₄cyclen				8	
7.	ESI-Mass of [([Ru]pic) ₄ cyclen] ⁴⁺ 9						
8.	Crystal data for [bn ₄ cyclenNiCl]Cl10						
9.	Comparison of the coordination geometry of the Ni ion in $[bn_4cyclenNiCl]Cl10$						
10.	. The diffusion	coefficient calc	ulation			11–	
	12						
11.	. Cyclic volt	tammograms	of [{([Ru]pi	c)₄cyclen}NiCl]⁵	+ at differe	ent scan	
	rates	11					
12.	. Plot	of	i _p	VS.	V ^{1/2}	for	
	[{([Ru]pic)₄cyc	len}NiCl] ⁵⁺			12		
13.	. FTIR spectros	сору				13	
14.	14. CPE experiment trace14						
15.	. Cyclic	voltam	mogram	of	[Ru(bpy) ₂ Cl]+	
	([Ru])			15			
16.	. Cyclic	voltammogram	of	1:4	[bn₄cyclenNiCl]Cl	and	
	Ru(bpy) ₂ Cl ₂		16				

17. Comparison of CO ₂ reduction electrocatalysts	17
18. Experimental	TOF
calculation18	
19. References	

Fig. S1. ¹H NMR spectrum of (pic₄cyclen)

Fig. S2. ¹³C NMR spectrum of (pic₄cyclen)

Fig. S3. ¹H NMR spectrum of (bn₄cyclen)

Fig. S4. ¹³C NMR spectrum of (bn₄cyclen)

Fig. S5. ORTEP diagram of (pic)₄cyclen with thermal ellipsoids drawn at the 50% probability. Hydrogen atoms are omitted for clarity. Blue, N; gray, C.

Radiation type, wavelength	Μο Κα, 0.71073		
Formula	$C_{32}H_{40}N_8$		
Formula weight	536.72		
Crystal system	Triclinic		
Space group	<i>P</i> –1		
<i>a</i> (Å)	9.328(6)		
<i>b</i> (Å)	9.338(5)		
<i>c</i> (Å)	10.156(6)		
α (deg)	95.874(3)		
<i>β</i> (deg)	116.949(5)		
γ (deg)	108.364(5)		
<i>V</i> (Å ³)	716.3(7)		
Ζ	1		
Т (К)	93		
<i>d</i> (g/cm ³)	1.244		
μ (mm ⁻¹)	0.077		
$R_1, wR_2 [l > 2\sigma(l)]$	0.0463		
R_1 , wR_2 [all data]	0.1605		
R _{int}	0.0290		
F(000)	288		
GOF	1.046		

Table S1. Crystal data for (pic)₄cyclen.

Fig. S6. ESI-Mass of [([Ru]pic)₄cyclen]⁴⁺

Radiation type, wavelength (nm)	Μο Κα, 0.71073		
Formula	$C_{36}H_{44}N_{4}NiCl_{2}$		
Formula weight	662.36		
Crystal system	Orthorhombic		
Space group	Ccm2 ₁		
a (Å)	7.7774(8)		
b (Å)	25.294(3)		
<i>c</i> (Å)	16.4763(17)		
α (deg)	90		
<i>в</i> (deg)	90		
γ (deg)	90		
V (ų)	3241.3(6)		
Ζ	4		
Т (К)	298(2)		
<i>d</i> (g/cm ³)	1.357		
μ (mm ⁻¹)	0.795		
$R_1, wR_2 [l > 2\sigma(l)]$	0.0530, 0.1327		
R_1 , wR_2 [all data]	0.0714, 0.1428		
F(000)	1400		
GOF	0.998		

Table S2. Crystal data for [bn₄cyclenNiCl]Cl.

Table S3: Comparison of the coordination geometry of the Ni ion in [bn ₄ cyclenNiCl]Cl to ideal
geometries by using Shape 2.1. ¹ A smaller value indicates better agreement.

Pentagon	Vacant octahedron	Trigonal bipyramid	Spherical square pyramid	Johnson trigonal bipyramid J12
D5h	C4v	D3h	C4v	D3h

33.267	2.854	5.429	0.181	8.959

The diffusion coefficient D calculation of [{([Ru]pic)₄cyclen}NiCl]⁵⁺

The relationship between the cathodic peak current (i_p) and square root of the scan rate is given by the Randles-Sevcik equation for a homogeneous system.²

$$i_p = 0.4463 n_p FA[cat](n_p FvD/RT)^{1/2}$$
 Eq. S1

where i_p is peak current (A), n_p is the number of electron(s) involved in the redox system (1 for Ni^{II/I} redox process), *F* is the Faraday constant (96500 C·mol⁻¹), *A* is the surface area of working electrode (0.071 cm²), [*cat*] is catalysts concentration (mol·cm⁻³), *v* is the scan rate (V·s⁻¹), *R* is the

Fig. S7. Cyclic voltammograms of $[\{([Ru]pic)_4 cyclen\}NiCl]^{5+}$ in CH₃CN containing 0.1 M TBAPF₆ at different scan rates. The Ni^{II/I} couple was used as the cathodic peak current.

universal gas constant (8.31 J·K⁻1·mol⁻¹), and *T* is the temperature (298 K). The diffusion coefficient *D* is calculated from the slop of i_p vs. $v^{1/2}$ plot.

Fig. S8. Plot of i_p vs. $v^{1/2}$ for [{([Ru]pic)_4cyclen}NiCl]⁵⁺, data collected from Figure 7. Peak current consider for Ni^{II/I} reduction couples at corresponding scan rate. The current showing a linear dependence on scan rate, indicating that the reduction of for [{([Ru]pic)_4cyclen}NiCl]⁵⁺ is a diffusion-controlled process.

The diffusion coefficient for for [{([Ru]pic)₄cyclen}NiCl]⁵⁺ calculated using Eq. S1 to be 1.95×10^{-5} cm²·s⁻¹.

Fig. S9: IR spectroscopy of the solid collected after bulk electrolysis in dry CH_3CN .

Fig. S10: CPE experiment trace for $[{([Ru]pic)_4 cyclen}NiCI]^{5+}$

Fig. S11: CPE experiment trace for [bn₄cyclenNiCl]Cl

Fig. S12. Cyclic voltammogram of $[Ru(bpy)_2Cl]^+$ ([Ru]) vs. Ag wire under a N₂ atmosphere (black) and a CO₂ atmosphere (red). Although a small increase in the current was observed, it was small.

Fig. S13. Cyclic voltammetry of 1:4 [bn_4 cyclenNiCl]Cl and Ru(bpy)₂Cl₂ under N₂ (black) and CO₂ (red) in 95:5 (v/v) CH₃CN/H₂O.

Entry	Catalyst	Major product	FE (%)	TOF(s ⁻¹)	η (V)	Ref.
1	[{([Ru]pic)₄cyclen}NiCl]⁵⁺	СО	80	708	0.88	In this work
2	[{([Ru]pic)₄cyclen}NiCl]⁵⁺	СО	84	178	0.53	In this work
3	[bn₄cyclenNiCl]Cl	СО	77	8	0.73	In this work
4	H H H H	со	84	130	0.55	3
5		со	88	100	0.59	3
6		со	88	100	0.55	3
7		со	90	90	0.88	4
8		со	86	190	0.65	5

Table S4: Comparison of CO₂ reduction electrocatalysts

Experimental TOF calculation

The experimental TOF was calculating based on, the total amount of CO generated during control potential electrolysis experiments divided by the total amount of catalyst in solution for electrolysis and then divided by time of control potential electrolysis. The equation given below.

$$TOF = \frac{\frac{n[CO]}{n[cat]}}{t}$$
Eq. S2

Where, n[CO] is the total number of mole CO generate during electrolysis (from GC-MS measurement), n[cat] is the number of moles of catalysts in solution for using for electrolysis and t is the electrolysis time in seconds.

The experimental TOF from bulk electrolysis for $[{([Ru]pic)_4 cyclen}NiCl]^{5+}$ and $[bn_4 cyclenNiCl]Cl]$ were calculated to be 2.64 s⁻¹ and 0.09 s⁻¹ in 5% H₂O/CH₃CN system, respectively.

References

- S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, *Coord. Chem. Rev.* 2005, 249, 1693–1708.
- 2. W. Nie and C. C. L. McCrory, Chem. Commun. 2018, 54, 1579–1582
- J. Schneider, H. Jia, K. Kobiro, D. E. Cabelli, J. T. Muckerman and E. Fujita, *Energy Environ.* Sci., 2012, 5, 9502–9510.
- 4. J. D. Froehlich and C.P. Kubiak, *Inorg. Chem.*, 2012, **51**, 3932–3934.
- G. Neri, I. M. Aldous, J. J. Walsh, L. J. Hardwick and A. J. Cowan, *Chem. Sci.* 2016, 7, 1521– 1526.