Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

#### **Mass Spectra**

Analysis was performed using a syringe pump with a syringe filled with acetonitrile or sample diluted in acetonitrile at flow rate of 2 to 10  $\mu$ L/min into a quadrupole time-of-flight mass spectrometer (Q-Tof Premier, Waters) with electrospray ionization (ESI) in positive mode. Data were collected and processed with Masslynx software (V4.1). The capillary voltage was set at 3.1 kV, the sample cone voltage was 30 V, and the extraction cone was 4.3 V. The source and desolvation temperature were maintained at 105 and 300 °C, respectively, with the desolvation gas flow set at 500 L/h. The Time-of-Flight mass spectrometer scan was 1 s long from 50 to 3000 m/z with a 0.1 s inter-scan delay in the centroid data format. A lock mass was used to correct instrument accuracy with a 0.1  $\mu$ M solution of HP 1221 (Agilent part number G1969-85003).

| Element                                                                                                                                                                                                                                                                                                                                                              | Elemental Composition Report |                        |                       |                          |                                              |                                        |                |                                   |            |                         |                    |                    |                           | Page 1       |                                  |               |                 |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-----------------------|--------------------------|----------------------------------------------|----------------------------------------|----------------|-----------------------------------|------------|-------------------------|--------------------|--------------------|---------------------------|--------------|----------------------------------|---------------|-----------------|--------------------------------------|
| Single Mass Analysis<br>Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0<br>Element prediction: Off<br>Number of isotope peaks used for i-FIT = 5                                                                                                                                                                                                                  |                              |                        |                       |                          |                                              |                                        |                |                                   |            |                         |                    |                    |                           |              |                                  |               |                 |                                      |
| Number of isotope peaks used for I+F11 = 5           Monoisotopic Mass, Even Electron Ions           373 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)           Elements Used:           C: 0-100         H: 0-300           H: AG, bareasimilizine_bk2_p6111 (0.274) Cm (10:16)           1: TOF MS ES+           100 |                              |                        |                       |                          |                                              |                                        |                |                                   |            |                         |                    |                    |                           |              |                                  |               |                 |                                      |
| 100<br>%                                                                                                                                                                                                                                                                                                                                                             | 115.0                        | 548 14                 | 3.0838                | 298.0                    | 313.1<br>959                                 | 1079<br>314.1099                       | 435.225        | 0 467.1                           | 949        | 575.2878                | 619.3              | 140                | 663.3668                  | 737.4        | 919                              | E24E          | 877.9720        | 957.5603                             |
| 100<br>%<br>0<br>50                                                                                                                                                                                                                                                                                                                                                  | 115.0<br>100                 | 548 14<br>150          | 3.0838<br>200         | 298.0<br>250             | 313.1<br>959<br>300                          | 1079<br>314.1099<br>350                | 435.225<br>400 | 0 467.1<br>450                    | 949<br>500 | 575.2878<br>550         | 619.3<br>600       | 140<br>650         | 663.3668<br>700           | 737.4<br>750 | 919 <sub>825</sub><br>800        | 5.5345<br>850 | 877.9720<br>900 | 1.49e+002<br>957.5603<br>mm/z<br>950 |
| 100<br>%<br>0<br>50<br>Minimum:<br>Maximum:                                                                                                                                                                                                                                                                                                                          | 115.0<br>100                 | 548 14<br>150          | 3.0838<br>200         | 298.0<br>250<br>50       | 313.1<br>959<br>300                          | 1079<br>314.1099<br>350<br>10.0        | 435.225<br>400 | 0 467.1<br>450<br>-1.5<br>50.0    | 949<br>500 | 575.2878<br>550         | 619.3<br>600       | 140<br>650         | 663.3668<br>700           | 737.4<br>750 | 919 <sub>825</sub><br>800        | 850 850       | 877.9720<br>900 | 1.499+002<br>957.5603<br>950         |
| 100<br>%<br>50<br>Minimum:<br>Maximum:<br>Mass                                                                                                                                                                                                                                                                                                                       | 115.0<br>100                 | 548 14<br>150<br>Calc. | 3.0838<br>200<br>Mass | 298.0<br>250<br>50<br>mD | 313. <sup>-</sup><br>959<br>300<br>00.0<br>a | 1079<br>314.1099<br>350<br>10.0<br>PPM | 435.225<br>400 | 450<br>450<br>-1.5<br>50.0<br>DBE | 949<br>500 | 575.2878<br>550<br>-FIT | 619.3<br>600<br>i- | 140<br>650<br>-FIT | 663.3668<br>700<br>(Norm) | 737.4<br>750 | 919 <sub>825</sub><br>800<br>ula | 850 850       | 877.9720<br>900 | 1.498+002<br>957.5603<br>950         |

Figure S39. Mass Spectra of Salimidizine (L1)

| Elemental Composition Report Pag                                                                                                                                                                                                                                              |                                                                                                                                                      |                          |                        |                            |                             |                  |               |              |           |                                                                                                                                                                                                                   |     | Page 1 |      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------|-----------------------------|------------------|---------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------|--|--|--|--|--|--|
| Single Ma<br>Tolerance =<br>Element pre<br>Number of i                                                                                                                                                                                                                        | Single Mass Analysis<br>Folerance = 10.0 PPM // DBE: min = -1.5, max = 50.0<br>Element prediction: Off<br>Number of isotope peaks used for i-FIT = 5 |                          |                        |                            |                             |                  |               |              |           |                                                                                                                                                                                                                   |     |        |      |  |  |  |  |  |  |
| Monoisotopic Mass, Even Electron Ions<br>521 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass)<br>Elements Used:<br>C: 0-100 H: 0-300 N: 0-4 O: 0-10 Na: 0-1<br>EH AG. DTBsalimidizine_bk2p63 14 (0-329) Cm (14:18)<br>1: TOF MS ES+ |                                                                                                                                                      |                          |                        |                            |                             |                  |               |              |           |                                                                                                                                                                                                                   |     |        |      |  |  |  |  |  |  |
| 100<br>%                                                                                                                                                                                                                                                                      | 168.0746 195.0823                                                                                                                                    | 284.1135 353.1:          | 42<br>398 379.1555     | 5.2346<br>426.236          | 9<br>483.1815 <sup>61</sup> | 19.2910 663.3    | 3311 707      | .3477        | 781.50    | 1.21<br>1.21<br>100<br>5<br>5<br>5<br>122<br>123<br>123<br>124<br>125<br>124<br>125<br>126<br>126<br>127<br>126<br>127<br>126<br>127<br>126<br>127<br>127<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128 |     |        |      |  |  |  |  |  |  |
| 50 10                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                          |                        |                            |                             |                  |               |              |           |                                                                                                                                                                                                                   |     |        | m/7  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                               | 0 150 200                                                                                                                                            | 250 300                  | 350 400                | 450                        | 500 550                     | 600 650          | 700           | 750          | 800       | 850                                                                                                                                                                                                               | 900 | 950    | 1000 |  |  |  |  |  |  |
| Minimum:<br>Maximum:                                                                                                                                                                                                                                                          | 0 150 200                                                                                                                                            | 250 300<br>5000.0        | 350 400<br>10.0        | 450<br>-1.5<br>50.0        | 500 550                     | 600 650          | 700           | 750          | 800       | 850                                                                                                                                                                                                               | 900 | 950    | 1000 |  |  |  |  |  |  |
| Minimum:<br>Maximum:<br>Mass                                                                                                                                                                                                                                                  | 0 150 200<br>Calc. Mass                                                                                                                              | 250 300<br>5000.0<br>mDa | 350 400<br>10.0<br>PPM | 450<br>-1.5<br>50.0<br>DBE | 500 550<br>i-FIT            | 600 650<br>i-FIT | 700<br>(Norm) | 750<br>Formu | 800<br>1a | 850                                                                                                                                                                                                               | 900 | 950    | 1000 |  |  |  |  |  |  |

Figure S40. Mass Spectra of DTB-Salimidizine (L2)

| Eleme                                                           | ntal (                                                  | Composition                                                                   | Repo                                     | ort                                |                  |              |              |             |        |         |     |           |        |      |      |     |        | Page 1                |
|-----------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|------------------------------------|------------------|--------------|--------------|-------------|--------|---------|-----|-----------|--------|------|------|-----|--------|-----------------------|
| Single<br>Toleran<br>Elemen<br>Numbe                            | Mas<br>ice =<br>it prec<br>r of is                      | s Analysis<br>10.0 PPM / I<br>liction: Off<br>otope peaks u                   | DBE: n<br>sed for                        | nin = -1<br>i-FIT =                | 1.5, ma:<br>= 5  | x = 50       | 0.0          |             |        |         |     |           |        |      |      |     |        |                       |
| Monoiso<br>418 form<br>Element<br>C: 0-10<br>EH_AG_<br>1: TOF M | otopic M<br>nula(e)<br>s Used<br>0 H<br>OMesa<br>1S ES+ | Mass, Even Elec<br>evaluated with<br>d:<br>: 0-300 N: 0-<br>limidizine_bk2p65 | tron lor<br>5 result<br>4 O:<br>8 (0.183 | ns<br>s within<br>0-10<br>3) Cm (8 | Na: 0-1<br>19)   | up to 5<br>1 | 0 close      | est results | for ea | ach mas | 5)  |           |        |      |      |     |        |                       |
| 100<br>%                                                        | 140.05                                                  | 511 168.0717 270                                                              | 271.0<br>0.0930                          | 3 <sup>,</sup>                     | 43.1188<br>344.1 | 214 43       | 5.1071       | 532.1525    | 566.1  | 918     | 6   | 82.2192 7 | 09.187 | 787. | 2347 | 89: | 3.3131 | 6.60e+002<br>987.2479 |
| 0                                                               | 100                                                     | 150 200                                                                       | 250                                      | 300                                | 350              | 400          | 450          | 500         | 550    | 600     | 650 | 700       | 750    | 800  | 85   | 50  | 900    | 950                   |
| Minimu<br>Maximu                                                | m:<br>m:                                                |                                                                               | 50                                       | 00.0                               | 10.0             |              | -1.5<br>50.0 |             |        |         |     |           |        |      |      |     |        |                       |
| Mass                                                            |                                                         |                                                                               |                                          |                                    |                  |              |              |             |        |         |     |           |        |      |      |     |        |                       |
|                                                                 |                                                         | Calc. Mass                                                                    | mD                                       | a                                  | PPM              |              | DBE          | i-F         | FIT    | i-      | FIT | (Norm)    | Form   | ula  |      |     |        |                       |

Figure S41. Mass Spectra of OMe-Salimidizine (L3)

| Elementa                                                                       | al Compositior                                                                                       | Report                                                            |                                   |                                    |                                      |                                 |           |                                 |                                 |                         |                               | Page 1    |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------|---------------------------------|-----------|---------------------------------|---------------------------------|-------------------------|-------------------------------|-----------|
| Single M<br>Tolerance<br>Element p<br>Number o                                 | ass Analysis<br>= 10.0 PPM /<br>prediction: Off<br>f isotope peaks u                                 | DBE: min = -1<br>sed for i-FIT =                                  | .5, max = 5<br>: 5                | 0.0                                |                                      |                                 |           |                                 |                                 |                         |                               |           |
| Monoisotop<br>560 formula<br>Elements U<br>C: 0-100<br>EH_AG_CN<br>1: TOF MS E | bic Mass, Even Elec<br>a(e) evaluated with<br>Jsed:<br>H: 0-300 N: 0-<br>Isalimidizine_bk2p67<br>ES+ | ctron lons<br>5 results within<br>-6 O: 0-10<br>8 (0.183) Cm (7:9 | limits (up to<br>Na: 0-1          | 50 close                           | st results for e                     | each mass)                      |           |                                 |                                 |                         |                               |           |
|                                                                                |                                                                                                      | 338                                                               | 1030                              |                                    |                                      |                                 |           |                                 |                                 |                         |                               | 2.76e+002 |
| 100<br>% 14                                                                    | 3.0641 168.0723 2                                                                                    | 83.0950 309.101                                                   | 352.1217                          | 415.1435                           | 467.1252563.14                       | 77 67                           | 9.3991 70 | 7.1943                          | 770.198                         | 2                       | 903.5342                      | 961.5206  |
|                                                                                | 100 150 200                                                                                          | 250 300                                                           | 350 400                           | 450                                | 500 550                              | 600 650                         | 700       | 750                             | 800                             | 850                     | 900                           | 950 1000  |
| Minimum:<br>Maximum:                                                           |                                                                                                      | 5000.0                                                            | 10.0                              | -1.5<br>50.0                       |                                      |                                 |           |                                 |                                 |                         |                               |           |
| Mass                                                                           | Calc. Mass                                                                                           | mDa                                                               | PPM                               | DBE                                | i-FIT                                | i-FIT                           | (Norm)    | Form                            | ula                             |                         |                               |           |
| 338.1030                                                                       | 338.1028<br>338.1042<br>338.1018<br>338.1004<br>338.1004                                             | 0.2<br>-1.2<br>1.2<br>2.6<br>-3.3                                 | 0.6<br>-3.5<br>3.5<br>7.7<br>-9.8 | 12.5<br>17.5<br>14.5<br>9.5<br>0.5 | 51.8<br>51.5<br>52.1<br>53.5<br>58.1 | 1.1<br>0.9<br>1.5<br>2.9<br>7.5 |           | C19<br>C20<br>C18<br>C17<br>C10 | H16<br>H12<br>H13<br>H17<br>H21 | N<br>N5<br>N5<br>N<br>N | 05<br>0 Na<br>05 Na<br>010 Na |           |

Figure S42. Mass Spectra of CN-Salimidizine (L4)



Figure S43. Mass spectra of Salimidizine (L1)-Cu complex



Figure S44. Mass spectra of Salimidizine (L1)-UO<sub>2</sub> complex













### **Computational Details (Table S1)**

|    | $L_1Cu^{2+}(AcO)$ |           |           |    |           |            |           |  |  |  |  |
|----|-------------------|-----------|-----------|----|-----------|------------|-----------|--|--|--|--|
|    |                   | Ground St | ate       |    |           | Excited St | ate       |  |  |  |  |
| C  | 5.942091          | -2.399390 | 0.000228  | C  | 5.993400  | -2.400341  | 0.004794  |  |  |  |  |
| C  | 5.552291          | -1.075670 | 0.000218  | C  | 5.571285  | -1.113640  | -0.305673 |  |  |  |  |
| C  | 4.981401          | -3.434910 | 0.000108  | C  | 5.048269  | -3.359241  | 0.371211  |  |  |  |  |
| C  | 4.176431          | -0.696130 | 0.000078  | C  | 4.182433  | -0.740403  | -0.257984 |  |  |  |  |
| C  | 3.199051          | -1.751660 | 0.000018  | C  | 3.207124  | -1.763420  | 0.065838  |  |  |  |  |
| C  | 3.641861          | -3.102570 | 0.000008  | C  | 3.666026  | -3.022558  | 0.400444  |  |  |  |  |
| Η  | 7.006511          | -2.647610 | 0.000338  | H  | 7.054083  | -2.654147  | -0.028358 |  |  |  |  |
| Η  | 6.281631          | -0.264240 | 0.000288  | H  | 6.273034  | -0.325655  | -0.582315 |  |  |  |  |
| Η  | 2.912391          | -3.916330 | -0.000112 | H  | 2.959957  | -3.797059  | 0.706179  |  |  |  |  |
| Η  | 5.290600          | -4.480900 | 0.000078  | H  | 5.354621  | -4.372482  | 0.633624  |  |  |  |  |
| C  | 1.786801          | -1.456360 | 0.000048  | C  | 1.754273  | -1.467339  | 0.043146  |  |  |  |  |
| N  | 1.210981          | -0.242540 | 0.000058  | N  | 1.195145  | -0.260658  | 0.104400  |  |  |  |  |
| N  | 0.817981          | -2.433790 | 0.000108  | N  | 0.805169  | -2.436356  | -0.015819 |  |  |  |  |
| C  | -0.177549         | -0.430700 | 0.000058  | C  | -0.204811 | -0.446049  | 0.082724  |  |  |  |  |
| C  | -0.435629         | -1.845650 | 0.000068  | C  | -0.460167 | -1.833504  | 0.000964  |  |  |  |  |
| C  | -1.212049         | 0.476940  | 0.000038  | C  | -1.250102 | 0.475355   | 0.107105  |  |  |  |  |
| C  | -1.698709         | -2.382040 | 0.000048  | C  | -1.739831 | -2.365196  | -0.059829 |  |  |  |  |
| C  | -2.794659         | -1.468950 | -0.000002 | C  | -2.828495 | -1.455347  | -0.035591 |  |  |  |  |
| C  | -2.545609         | -0.031620 | 0.000008  | C  | -2.576830 | -0.019181  | 0.047368  |  |  |  |  |
| N  | -3.564129         | 0.848260  | -0.000022 | N  | -3.596715 | 0.876876   | 0.072147  |  |  |  |  |
| N  | -4.044619         | -1.964670 | -0.000022 | N  | -4.086180 | -1.955392  | -0.092660 |  |  |  |  |
| C  | -4.807909         | 0.347780  | -0.000052 | C  | -4.846648 | 0.371343   | 0.016958  |  |  |  |  |
| C  | -5.052499         | -1.079140 | -0.000042 | C  | -5.094640 | -1.055574  | -0.067222 |  |  |  |  |
| C  | -5.925569         | 1.242910  | -0.000082 | C  | -5.961642 | 1.258538   | 0.040795  |  |  |  |  |
| C  | -6.403969         | -1.550450 | -0.000082 | C  | -6.441373 | -1.512788  | -0.124032 |  |  |  |  |
| C  | -7.205719         | 0.751030  | -0.000102 | C  | -7.255538 | 0.775580   | -0.015712 |  |  |  |  |
| C  | -7.447029         | -0.659590 | -0.000102 | C  | -7.497232 | -0.619766  | -0.098870 |  |  |  |  |
| H  | -1.047789         | 1.553040  | 0.000068  | H  | -1.088344 | 1.549433   | 0.177057  |  |  |  |  |
| H  | -1.905199         | -3.452730 | 0.000038  | H  | -1.950590 | -3.433203  | -0.125937 |  |  |  |  |
| H  | -5.711569         | 2.313180  | -0.000082 | H  | -5.746205 | 2.327091   | 0.105229  |  |  |  |  |
| H  | -8.055719         | 1.437020  | -0.000122 | H  | -8.099177 | 1.469794   | 0.003622  |  |  |  |  |
| H  | -8.476889         | -1.023760 | -0.000122 | H  | -8.524981 | -0.988353  | -0.142936 |  |  |  |  |
| H  | -6.560179         | -2.630710 | -0.000082 | H  | -6.599552 | -2.591421  | -0.187342 |  |  |  |  |
| 0  | 3.902781          | 0.576380  | -0.000012 | 0  | 3.879294  | 0.484778   | -0.486618 |  |  |  |  |
| H  | 0.999741          | -3.426850 | -0.000102 | H  | 0.982011  | -3.421232  | -0.155750 |  |  |  |  |
| Cu | 2.224141          | 1.435370  | -0.000232 | Cu | 2.198700  | 1.412708   | -0.069877 |  |  |  |  |
| C  | 1.322201          | 5.205280  | 0.000818  | C  | 1.525467  | 5.203537   | 0.224477  |  |  |  |  |
|    | 1.691961          | 3.750090  | -0.000212 | C  | 1.793888  | 3.734978   | 0.106009  |  |  |  |  |
| H  | 2.219371          | 5.835850  | -0.008362 | H  | 2.346810  | 5.786474   | -0.209025 |  |  |  |  |
| H  | 0.714551          | 5.424670  | 0.892288  | H  | 1.403926  | 5.460667   | 1.288314  |  |  |  |  |

B3LYP/cc-pVDZ(-PP) Cartesian coordinates (in Å) of the optimal geometries for the ground and pertinent excited electronic state of the investigated uranyl and copper complexes.

| Η  | 0.697001  | 5.422160         | -0.878942     | Н   | 0.575940  | 5.442106          | -0.277165 |
|----|-----------|------------------|---------------|-----|-----------|-------------------|-----------|
| 0  | 2.900071  | 3.365030         | -0.002272     | 0   | 2.895494  | 3.282595          | -0.349185 |
| 0  | 0.781011  | 2.849270         | 0.001568      | 0   | 0.920847  | 2.874908          | 0.468705  |
|    |           |                  | $L_1 Cu^{2+}$ | AcO | )(W)      |                   |           |
|    |           | <b>Ground St</b> | ate           |     |           | <b>Excited St</b> | ate       |
| С  | -5.394811 | -3.203752        | -0.068122     | C   | -5.466654 | -3.166207         | -0.012159 |
| C  | -5.152433 | -1.849497        | -0.170893     | C   | -5.180929 | -1.841719         | -0.323732 |
| C  | -4.331481 | -4.119269        | 0.102071      | C   | -4.430093 | -4.022399         | 0.359549  |
| C  | -3.829005 | -1.314540        | -0.106381     | C   | -3.839660 | -1.324653         | -0.271992 |
| C  | -2.747669 | -2.251165        | 0.038908      | C   | -2.768481 | -2.242566         | 0.054244  |
| C  | -3.038950 | -3.638365        | 0.150172      | C   | -3.091125 | -3.543086         | 0.390801  |
| Η  | -6.423166 | -3.571453        | -0.113597     | Η   | -6.495340 | -3.528767         | -0.048860 |
| Η  | -5.963501 | -1.130662        | -0.296657     | Н   | -5.961486 | -1.133440         | -0.604926 |
| Η  | -2.227040 | -4.354224        | 0.302640      | Η   | -2.307348 | -4.238338         | 0.698672  |
| Η  | -4.527656 | -5.187874        | 0.198709      | Н   | -4.630996 | -5.061410         | 0.622987  |
| C  | -1.380335 | -1.798092        | 0.045078      | C   | -1.355957 | -1.792672         | 0.026802  |
| Ν  | -0.941144 | -0.527953        | 0.084022      | N   | -0.927679 | -0.534839         | 0.089868  |
| Ν  | -0.313492 | -2.666577        | 0.002447      | N   | -0.313669 | -2.659563         | -0.044846 |
| C  | 0.460862  | -0.568792        | 0.052780      | C   | 0.487227  | -0.576905         | 0.056475  |
| C  | 0.868944  | -1.947926        | -0.004689     | C   | 0.883213  | -1.930541         | -0.031925 |
| C  | 1.399890  | 0.438404         | 0.055662      | C   | 1.437524  | 0.442557          | 0.071996  |
| C  | 2.180290  | -2.348305        | -0.057989     | C   | 2.209214  | -2.331119         | -0.099624 |
| C  | 3.176336  | -1.327382        | -0.054589     | C   | 3.202331  | -1.318260         | -0.074736 |
| C  | 2.778900  | 0.074045         | 0.003779      | C   | 2.808152  | 0.084110          | 0.010040  |
| Ν  | 3.698678  | 1.056386         | 0.011153      | N   | 3.731479  | 1.078357          | 0.035576  |
| Ν  | 4.470378  | -1.688558        | -0.105281     | N   | 4.503965  | -1.689254         | -0.133759 |
| C  | 4.987699  | 0.690432         | -0.040062     | C   | 5.025962  | 0.701944          | -0.023354 |
| C  | 5.379874  | -0.702016        | -0.099370     | C   | 5.416160  | -0.692894         | -0.109601 |
| C  | 6.004914  | 1.697998         | -0.035909     | C   | 6.045543  | 1.697384          | -0.000660 |
| C  | 6.772462  | -1.027868        | -0.152051     | C   | 6.802493  | -1.012287         | -0.168673 |
| C  | 7.328916  | 1.344029         | -0.087524     | C   | 7.380878  | 1.346961          | -0.059889 |
| C  | 7.716185  | -0.032345        | -0.146142     | C   | 7.762037  | -0.017380         | -0.144424 |
| Η  | 1.127657  | 1.490701         | 0.106090      | Η   | 1.175096  | 1.497054          | 0.132929  |
| Η  | 2.495106  | -3.391294        | -0.104420     | Η   | 2.524384  | -3.372734         | -0.171741 |
| Η  | 5.680541  | 2.739160         | 0.008830      | Η   | 5.723821  | 2.738794          | 0.064158  |
| Η  | 8.102126  | 2.115509         | -0.084546     | Η   | 8.150438  | 2.122423          | -0.042152 |
| Η  | 8.777988  | -0.285584        | -0.186678     | Η   | 8.821704  | -0.279925         | -0.190637 |
| Η  | 7.040742  | -2.084933        | -0.196360     | Η   | 7.068568  | -2.069345         | -0.233289 |
| 0  | -3.691732 | -0.026406        | -0.192668     | 0   | -3.658344 | -0.076460         | -0.500333 |
| Η  | -0.393278 | -3.666990        | -0.110063     | H   | -0.391855 | -3.655455         | -0.196468 |
| Cu | -2.142818 | 1.057305         | 0.075016      | Cu  | -2.105586 | 1.061632          | -0.003671 |
| 0  | -0.844718 | 2.304377         | 0.949531      | 0   | -0.948918 | 2.256791          | 1.066788  |
| Η  | -1.394228 | 3.237666         | 0.918241      | H   | -1.538126 | 3.134415          | 1.162847  |
| Η  | -0.635106 | 2.096140         | 1.872422      | H   | -0.564883 | 1.970221          | 1.907516  |
| C  | -4.159367 | 4.754154         | -0.730664     | C   | -4.171763 | 4.717098          | -0.718750 |
| C  | -3.123312 | 3.813244         | -0.153972     | C   | -3.191971 | 3.761891          | -0.074879 |

| Η | -4.121690 | 4.712376  | -1.829933                      | H                | -3.894247 | 4.865359   | -1.773998 |
|---|-----------|-----------|--------------------------------|------------------|-----------|------------|-----------|
| H | -3.986703 | 5.780006  | -0.382632                      | H                | -4.171488 | 5.678926   | -0.191790 |
| H | -5.163318 | 4.416439  | -0.429588                      | H                | -5.179619 | 4.274777   | -0.708525 |
| 0 | -2.268557 | 4.266757  | 0.654102                       | 0                | -2.510830 | 4.140239   | 0.907456  |
| 0 | -3.199386 | 2.594288  | -0.540323                      | 0                | -3.133148 | 2.588389   | -0.609060 |
|   |           |           | L <sub>1</sub> UO <sub>2</sub> | <sup>2+</sup> (A | cO)       |            |           |
|   |           | Ground St | ate                            |                  |           | Excited St | ate       |
| C | 4.544877  | 3.984935  | -0.003402                      | C                | -4.831834 | 3.890710   | -0.088207 |
| C | 4.366077  | 2.699401  | -0.493735                      | C                | -4.611812 | 2.618782   | 0.421394  |
| C | 3.468760  | 4.696165  | 0.555993                       | C                | -3.761341 | 4.603957   | -0.631784 |
| C | 3.103003  | 2.067001  | -0.441600                      | C                | -3.302421 | 2.019187   | 0.395413  |
| C | 1.998909  | 2.795265  | 0.104019                       | C                | -2.186489 | 2.798335   | -0.110354 |
| C | 2.216805  | 4.101872  | 0.600268                       | C                | -2.449890 | 4.041243   | -0.641540 |
| H | 5.535449  | 4.443923  | -0.047028                      | H                | -5.832477 | 4.324780   | -0.072254 |
| Η | 5.193435  | 2.136326  | -0.928188                      | H                | -5.417439 | 2.016810   | 0.843437  |
| H | 1.391345  | 4.645178  | 1.067326                       | H                | -1.640896 | 4.623184   | -1.086934 |
| H | 3.616048  | 5.698416  | 0.960646                       | H                | -3.913320 | 5.601115   | -1.046555 |
| C | 0.654894  | 2.234403  | 0.112100                       | C                | -0.794453 | 2.269093   | -0.069695 |
| N | 0.304414  | 0.945980  | 0.036950                       | N                | -0.421989 | 1.000398   | -0.199861 |
| Ν | -0.460293 | 3.036758  | 0.187336                       | N                | 0.280911  | 3.087248   | 0.070925  |
| C | -1.092362 | 0.900455  | 0.037931                       | C                | 0.987510  | 0.985695   | -0.145773 |
| C | -1.596846 | 2.243890  | 0.134557                       | C                | 1.446456  | 2.307694   | 0.033336  |
| C | -1.950062 | -0.174137 | -0.031706                      | C                | 1.881700  | -0.081877  | -0.228860 |
| C | -2.935474 | 2.545036  | 0.155090                       | C                | 2.792375  | 2.631170   | 0.140293  |
| C | -3.850120 | 1.452419  | 0.080535                       | C                | 3.729897  | 1.568317   | 0.063002  |
| C | -3.352236 | 0.084642  | -0.011520                      | C                | 3.267309  | 0.193835   | -0.121451 |
| Ν | -4.197706 | -0.960099 | -0.081025                      | N                | 4.138146  | -0.842272  | -0.202555 |
| Ν | -5.168721 | 1.716894  | 0.098561                       | N                | 5.047219  | 1.865093   | 0.162059  |
| C | -5.509720 | -0.689297 | -0.062421                      | C                | 5.450508  | -0.537922  | -0.102107 |
| C | -6.003276 | 0.669802  | 0.028895                       | C                | 5.908992  | 0.825319   | 0.082920  |
| C | -6.451081 | -1.766142 | -0.134288                      | C                | 6.417751  | -1.580093  | -0.178798 |
| C | -7.417091 | 0.894030  | 0.044646                       | C                | 7.307334  | 1.068074   | 0.181654  |
| C | -7.797516 | -1.508316 | -0.116324                      | C                | 7.769069  | -1.304282  | -0.078417 |
| C | -8.285028 | -0.165278 | -0.025960                      | C                | 8.216991  | 0.028675   | 0.103006  |
| Η | -1.614538 | -1.209510 | -0.109692                      | H                | 1.578146  | -1.120331  | -0.381965 |
| Η | -3.331899 | 3.558505  | 0.222961                       | H                | 3.164429  | 3.646850   | 0.278591  |
| Η | -6.051482 | -2.779395 | -0.202669                      | H                | 6.045012  | -2.596847  | -0.318408 |
| Η | -8.512927 | -2.331791 | -0.171376                      | H                | 8.498016  | -2.115997  | -0.138671 |
| Η | -9.363124 | 0.009804  | -0.013800                      | H                | 9.287503  | 0.233324   | 0.180775  |
| H | -7.762290 | 1.927082  | 0.113975                       | H                | 7.625293  | 2.103398   | 0.320824  |
| 0 | 2.954695  | 0.847320  | -0.927701                      | 0                | -3.156408 | 0.811140   | 0.790719  |
| Η | -0.440883 | 4.045960  | 0.131062                       | H                | 0.238569  | 4.076144   | 0.277041  |
| U | 1.956854  | -0.966379 | -0.129624                      | U                | -1.825032 | -1.039369  | 0.084815  |
| 0 | 2.534189  | -0.521772 | 1.502393                       | 0                | -2.484705 | -0.777294  | -1.549689 |
| 0 | 1.304075  | -1.402793 | -1.734778                      | 0                | -1.216661 | -1.222008  | 1.744978  |
| C | 2.333134  | -5.146308 | 0.754614                       | C                | -1.945651 | -5.278686  | -0.369022 |

| C | 2.218654  | -3.674516        | 0.475241     | C                  | -1.927209 | -3.785838         | -0.236825 |  |
|---|-----------|------------------|--------------|--------------------|-----------|-------------------|-----------|--|
| Η | 1.936187  | -5.695184        | -0.115641    | H                  | -1.377726 | -5.706930         | 0.473464  |  |
| H | 1.729167  | -5.415368        | 1.631488     | H                  | -1.440534 | -5.578353         | -1.297663 |  |
| H | 3.384470  | -5.429013        | 0.894611     | H                  | -2.974843 | -5.657078         | -0.336599 |  |
| 0 | 1.128946  | -3.055287        | 0.731992     | 0                  | -0.886614 | -3.119239         | -0.571768 |  |
| 0 | 3.194444  | -3.035807        | -0.044230    | 0                  | -2.935056 | -3.153810         | 0.233115  |  |
|   |           |                  |              |                    |           |                   |           |  |
|   |           |                  | $L_1 UO_2^2$ | <sup>2+</sup> (Ac( | D)(W)     |                   |           |  |
|   |           | <b>Ground St</b> | ate          |                    |           | <b>Excited St</b> | ate       |  |
| C | 4.156296  | 4.431063         | -0.087906    | C                  | 4.288344  | 4.463747          | -0.035373 |  |
| C | 4.086260  | 3.099635         | -0.471907    | C                  | 4.207573  | 3.152249          | -0.481563 |  |
| C | 3.010374  | 5.109403         | 0.363084     | C                  | 3.142400  | 5.089946          | 0.459952  |  |
| C | 2.866507  | 2.386829         | -0.417123    | C                  | 2.966446  | 2.421222          | -0.439149 |  |
| C | 1.692807  | 3.078732         | 0.018230     | C                  | 1.769028  | 3.109141          | 0.010737  |  |
| C | 1.799949  | 4.434150         | 0.407874     | C                  | 1.895854  | 4.397385          | 0.481930  |  |
| Η | 5.115084  | 4.953321         | -0.130948    | H                  | 5.239845  | 4.996838          | -0.061869 |  |
| Η | 4.968392  | 2.561484         | -0.822053    | H                  | 5.077580  | 2.615871          | -0.862295 |  |
| Η | 0.919765  | 4.956021         | 0.792058     | H                  | 1.024101  | 4.914402          | 0.887276  |  |
| Η | 3.071423  | 6.150119         | 0.684284     | H                  | 3.185803  | 6.116330          | 0.826226  |  |
| C | 0.392311  | 2.423208         | 0.026294     | C                  | 0.435769  | 2.444684          | -0.024471 |  |
| N | 0.135417  | 1.111425         | 0.044246     | N                  | 0.178178  | 1.155312          | 0.159430  |  |
| N | -0.777700 | 3.147664         | 0.008075     | N                  | -0.705297 | 3.158807          | -0.214844 |  |
| C | -1.255404 | 0.966496         | 0.020957     | C                  | -1.226969 | 1.013784          | 0.090696  |  |
| C | -1.854118 | 2.274215         | -0.006757    | C                  | -1.797201 | 2.281935          | -0.153942 |  |
| C | -2.034893 | -0.168833        | 0.029504     | C                  | -2.029068 | -0.120240         | 0.215188  |  |
| C | -3.210355 | 2.481022         | -0.040998    | C                  | -3.163589 | 2.484363          | -0.288299 |  |
| C | -4.045406 | 1.324272         | -0.040644    | C                  | -4.008684 | 1.351302          | -0.165953 |  |
| C | -3.451594 | -0.007461        | -0.000665    | C                  | -3.431868 | 0.034014          | 0.088019  |  |
| N | -4.221688 | -1.111455        | 0.009061     | N                  | -4.213117 | -1.068774         | 0.216409  |  |
| Ν | -5.379177 | 1.495353         | -0.073087    | N                  | -5.346515 | 1.529635          | -0.289068 |  |
| C | -5.549260 | -0.933693        | -0.023887    | C                  | -5.544587 | -0.883082         | 0.093727  |  |
| C | -6.137469 | 0.389536         | -0.066293    | C                  | -6.116235 | 0.425434          | -0.162914 |  |
| C | -6.412087 | -2.076766        | -0.017272    | C                  | -6.420950 | -1.999340         | 0.217995  |  |
| C | -7.563293 | 0.513193         | -0.100582    | C                  | -7.529763 | 0.541297          | -0.282015 |  |
| C | -7.773113 | -1.914832        | -0.051046    | C                  | -7.789731 | -1.845977         | 0.096469  |  |
| C | -8.354138 | -0.607112        | -0.093113    | C                  | -8.347979 | -0.566973         | -0.155327 |  |
| H | -1.622061 | -1.178110        | 0.059964     | H                  | -1.630432 | -1.116882         | 0.409944  |  |
| H | -3.676797 | 3.466244         | -0.067348    | H                  | -3.617538 | 3.457347          | -0.479668 |  |
| H | -5.941866 | -3.061150        | 0.014060     | H                  | -5.963915 | -2.972138         | 0.410703  |  |
| H | -8.428316 | -2.788718        | -0.046624    | H                  | -8.447383 | -2.713167         | 0.193939  |  |
| H | -9.441665 | -0.508544        | -0.119722    | H                  | -9.431308 | -0.459108         | -0.249413 |  |
| H | -7.980540 | 1.521210         | -0.132509    | H                  | -7.933655 | 1.537202          | -0.475679 |  |
| 0 | 2.820573  | 1.125206         | -0.800455    | 0                  | 2.951392  | 1.186561          | -0.765308 |  |
| H | -0.826748 | 4.148301         | -0.126655    | H                  | -0.745365 | 4.134867          | -0.474652 |  |
| U | 1.898699  | -0.724840        | 0.009307     | U                  | 1.794508  | -0.762587         | 0.077209  |  |
| 0 | 2.350459  | -0.232474        | 1.672913     | 0                  | 2.401458  | -0.312398         | 1.701358  |  |

| 0 | 1.326782 -1.264606 -1.596828 | 0 | 1.266758 -1.170907 -1.579 | 9046 |
|---|------------------------------|---|---------------------------|------|
| 0 | 0.501475 -2.491257 0.981619  | 0 | 0.615876 -2.451873 0.936  | 6463 |
| Η | 1.036749 -3.349673 0.673275  | H | 1.362134 -3.666133 0.437  | 7151 |
| Η | 0.474411 -2.540659 1.949705  | H | 0.471018 -2.538428 1.891  | 773  |
| C | 4.302001 -4.657024 -0.449192 | C | 4.244165 -4.755596 -0.703 | 3216 |
| C | 3.123817 -3.814775 -0.024955 | C | 3.166491 -3.834219 -0.214 | 4290 |
| Η | 4.570883 -4.396782 -1.485506 | H | 4.225571 -4.745781 -1.803 | 5948 |
| Η | 4.059114 -5.724562 -0.385954 | H | 4.070045 -5.782420 -0.359 | 9156 |
| Η | 5.172329 -4.420115 0.181145  | H | 5.225810 -4.386408 -0.379 | 9093 |
| 0 | 2.022373 -4.348820 0.229193  | 0 | 2.037423 -4.389624 0.096  | 5722 |
| 0 | 3.330387 -2.536996 0.056917  | 0 | 3.370030 -2.597969 -0.140 | 0833 |



### Crystallographic Tables (Table S2)

Salimidizine (L1)





| Identification code                         | Hiti070117_0m                                      |
|---------------------------------------------|----------------------------------------------------|
| Empirical formula                           | $C_{19}H_{12}N_4O$                                 |
| Formula weight                              | 312.33                                             |
| Temperature/K                               | ?                                                  |
| Crystal system                              | monoclinic                                         |
| Space group                                 | $P2_1/n$                                           |
| a/Å                                         | 6.6597(6)                                          |
| b/Å                                         | 30.064(3)                                          |
| c/Å                                         | 7.2617(6)                                          |
| α/°                                         | 90                                                 |
| β/°                                         | 108.293(2)                                         |
| γ/ <sup>o</sup>                             | 90                                                 |
| Volume/Å <sup>3</sup>                       | 1380.5(2)                                          |
| Ζ                                           | 4                                                  |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.5027                                             |
| μ/mm <sup>-1</sup>                          | 0.098                                              |
| F(000)                                      | 648.3                                              |
| Crystal size/mm <sup>3</sup>                | $0.2\times0.15\times0.05$                          |
| Radiation                                   | Mo K $\alpha$ ( $\lambda = 0.71073$ )              |
| 20 range for data collection/°              | 5.42 to 54.96                                      |
| Index ranges                                | $-8 \le h \le 8, -39 \le k \le 39, -9 \le l \le 9$ |
| Reflections collected                       | 13927                                              |
| Independent reflections                     | 3173 [ $R_{int} = 0.0386$ , $R_{sigma} = 0.0348$ ] |
| Data/restraints/parameters                  | 3173/0/218                                         |
| Goodness-of-fit on F <sup>2</sup>           | 1.067                                              |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0582, wR_2 = 0.1239$                      |
| Final R indexes [all data]                  | $R_1 = 0.0784, wR_2 = 0.1332$                      |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.41/-0.33                                         |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for Hiti070117\_0m. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x        | У          | z        | U(eq)   |
|------|----------|------------|----------|---------|
| N2   | -4687(3) | -1097.8(6) | 395(2)   | 21.2(4) |
| C10  | -2987(3) | -829.6(6)  | 990(3)   | 18.3(4) |
| N3   | -604(3)  | -1402.1(5) | 500(2)   | 20.2(4) |
| C17  | -898(3)  | -984.0(6)  | 1035(3)  | 18.3(4) |
| C16  | -2314(3) | -1665.5(6) | -96(3)   | 20.2(4) |
| C6   | 1733(3)  | 848.2(6)   | 3842(3)  | 18.1(4) |
| C8   | -1524(3) | -125.1(6)  | 2144(3)  | 18.7(4) |
| C11  | -4373(3) | -1512.7(7) | -140(3)  | 20.5(4) |
| C18  | 868(3)   | -694.0(6)  | 1630(3)  | 19.0(4) |
| C19  | 544(3)   | -270.5(6)  | 2168(3)  | 17.9(4) |
| C9   | -3263(3) | -391.2(6)  | 1575(3)  | 19.9(4) |
| C15  | -2101(3) | -2106.6(7) | -730(3)  | 24.8(5) |
| C1   | 3918(3)  | 919.4(6)   | 4238(3)  | 18.8(4) |
| C12  | -6124(3) | -1811.5(7) | -771(3)  | 26.4(5) |
| C2   | 4797(3)  | 1329.3(7)  | 4971(3)  | 23.6(4) |
| C5   | 486(3)   | 1196.8(7)  | 4146(3)  | 23.6(4) |
| C7   | 834(3)   | 416.4(6)   | 3138(3)  | 17.4(4) |
| C3   | 3531(3)  | 1665.0(7)  | 5267(3)  | 26.4(5) |
| C4   | 1360(4)  | 1600.1(7)  | 4840(3)  | 28.2(5) |
| C14  | -3809(3) | -2377.0(7) | -1358(3) | 28.2(5) |
| C13  | -5840(3) | -2227.5(7) | -1369(3) | 29.0(5) |
| 01   | 5211(2)  | 598.2(5)   | 3953(2)  | 25.8(3) |
| N1   | -1249(2) | 309.8(5)   | 2782(2)  | 20.3(4) |
| N4   | 1956(2)  | 81.6(5)    | 2797(2)  | 19.0(4) |

## Table 3 Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for Hiti070117\_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| N2   | 18.6(8)         | 22.6(9)         | 23.0(8)         | -0.1(7)         | 7.5(7)          | 1.7(7)          |
| C10  | 15.9(9)         | 22.2(10)        | 16.9(9)         | 0.1(8)          | 5.3(7)          | 3.4(7)          |
| N3   | 19.4(8)         | 20.4(9)         | 21.7(8)         | 1.0(7)          | 7.6(7)          | 0.8(6)          |
| C17  | 19.7(10)        | 18.7(10)        | 17.3(9)         | 3.0(8)          | 7.1(7)          | 1.3(7)          |
| C16  | 22.2(10)        | 20.7(10)        | 18.5(9)         | 0.0(8)          | 7.4(8)          | 3.2(8)          |
| C6   | 21.0(10)        | 16.8(9)         | 18.1(9)         | 0.2(8)          | 8.7(7)          | 2.5(7)          |
| C8   | 20.7(10)        | 19.3(10)        | 18.3(9)         | 4.3(8)          | 9.2(8)          | 3.2(7)          |
| C11  | 21.2(10)        | 22.8(11)        | 17.9(9)         | 0.5(8)          | 6.8(7)          | 3.4(8)          |
| C18  | 14.2(9)         | 21.6(10)        | 21.9(9)         | 2.5(8)          | 6.8(7)          | 1.0(8)          |
| C19  | 16.7(9)         | 20.2(10)        | 17.6(9)         | 1.5(8)          | 6.4(7)          | 3.6(7)          |
| C9   | 15.6(9)         | 22.2(10)        | 23.5(9)         | 4.9(8)          | 8.6(8)          | 1.7(8)          |
| C15  | 25.9(11)        | 22.6(11)        | 27.2(10)        | 3.0(9)          | 10.2(9)         | 2.9(8)          |
| C1   | 20.6(10)        | 19.0(10)        | 17.6(9)         | 3.5(8)          | 7.3(7)          | 3.5(7)          |
| C12  | 19.5(10)        | 28.6(12)        | 30.9(11)        | -1.8(9)         | 7.5(8)          | 3.0(9)          |
| C2   | 20.9(10)        | 25.7(11)        | 24.6(10)        | -1.4(8)         | 7.6(8)          | 1.8(8)          |
| C5   | 22.5(10)        | 23.4(11)        | 27.8(10)        | 4.4(8)          | 12.2(8)         | 1.4(8)          |
| C7   | 17.5(9)         | 19.2(10)        | 16.5(9)         | 2.9(8)          | 6.9(7)          | 3.2(7)          |
| C3   | 34.8(12)        | 18.3(10)        | 27.0(10)        | -3.8(9)         | 11.0(9)         | -2.4(8)         |
| C4   | 33.8(12)        | 22.1(11)        | 31.8(11)        | 5.8(9)          | 14.7(9)         | -1.9(9)         |

| C14 | 34.6(12) | 17.8(11) | 32.1(11) | -0.2(9) | 10.5(9) | 0.5(9)  |
|-----|----------|----------|----------|---------|---------|---------|
| C13 | 27.0(12) | 24.6(11) | 34.2(11) | -8.2(9) | 8.1(9)  | 0.9(9)  |
| 01  | 17.1(7)  | 22.0(8)  | 39.8(8)  | 1.5(6)  | 10.9(6) | -3.9(6) |
| N1  | 17.1(8)  | 18.7(9)  | 27.4(8)  | 4.7(7)  | 10.4(7) | -0.1(7) |
| N4  | 18.6(8)  | 16.8(8)  | 21.9(8)  | 1.9(7)  | 6.8(6)  | 0.8(6)  |

### Table 4 Bond Lengths for Hiti070117\_0m.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| N2   | C10  | 1.346(2) | C8   | N1   | 1.380(2) |
| N2   | C11  | 1.343(3) | C11  | C12  | 1.429(3) |
| C10  | C17  | 1.457(3) | C18  | C19  | 1.368(3) |
| C10  | C9   | 1.415(3) | C19  | N4   | 1.394(2) |
| N3   | C17  | 1.348(2) | C15  | C14  | 1.356(3) |
| N3   | C16  | 1.342(2) | C1   | C2   | 1.396(3) |
| C17  | C18  | 1.418(3) | C1   | 01   | 1.352(2) |
| C16  | C11  | 1.437(3) | C12  | C13  | 1.356(3) |
| C16  | C15  | 1.426(3) | C2   | C3   | 1.375(3) |
| C6   | C1   | 1.408(3) | C5   | C4   | 1.371(3) |
| C6   | C5   | 1.397(3) | C7   | N1   | 1.367(2) |
| C6   | C7   | 1.453(3) | C7   | N4   | 1.322(2) |
| C8   | C19  | 1.440(3) | C3   | C4   | 1.394(3) |
| C8   | C9   | 1.361(3) | C14  | C13  | 1.423(3) |

### Table 5 Bond Angles for Hiti070117\_0m.

| Atom | n Aton | n Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|--------|--------|------------|------|------|------|------------|
| C11  | N2     | C10    | 117.24(17) | C18  | C19  | C8   | 120.99(17) |
| C17  | C10    | N2     | 121.17(17) | N4   | C19  | C8   | 108.50(16) |
| C9   | C10    | N2     | 118.62(17) | N4   | C19  | C18  | 130.52(17) |
| C9   | C10    | C17    | 120.21(17) | C8   | C9   | C10  | 117.41(17) |
| C16  | N3     | C17    | 117.24(17) | C14  | C15  | C16  | 120.5(2)   |
| N3   | C17    | C10    | 120.95(17) | C2   | C1   | C6   | 119.67(18) |
| C18  | C17    | C10    | 120.38(17) | 01   | C1   | C6   | 121.80(17) |
| C18  | C17    | N3     | 118.67(17) | 01   | C1   | C2   | 118.53(17) |
| C11  | C16    | N3     | 121.73(18) | C13  | C12  | C11  | 120.1(2)   |
| C15  | C16    | N3     | 119.49(18) | C3   | C2   | C1   | 120.22(19) |
| C15  | C16    | C11    | 118.77(18) | C4   | C5   | C6   | 121.15(19) |
| C5   | C6     | C1     | 118.74(18) | N1   | C7   | C6   | 123.86(17) |
| C7   | C6     | C1     | 119.51(17) | N4   | C7   | C6   | 123.47(17) |
| C7   | C6     | C5     | 121.75(17) | N4   | C7   | N1   | 112.66(17) |
| C9   | C8     | C19    | 123.03(18) | C4   | C3   | C2   | 120.4(2)   |
| N1   | C8     | C19    | 104.96(16) | C3   | C4   | C5   | 119.75(19) |
| N1   | C8     | C9     | 132.01(18) | C13  | C14  | C15  | 120.6(2)   |
| C16  | C11    | N2     | 121.66(18) | C14  | C13  | C12  | 121.1(2)   |

| C12 | C11 | N2  | 119.44(18) | C7 | N1 | C8  | 107.78(16) |
|-----|-----|-----|------------|----|----|-----|------------|
| C12 | C11 | C16 | 118.90(18) | C7 | N4 | C19 | 106.10(16) |
| C19 | C18 | C17 | 117.97(17) |    |    |     |            |

Table 6 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for Hiti070117\_0m.

| Atom | x        | У          | z        | U(eq)   |
|------|----------|------------|----------|---------|
| H18  | 2206(3)  | -788.7(6)  | 1654(3)  | 22.8(5) |
| Н9   | -4582(3) | -288.7(6)  | 1571(3)  | 23.8(5) |
| H15  | -778(3)  | -2209.7(7) | -714(3)  | 29.8(5) |
| H12  | -7459(3) | -1720.8(7) | -771(3)  | 31.7(6) |
| H2   | 6244(3)  | 1375.4(7)  | 5259(3)  | 28.3(5) |
| Н5   | -961(3)  | 1154.5(7)  | 3872(3)  | 28.3(5) |
| H3   | 4127(3)  | 1937.2(7)  | 5756(3)  | 31.7(6) |
| H4   | 507(4)   | 1829.7(7)  | 5026(3)  | 33.9(6) |
| H14  | -3652(3) | -2662.7(7) | -1785(3) | 33.8(6) |
| H13  | -6993(3) | -2418.3(7) | -1794(3) | 34.8(6) |
| H1   | 4528(8)  | 370(3)     | 3580(40) | 38.7(5) |
| Hla  | -2216(2) | 482.9(5)   | 2929(2)  | 24.3(4) |

### 3,5-Ditertbutylsalimidizine (L2)



### Table 1. Sample and crystal data for bam126.

| Identification code | bam126               |
|---------------------|----------------------|
| Chemical formula    | $C_{31}H_{38}N_4O_3$ |

| Formula weight         | 514.65 g/mol               |                                 |  |
|------------------------|----------------------------|---------------------------------|--|
| Temperature            | 273(2) K                   |                                 |  |
| Wavelength             | 0.71073 Å                  |                                 |  |
| Crystal size           | 0.070 x 0.100 x 0.110 m    | m                               |  |
| Crystal habit          | clear orange fragment      |                                 |  |
| Crystal system         | triclinic                  |                                 |  |
| Space group            | P -1                       |                                 |  |
| Unit cell dimensions   | a = 9.0812(5) Å            | $\alpha = 103.5190(10)^{\circ}$ |  |
|                        | b = 9.9887(5)  Å           | $\beta = 103.2200(10)^{\circ}$  |  |
|                        | c = 16.3825(9)  Å          | $\gamma = 99.4900(10)^{\circ}$  |  |
| Volume                 | 1368.65(13) Å <sup>3</sup> |                                 |  |
| Ζ                      | 2                          |                                 |  |
| Density (calculated)   | 1.249 g/cm <sup>3</sup>    |                                 |  |
| Absorption coefficient | 0.081 mm <sup>-1</sup>     |                                 |  |
| F(000)                 | 552                        |                                 |  |

Table 2. Data collection and structure refinement for bam126.

| Diffractometer                      | Bruker APEX κ-geometry diffractometer                                                         |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Radiation source                    | microfocus sealed tube (Mo K $\alpha$ , $\lambda = 0.71073$ Å)                                |  |  |
| Theta range for data collection     | 2.15 to 28.70°                                                                                |  |  |
| Index ranges                        | -12<=h<=12, -13<=k<=13, -22<=l<=21                                                            |  |  |
| Reflections collected               | 29332                                                                                         |  |  |
| Independent reflections             | 7073 [R(int) = 0.0336]                                                                        |  |  |
| Coverage of independent reflections | 99.8%                                                                                         |  |  |
| Absorption correction               | Multi-Scan                                                                                    |  |  |
| Max. and min. transmission          | 0.9940 and 0.9910                                                                             |  |  |
| Structure solution technique        | direct methods                                                                                |  |  |
| Structure solution program          | SHELXT 2014/5 (Sheldrick, 2014)                                                               |  |  |
| Refinement method                   | Full-matrix least-squares on F <sup>2</sup>                                                   |  |  |
| Refinement program                  | SHELXL-2017/1 (Sheldrick, 2017)                                                               |  |  |
| Function minimized                  | $\Sigma w (F_o^2 - F_c^2)^2$                                                                  |  |  |
| Data / restraints / parameters      | 7073 / 0 / 367                                                                                |  |  |
| Goodness-of-fit on F <sup>2</sup>   | 1.054                                                                                         |  |  |
| Final R indices                     | 5267 data; I> $2\sigma$ (I) R1 = 0.0489, wR2 = 0.1266                                         |  |  |
|                                     | all data $R1 = 0.0686, wR2 = 0.1411$                                                          |  |  |
| Weighting scheme                    | w=1/[ $\sigma^2(F_o^2)$ +(0.0633P) <sup>2</sup> +0.5063P]<br>where P=( $F_o^2$ +2 $F_c^2$ )/3 |  |  |
| Largest diff. peak and hole         | 0.430 and -0.278 eÅ <sup>-3</sup>                                                             |  |  |
| <b>R.M.S. deviation from mean</b>   | 0.046 eÅ <sup>-3</sup>                                                                        |  |  |

### Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters ( $Å^2$ ) for

 $U(\mbox{eq})$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|    | x/a         | y/b         | z/c         | U(eq)     |
|----|-------------|-------------|-------------|-----------|
| 01 | 0.34101(13) | 0.66604(11) | 0.70893(7)  | 0.0339(3) |
| C1 | 0.93468(19) | 0.11217(17) | 0.30393(11) | 0.0344(3) |
| C2 | 0.85053(18) | 0.10680(15) | 0.36212(10) | 0.0307(3) |
| N4 | 0.74673(14) | 0.98087(12) | 0.45223(7)  | 0.0245(2) |
| C3 | 0.83540(16) | 0.98850(14) | 0.39737(9)  | 0.0236(3) |

|      | x/a         | y/b         | z/c         | U(eq)      |
|------|-------------|-------------|-------------|------------|
| C6   | 0.63185(16) | 0.85007(14) | 0.53489(9)  | 0.0242(3)  |
| C5   | 0.73100(15) | 0.86455(13) | 0.48070(8)  | 0.0214(3)  |
| C7   | 0.62149(16) | 0.73358(14) | 0.56571(8)  | 0.0220(3)  |
| C9   | 0.57047(16) | 0.57551(14) | 0.63241(8)  | 0.0226(3)  |
| N8   | 0.53665(14) | 0.69534(12) | 0.62050(8)  | 0.0250(2)  |
| C10  | 0.50930(15) | 0.50455(14) | 0.69007(8)  | 0.0220(3)  |
| C11  | 0.56507(16) | 0.39073(14) | 0.71131(9)  | 0.0230(3)  |
| C12  | 0.51321(16) | 0.32659(14) | 0.76927(9)  | 0.0227(3)  |
| C13  | 0.40122(16) | 0.37994(14) | 0.80517(9)  | 0.0240(3)  |
| C14  | 0.34085(16) | 0.49268(14) | 0.78676(9)  | 0.0240(3)  |
| C15  | 0.39694(16) | 0.55582(14) | 0.72802(9)  | 0.0243(3)  |
| C16  | 0.58506(16) | 0.20978(15) | 0.79721(9)  | 0.0249(3)  |
| C17  | 0.59430(18) | 0.09827(15) | 0.71767(10) | 0.0303(3)  |
| C18  | 0.4912(2)   | 0.13341(18) | 0.84657(12) | 0.0388(4)  |
| C19  | 0.75054(19) | 0.27792(18) | 0.85711(11) | 0.0366(4)  |
| C20  | 0.22113(17) | 0.54906(15) | 0.83004(9)  | 0.0279(3)  |
| O1W  | 0.78603(14) | 0.28539(12) | 0.56158(8)  | 0.0352(3)  |
| C21  | 0.2867(2)   | 0.70581(17) | 0.88291(11) | 0.0397(4)  |
| C22  | 0.06869(18) | 0.53274(17) | 0.76012(11) | 0.0337(3)  |
| C24  | 0.01139(19) | 0.00352(17) | 0.27773(11) | 0.0345(3)  |
| C25  | 0.00306(18) | 0.89135(16) | 0.31172(10) | 0.0308(3)  |
| C26  | 0.91450(16) | 0.87970(14) | 0.37200(9)  | 0.0236(3)  |
| N27  | 0.90728(13) | 0.76758(12) | 0.40436(8)  | 0.0241(2)  |
| C28  | 0.81548(15) | 0.75623(13) | 0.45748(8)  | 0.0209(3)  |
| C29  | 0.80315(16) | 0.63686(14) | 0.49070(9)  | 0.0227(3)  |
| C30  | 0.70846(15) | 0.62896(13) | 0.54418(8)  | 0.0212(3)  |
| N31  | 0.67212(13) | 0.53086(12) | 0.58780(7)  | 0.0230(2)  |
| C23  | 0.1820(2)   | 0.46741(18) | 0.89382(11) | 0.0360(4)  |
| O1S  | 0.8159(2)   | 0.93674(15) | 0.89744(10) | 0.0624(4)  |
| C2S  | 0.7876(4)   | 0.7114(2)   | 0.91845(17) | 0.0725(7)  |
| C3S  | 0.8043(3)   | 0.8172(2)   | 0.00370(14) | 0.0601(6)  |
| C4S  | 0.7824(3)   | 0.9488(3)   | 0.97859(16) | 0.0676(6)  |
| C1SA | 0.7518(10)  | 0.7981(5)   | 0.8515(3)   | 0.0555(16) |
| C1SB | 0.838(2)    | 0.7940(9)   | 0.8649(7)   | 0.064(3)   |

### Table 4. Bond lengths (Å) for bam126.

| O1-C15  | 1.3566(16) | O1-H1   | 0.82       |
|---------|------------|---------|------------|
| C1-C2   | 1.356(2)   | C1-C24  | 1.420(2)   |
| C1-H1A  | 0.93       | C2-C3   | 1.4320(18) |
| С2-Н2   | 0.93       | N4-C3   | 1.3434(18) |
| N4-C5   | 1.3480(16) | C3-C26  | 1.4327(19) |
| C6-C7   | 1.3704(18) | C6-C5   | 1.4152(19) |
| С6-Н6   | 0.93       | C5-C28  | 1.4555(17) |
| C7-N8   | 1.3873(17) | C7-C30  | 1.4378(18) |
| C9-N8   | 1.3298(17) | C9-N31  | 1.3701(17) |
| C9-C10  | 1.4583(18) | C10-C11 | 1.4015(18) |
| C10-C15 | 1.4155(18) | C11-C12 | 1.3868(18) |
| C11-H11 | 0.93       | C12-C13 | 1.4036(18) |

| C12-C16                          | 1.5364(18)                      | C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3952(18)               |
|----------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| С13-Н13                          | 0.93                            | C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4091(19)               |
| C14-C20                          | 1.5393(18)                      | C16-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.532(2)                 |
| C16-C18                          | 1.534(2)                        | C16-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.536(2)                 |
| C17-H17A                         | 0.96                            | C17-H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C17-H17C                         | 0.96                            | C18-H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C18-H18B                         | 0.96                            | C18-H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C19-H19A                         | 0.96                            | C19-H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C19-H19C                         | 0.96                            | C20-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.535(2)                 |
| C20-C22                          | 1.539(2)                        | C20-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.542(2)                 |
| O1W-H1W                          | 0.89(2)                         | O1W-H2W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84(2)                  |
| C21-H21A                         | 0.96                            | C21-H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C21-H21C                         | 0.96                            | C22-H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C22-H22B                         | 0.96                            | C22-H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| C24-C25                          | 1.362(2)                        | C24-H24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     |
| C25-C26                          | 1.4219(19)                      | C25-H25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     |
| C26-N27                          | 1.3449(16)                      | N27-C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3461(17)               |
| C28-C29                          | 1.4205(17)                      | C29-C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3667(18)               |
| С29-Н29                          | 0.93                            | C30-N31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3815(16)               |
| N31-H31                          | 0.86                            | C23-H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| С23-Н23В                         | 0.96                            | C23-H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                     |
| O1S-C1SA                         | 1.367(5)                        | O1S-C4S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.413(3)                 |
| O1S-C1SB                         | 1.466(8)                        | C2S-C1SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.436(10)                |
| C2S-C3S                          | 1.500(3)                        | C2S-C1SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.560(6)                 |
| C2S-H2SA                         | 0.97                            | C2S-H2SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                     |
| C3S-C4S                          | 1.496(3)                        | C3S-H3SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                     |
| C3S-H3SB                         | 0.97                            | C4S-H4SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                     |
| C4S-H4SD                         | 0.97                            | C1SA-H1SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                     |
| C1SA-H1SB                        | 0.97                            | C1SB-H1SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                     |
| C1SB-H1SD                        | 0.97                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Table 5. Bond angle              | s (°) for bam126.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                                  | 100.5                           | C2 C1 C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101 44(12)               |
|                                  | 109.5                           | $C_2 - C_1 - C_2 $ | 121.44(13)               |
| $C_2$ - $C_1$ - $\Pi_1$ A        | 119.5                           | C1 C2 H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.5                    |
| C1-C2-C3                         | 119.97(14)                      | $C1-C2-\Pi Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0<br>117.42(11)      |
| С3-С2-П2<br>N4 С2 С2             | 120.0<br>110.74(12)             | C3-IN4-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/.43(11)<br>121.57(12) |
| 114-03-02                        | 119.74(12)<br>118.60(12)        | N4-C3-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.37(12)<br>117.01(12) |
| C2-C3-C20                        | 118.09(13)                      | C7-C0-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.91(12)               |
| С7-С0-П0<br>N4 C5 C6             | 121.0<br>118.72(12)             | N4 C5 C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0<br>121.05(12)      |
| N4-C5-C0<br>C6 C5 C28            | 110.72(12)<br>120.22(11)        | C6 C7 N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.03(12)<br>120.68(12) |
| C6 C7 C30                        | 120.22(11)<br>121.42(12)        | N8 C7 C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.08(12)<br>108.88(11) |
| N8 C0 N31                        | 121.43(12)<br>112.78(11)        | N8-C7-C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00(11)<br>122.56(12) |
| N31_C0_C10                       | 112.70(11)<br>124.61(12)        | $C_0 N_8 C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.30(12)<br>105.82(11) |
| C11_C10_C15                      | 124.01(12)<br>110 7 $A(12)$     | $C_{2-1} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.02(11)<br>120.07(12) |
| $C_{11}$ - $C_{10}$ - $C_{13}$   | $\frac{117.74(12)}{110.22(12)}$ | C12-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.9/(12)<br>121.57(12) |
| С13-С10-С9<br>С12-С11-Ц11        | 117.23(12)                      | C10 C11 H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.37(12)<br>110.2      |
| $C_{12}$ - $C_{11}$ - $\Pi_{11}$ | 117.2                           | $C_{10}$ - $C_{11}$ - $C_{12}$ - $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.2                    |
| 011-012-015                      | 117.01(12)                      | 011-012-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.72(12)               |

122.13(12)

C13-C12-C16

124.31(12)

C14-C13-C12

| С14-С13-Н13   | 117.8      | С12-С13-Н13   | 117.8      |
|---------------|------------|---------------|------------|
| C13-C14-C15   | 117.11(12) | C13-C14-C20   | 121.94(12) |
| C15-C14-C20   | 120.93(12) | O1-C15-C14    | 118.61(12) |
| O1-C15-C10    | 121.12(12) | C14-C15-C10   | 120.27(12) |
| C17-C16-C18   | 107.66(12) | C17-C16-C19   | 108.64(12) |
| C18-C16-C19   | 108.89(13) | C17-C16-C12   | 110.99(11) |
| C18-C16-C12   | 112.26(11) | C19-C16-C12   | 108.33(12) |
| С16-С17-Н17А  | 109.5      | C16-C17-H17B  | 109.5      |
| H17A-C17-H17B | 109.5      | C16-C17-H17C  | 109.5      |
| H17A-C17-H17C | 109.5      | H17B-C17-H17C | 109.5      |
| C16-C18-H18A  | 109.5      | C16-C18-H18B  | 109.5      |
| H18A-C18-H18B | 109.5      | C16-C18-H18C  | 109.5      |
| H18A-C18-H18C | 109.5      | H18B-C18-H18C | 109.5      |
| С16-С19-Н19А  | 109.5      | C16-C19-H19B  | 109.5      |
| H19A-C19-H19B | 109.5      | С16-С19-Н19С  | 109.5      |
| Н19А-С19-Н19С | 109.5      | H19B-C19-H19C | 109.5      |
| C23-C20-C22   | 107.45(13) | C23-C20-C14   | 111.61(12) |
| C22-C20-C14   | 110.20(12) | C23-C20-C21   | 107.23(13) |
| C22-C20-C21   | 110.11(13) | C14-C20-C21   | 110.16(12) |
| H1W-O1W-H2W   | 103.6(18)  | C20-C21-H21A  | 109.5      |
| C20-C21-H21B  | 109.5      | H21A-C21-H21B | 109.5      |
| C20-C21-H21C  | 109.5      | H21A-C21-H21C | 109.5      |
| H21B-C21-H21C | 109.5      | C20-C22-H22A  | 109.5      |
| С20-С22-Н22В  | 109.5      | H22A-C22-H22B | 109.5      |
| С20-С22-Н22С  | 109.5      | H22A-C22-H22C | 109.5      |
| H22B-C22-H22C | 109.5      | C25-C24-C1    | 120.19(14) |
| С25-С24-Н24   | 119.9      | C1-C24-H24    | 119.9      |
| C24-C25-C26   | 120.56(14) | С24-С25-Н25   | 119.7      |
| С26-С25-Н25   | 119.7      | N27-C26-C25   | 119.51(12) |
| N27-C26-C3    | 121.37(12) | C25-C26-C3    | 119.11(12) |
| C26-N27-C28   | 117.78(11) | N27-C28-C29   | 118.73(11) |
| N27-C28-C5    | 120.60(11) | C29-C28-C5    | 120.66(12) |
| C30-C29-C28   | 116.97(12) | С30-С29-Н29   | 121.5      |
| С28-С29-Н29   | 121.5      | C29-C30-N31   | 132.04(12) |
| C29-C30-C7    | 122.77(12) | N31-C30-C7    | 105.18(11) |
| C9-N31-C30    | 107.33(11) | C9-N31-H31    | 126.3      |
| C30-N31-H31   | 126.3      | C20-C23-H23A  | 109.5      |
| С20-С23-Н23В  | 109.5      | H23A-C23-H23B | 109.5      |
| C20-C23-H23C  | 109.5      | H23A-C23-H23C | 109.5      |
| H23B-C23-H23C | 109.5      | C1SA-O1S-C4S  | 104.2(3)   |
| C4S-O1S-C1SB  | 108.6(4)   | C1SB-C2S-C3S  | 104.9(4)   |
| C3S-C2S-C1SA  | 102.4(3)   | C3S-C2S-H2SA  | 111.3      |
| C1SA-C2S-H2SA | 111.3      | C3S-C2S-H2SB  | 111.3      |
| C1SA-C2S-H2SB | 111.3      | H2SA-C2S-H2SB | 109.2      |
| C4S-C3S-C2S   | 103.83(18) | C4S-C3S-H3SA  | 111.0      |
| C2S-C3S-H3SA  | 111.0      | C4S-C3S-H3SB  | 111.0      |
| C2S-C3S-H3SB  | 111.0      | H3SA-C3S-H3SB | 109.0      |
| 01S-C4S-C3S   | 107.13(17) | O1S-C4S-H4SC  | 110.3      |
| C3S-C4S-H4SC  | 110.3      | O1S-C4S-H4SD  | 110.3      |

| C3S-C4S-H4SD  | 110.3    | H4SC-C4S-H4SD  | 108.5 |
|---------------|----------|----------------|-------|
| O1S-C1SA-C2S  | 105.8(3) | O1S-C1SA-H1SA  | 110.6 |
| C2S-C1SA-H1SA | 110.6    | O1S-C1SA-H1SB  | 110.6 |
| C2S-C1SA-H1SB | 110.6    | H1SA-C1SA-H1SB | 108.7 |
| C2S-C1SB-O1S  | 107.3(6) | C2S-C1SB-H1SC  | 110.3 |
| O1S-C1SB-H1SC | 110.3    | C2S-C1SB-H1SD  | 110.3 |
| O1S-C1SB-H1SD | 110.3    | H1SC-C1SB-H1SD | 108.5 |

### Table 6. Torsion angles (°) for bam126.

| C24-C1-C2-C3     | -1.1(2)     | C5-N4-C3-C2      | 177.27(12)  |
|------------------|-------------|------------------|-------------|
| C5-N4-C3-C26     | -1.93(19)   | C1-C2-C3-N4      | -177.29(14) |
| C1-C2-C3-C26     | 1.9(2)      | C3-N4-C5-C6      | -176.74(12) |
| C3-N4-C5-C28     | 4.08(19)    | C7-C6-C5-N4      | -177.76(12) |
| C7-C6-C5-C28     | 1.4(2)      | C5-C6-C7-N8      | 178.66(13)  |
| C5-C6-C7-C30     | 0.1(2)      | N31-C9-N8-C7     | -0.63(16)   |
| C10-C9-N8-C7     | 176.98(12)  | C6-C7-N8-C9      | -178.17(14) |
| C30-C7-N8-C9     | 0.49(15)    | N8-C9-C10-C11    | -170.37(13) |
| N31-C9-C10-C11   | 6.9(2)      | N8-C9-C10-C15    | 6.8(2)      |
| N31-C9-C10-C15   | -175.87(13) | C15-C10-C11-C12  | -0.2(2)     |
| C9-C10-C11-C12   | 176.93(13)  | C10-C11-C12-C13  | 0.6(2)      |
| C10-C11-C12-C16  | -175.16(12) | C11-C12-C13-C14  | -0.5(2)     |
| C16-C12-C13-C14  | 175.14(13)  | C12-C13-C14-C15  | 0.1(2)      |
| C12-C13-C14-C20  | -178.39(13) | C13-C14-C15-O1   | -179.78(13) |
| C20-C14-C15-O1   | -1.2(2)     | C13-C14-C15-C10  | 0.2(2)      |
| C20-C14-C15-C10  | 178.75(13)  | C11-C10-C15-O1   | 179.83(13)  |
| C9-C10-C15-O1    | 2.6(2)      | C11-C10-C15-C14  | -0.2(2)     |
| C9-C10-C15-C14   | -177.38(13) | C11-C12-C16-C17  | -48.24(17)  |
| C13-C12-C16-C17  | 136.27(14)  | C11-C12-C16-C18  | -168.78(13) |
| C13-C12-C16-C18  | 15.72(19)   | C11-C12-C16-C19  | 70.95(16)   |
| C13-C12-C16-C19  | -104.54(15) | C13-C14-C20-C23  | 0.6(2)      |
| C15-C14-C20-C23  | -177.90(13) | C13-C14-C20-C22  | -118.73(15) |
| C15-C14-C20-C22  | 62.80(17)   | C13-C14-C20-C21  | 119.57(15)  |
| C15-C14-C20-C21  | -58.90(18)  | C2-C1-C24-C25    | -0.7(3)     |
| C1-C24-C25-C26   | 1.6(2)      | C24-C25-C26-N27  | 179.64(14)  |
| C24-C25-C26-C3   | -0.7(2)     | N4-C3-C26-N27    | -2.2(2)     |
| C2-C3-C26-N27    | 178.59(13)  | N4-C3-C26-C25    | 178.16(13)  |
| C2-C3-C26-C25    | -1.0(2)     | C25-C26-N27-C28  | -176.42(13) |
| C3-C26-N27-C28   | 3.94(19)    | C26-N27-C28-C29  | 178.49(12)  |
| C26-N27-C28-C5   | -1.76(19)   | N4-C5-C28-N27    | -2.35(19)   |
| C6-C5-C28-N27    | 178.48(12)  | N4-C5-C28-C29    | 177.39(12)  |
| C6-C5-C28-C29    | -1.77(19)   | N27-C28-C29-C30  | -179.80(12) |
| C5-C28-C29-C30   | 0.44(19)    | C28-C29-C30-N31  | -179.01(13) |
| C28-C29-C30-C7   | 1.2(2)      | C6-C7-C30-C29    | -1.5(2)     |
| N8-C7-C30-C29    | 179.69(13)  | C6-C7-C30-N31    | 178.61(13)  |
| N8-C7-C30-N31    | -0.18(14)   | N8-C9-N31-C30    | 0.53(16)    |
| C10-C9-N31-C30   | -177.03(12) | C29-C30-N31-C9   | 179.96(14)  |
| C7-C30-N31-C9    | -0.19(14)   | C1SB-C2S-C3S-C4S | 28.9(9)     |
| C1SA-C2S-C3S-C4S | -1.6(4)     | C1SA-O1S-C4S-C3S | 40.0(5)     |
| C1SB-O1S-C4S-C3S | 7.3(9)      | C2S-C3S-C4S-O1S  | -22.3(3)    |
| C4S-O1S-C1SA-C2S | -40.3(6)    | C3S-C2S-C1SA-O1S | 25.8(6)     |
| C3S-C2S-C1SB-O1S | -25.1(13)   | C4S-O1S-C1SB-C2S | 11.4(14)    |

### Table 7. Anisotropic atomic displacement parameters (Å<sup>2</sup>) for bam126.

The anisotropic atomic displacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$ 

|      | 1 1             | 1          |                 | L.              | 11              | 12 1            |
|------|-----------------|------------|-----------------|-----------------|-----------------|-----------------|
|      | U <sub>11</sub> | $U_{22}$   | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
| 01   | 0.0427(6)       | 0.0322(6)  | 0.0458(6)       | 0.0235(5)       | 0.0261(5)       | 0.0234(5)       |
| C1   | 0.0407(9)       | 0.0292(8)  | 0.0391(8)       | 0.0206(6)       | 0.0117(7)       | 0.0073(6)       |
| C2   | 0.0386(8)       | 0.0237(7)  | 0.0347(8)       | 0.0145(6)       | 0.0112(6)       | 0.0107(6)       |
| N4   | 0.0296(6)       | 0.0193(5)  | 0.0262(6)       | 0.0089(4)       | 0.0071(5)       | 0.0072(5)       |
| C3   | 0.0257(7)       | 0.0194(6)  | 0.0244(6)       | 0.0078(5)       | 0.0036(5)       | 0.0046(5)       |
| C6   | 0.0302(7)       | 0.0200(6)  | 0.0269(7)       | 0.0083(5)       | 0.0108(5)       | 0.0113(5)       |
| C5   | 0.0243(6)       | 0.0171(6)  | 0.0221(6)       | 0.0061(5)       | 0.0045(5)       | 0.0051(5)       |
| C7   | 0.0254(6)       | 0.0203(6)  | 0.0216(6)       | 0.0062(5)       | 0.0076(5)       | 0.0071(5)       |
| C9   | 0.0257(6)       | 0.0220(6)  | 0.0221(6)       | 0.0075(5)       | 0.0074(5)       | 0.0081(5)       |
| N8   | 0.0318(6)       | 0.0229(6)  | 0.0269(6)       | 0.0113(5)       | 0.0130(5)       | 0.0114(5)       |
| C10  | 0.0253(6)       | 0.0221(6)  | 0.0221(6)       | 0.0087(5)       | 0.0092(5)       | 0.0082(5)       |
| C11  | 0.0255(6)       | 0.0238(6)  | 0.0238(6)       | 0.0085(5)       | 0.0098(5)       | 0.0099(5)       |
| C12  | 0.0247(6)       | 0.0226(6)  | 0.0229(6)       | 0.0080(5)       | 0.0071(5)       | 0.0080(5)       |
| C13  | 0.0284(7)       | 0.0242(6)  | 0.0234(6)       | 0.0096(5)       | 0.0107(5)       | 0.0080(5)       |
| C14  | 0.0260(7)       | 0.0235(6)  | 0.0252(6)       | 0.0067(5)       | 0.0104(5)       | 0.0082(5)       |
| C15  | 0.0283(7)       | 0.0225(6)  | 0.0265(7)       | 0.0095(5)       | 0.0098(5)       | 0.0111(5)       |
| C16  | 0.0284(7)       | 0.0258(7)  | 0.0271(7)       | 0.0131(5)       | 0.0107(5)       | 0.0118(5)       |
| C17  | 0.0342(8)       | 0.0268(7)  | 0.0336(8)       | 0.0097(6)       | 0.0109(6)       | 0.0132(6)       |
| C18  | 0.0467(9)       | 0.0404(9)  | 0.0493(10)      | 0.0297(8)       | 0.0266(8)       | 0.0217(7)       |
| C19  | 0.0344(8)       | 0.0365(8)  | 0.0366(8)       | 0.0117(7)       | 0.0014(7)       | 0.0117(7)       |
| C20  | 0.0327(7)       | 0.0263(7)  | 0.0308(7)       | 0.0088(6)       | 0.0163(6)       | 0.0121(6)       |
| O1W  | 0.0326(6)       | 0.0281(6)  | 0.0454(7)       | 0.0060(5)       | 0.0107(5)       | 0.0149(5)       |
| C21  | 0.0486(10)      | 0.0315(8)  | 0.0396(9)       | 0.0018(7)       | 0.0208(8)       | 0.0105(7)       |
| C22  | 0.0330(8)       | 0.0331(8)  | 0.0422(9)       | 0.0132(7)       | 0.0166(7)       | 0.0152(6)       |
| C24  | 0.0375(8)       | 0.0353(8)  | 0.0393(8)       | 0.0207(7)       | 0.0170(7)       | 0.0080(7)       |
| C25  | 0.0319(7)       | 0.0302(7)  | 0.0383(8)       | 0.0166(6)       | 0.0160(6)       | 0.0102(6)       |
| C26  | 0.0239(6)       | 0.0216(6)  | 0.0259(7)       | 0.0096(5)       | 0.0057(5)       | 0.0049(5)       |
| N27  | 0.0260(6)       | 0.0218(5)  | 0.0287(6)       | 0.0115(5)       | 0.0096(5)       | 0.0076(4)       |
| C28  | 0.0216(6)       | 0.0183(6)  | 0.0229(6)       | 0.0067(5)       | 0.0053(5)       | 0.0052(5)       |
| C29  | 0.0262(6)       | 0.0184(6)  | 0.0272(7)       | 0.0091(5)       | 0.0089(5)       | 0.0091(5)       |
| C30  | 0.0243(6)       | 0.0178(6)  | 0.0224(6)       | 0.0077(5)       | 0.0053(5)       | 0.0061(5)       |
| N31  | 0.0279(6)       | 0.0203(5)  | 0.0270(6)       | 0.0112(4)       | 0.0117(5)       | 0.0106(4)       |
| C23  | 0.0420(9)       | 0.0414(9)  | 0.0379(8)       | 0.0165(7)       | 0.0252(7)       | 0.0184(7)       |
| O1S  | 0.0827(11)      | 0.0466(8)  | 0.0621(9)       | 0.0276(7)       | 0.0173(8)       | 0.0124(8)       |
| C2S  | 0.115(2)        | 0.0395(11) | 0.0775(16)      | 0.0226(11)      | 0.0474(15)      | 0.0201(12)      |
| C3S  | 0.0792(15)      | 0.0646(14) | 0.0561(12)      | 0.0323(11)      | 0.0308(11)      | 0.0314(12)      |
| C4S  | 0.0937(18)      | 0.0544(13) | 0.0657(14)      | 0.0187(11)      | 0.0272(13)      | 0.0376(13)      |
| C1SA | 0.070(3)        | 0.047(2)   | 0.0398(18)      | 0.0138(14)      | 0.009(2)        | -0.005(2)       |
| C1SB | 0.096(9)        | 0.047(4)   | 0.047(4)        | 0.008(3)        | 0.020(5)        | 0.022(5)        |

### Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å<sup>2</sup>) for bam126.

|     | x/a      | y/b      | z/c        | U(eq) |
|-----|----------|----------|------------|-------|
| H1  | 0.3883   | 0.6985   | 0.6782     | 0.051 |
| H1W | 0.887(2) | 0.289(2) | 0.5765(12) | 0.041 |

| H1A0.94231.18870.28070.H20.80271.17990.37910.H2W0.748(2)0.203(2)0.5273(12)0.H60.57550.91750.54910.H110.63860.35740.68590.H130.36490.33730.84380.H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .041<br>.037<br>.037<br>.029<br>.028<br>.029<br>.045<br>.045<br>.045<br>.045<br>.045<br>.058<br>.058 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| H20.80271.17990.37910.H2W0.748(2)0.203(2)0.5273(12)0.H60.57550.91750.54910.H110.63860.35740.68590.H130.36490.33730.84380.H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .037<br>.037<br>.029<br>.028<br>.029<br>.045<br>.045<br>.045<br>.045<br>.058<br>.058<br>.055         |
| H2W0.748(2)0.203(2)0.5273(12)0.H60.57550.91750.54910.H110.63860.35740.68590.H130.36490.33730.84380.H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .037<br>.029<br>.028<br>.029<br>.045<br>.045<br>.045<br>.058<br>.058<br>.058                         |
| H60.57550.91750.54910.H110.63860.35740.68590.H130.36490.33730.84380.H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .029<br>.028<br>.029<br>.045<br>.045<br>.045<br>.058<br>.058<br>.058<br>.055                         |
| H110.63860.35740.68590.H130.36490.33730.84380.H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .028<br>.029<br>.045<br>.045<br>.045<br>.058<br>.058<br>.058<br>.055                                 |
| H130.36490.33730.84380.H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .029<br>.045<br>.045<br>.045<br>.058<br>.058<br>.058<br>.055                                         |
| H17A0.49130.05300.68050.H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .045<br>.045<br>.045<br>.058<br>.058<br>.058<br>.055                                                 |
| H17B0.64370.02880.73690.H17C0.65370.14310.68580.H18A0.38510.09760.81160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .045<br>.045<br>.058<br>.058<br>.058<br>.055                                                         |
| H17C0.65370.14310.68580.H18A0.38510.09760.81160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .045<br>.058<br>.058<br>.058<br>.055<br>.055                                                         |
| H18A 0.3851 0.0976 0.8116 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .058<br>.058<br>.058<br>.055<br>.055                                                                 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.000000 | .058<br>.058<br>.055<br>.055                                                                         |
| H18B 0.4948 0.1986 0.9007 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .058<br>.055<br>.055                                                                                 |
| H18C 0.5347 0.0563 0.8583 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .055<br>.055                                                                                         |
| H19A 0.7974 0.2063 0.8751 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .055                                                                                                 |
| H19B 0.7462 0.3471 0.9077 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| H19C 0.8114 0.3229 0.8260 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .055                                                                                                 |
| H21A 0.3050 0.7613 0.8441 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).06                                                                                                 |
| H21B 0.3827 0.7151 0.9256 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).06                                                                                                 |
| H21C 0.2133 0.7386 0.9119 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).06                                                                                                 |
| H22A 0.0901 0.5790 0.7175 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .051                                                                                                 |
| H22B -0.0021 0.5750 0.7873 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .051                                                                                                 |
| H22C 0.0229 0.4341 0.7319 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .051                                                                                                 |
| H24 1.0675 1.0090 0.2372 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .041                                                                                                 |
| H25 1.0557 0.8218 0.2954 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .037                                                                                                 |
| H29 0.8571 0.5672 0.4767 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .027                                                                                                 |
| H31 0.7069 0.4557 0.5871 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .028                                                                                                 |
| H23A 0.1406 0.3690 0.8630 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .054                                                                                                 |
| H23B 0.1063 0.5043 0.9190 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .054                                                                                                 |
| H23C 0.2745 0.4778 0.9393 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .054                                                                                                 |
| H2SA 0.7030 0.6301 0.9065 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .087                                                                                                 |
| H2SB 0.8829 0.6797 0.9179 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .087                                                                                                 |
| H3SA 0.7259 0.7861 1.0309 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .072                                                                                                 |
| H3SB 0.9064 0.8325 1.0437 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .072                                                                                                 |
| H4SC 0.6763 0.9582 0.9734 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .081                                                                                                 |
| H4SD 0.8519 1.0314 1.0226 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .081                                                                                                 |
| H1SA 0.7977 0.7701 0.8041 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .067                                                                                                 |
| H1SB 0.6405 0.7833 0.8272 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .067                                                                                                 |
| H1SC 0.7782 0.7524 0.8043 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .077                                                                                                 |
| H1SD 0.9472 0.7976 0.8686 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 077                                                                                                  |

### Table 9. Hydrogen bond distances (Å) and angles (°) for bam126.

|             | Donor-H | Acceptor-H | <b>Donor-Acceptor</b> | Angle     |
|-------------|---------|------------|-----------------------|-----------|
| O1-H1N8     | 0.82    | 1.81       | 2.5583(15)            | 150.2     |
| O1W-H1W-N27 | 0.89(2) | 2.02(2)    | 2.8742(16)            | 162.0(18) |
| C2-H2-O1    | 0.93    | 2.64       | 3.3375(17)            | 131.9     |
| O1W-H2W-N4  | 0.84(2) | 2.27(2)    | 3.0644(16)            | 156.8(17) |
| N31-H31-O1W | 0.86    | 1.95       | 2.7953(15)            | 168.4     |

### UO<sub>2</sub>[L1](OAc)(DMSO)



### Table 1 Crystal data and structure refinement for bam115bJN091119.Identification codebam115bJN091119

| bam115bJN091             |
|--------------------------|
| $C_{25}H_{26}N_4O_7S_2U$ |
| 796.65                   |
| 273.(2)                  |
| monoclinic               |
| P2 <sub>1</sub> /n       |
| 8.585(5)                 |
| 20.419(11)               |
|                          |

| ) |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

# Table S2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for bam115bJN091119. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X         | y          | Ζ          | U(eq)     |
|------|-----------|------------|------------|-----------|
| U1   | 5964.3(3) | 2095.5(2)  | 6340.5(2)  | 28.97(11) |
| S1S  | 3327(3)   | 5481.4(11) | 8541.1(14) | 48.9(5)   |
| S1   | 4087(2)   | 2546.0(8)  | 4221.5(12) | 34.2(4)   |
| N1   | 5311(7)   | 4237(3)    | 7257(4)    | 32.1(13)  |
| 01   | 6239(6)   | 2271(2)    | 7719(3)    | 35.9(11)  |
| C1   | 5278(9)   | 2571(3)    | 8144(4)    | 32.2(15)  |
| N2   | 7220(7)   | 5690(3)    | 5277(4)    | 33.1(13)  |
| 02   | 8035(7)   | 2151(2)    | 6421(3)    | 39.3(12)  |
| C2   | 4843(10)  | 2262(4)    | 8842(5)    | 37.8(16)  |
| N3   | 8000(7)   | 4521(3)    | 4478(4)    | 29.9(12)  |
| 03   | 3872(8)   | 2066(2)    | 6237(4)    | 42.5(13)  |
| C3   | 3955(10)  | 2585(4)    | 9327(5)    | 42.6(18)  |
| 04   | 6245(8)   | 989(3)     | 6907(4)    | 52.5(16)  |
| N4   | 5838(7)   | 3327(3)    | 6622(4)    | 32.2(13)  |
| C4   | 3396(10)  | 3210(4)    | 9117(5)    | 42.5(18)  |

| C5  | 3776(9)  | 3528(4) | 8424(5) | 35.4(16) |
|-----|----------|---------|---------|----------|
| 05  | 5879(7)  | 1063(2) | 5534(3) | 46.4(14) |
| С6  | 4733(8)  | 3214(3) | 7933(4) | 32.0(15) |
| 06  | 5544(6)  | 2470(2) | 4943(3) | 32.3(10) |
| C7  | 5292(8)  | 3576(3) | 7256(4) | 30.8(15) |
| C8  | 5942(8)  | 4451(3) | 6568(4) | 30.2(14) |
| С9  | 6264(9)  | 5051(3) | 6310(4) | 32.3(15) |
| C10 | 6933(9)  | 5090(3) | 5567(4) | 29.8(14) |
| C19 | 6262(8)  | 3842(3) | 6184(4) | 24.4(12) |
| C18 | 6965(9)  | 3881(3) | 5477(4) | 30.6(14) |
| C17 | 7305(8)  | 4501(3) | 5156(4) | 27.3(13) |
| C16 | 8314(8)  | 5120(3) | 4207(4) | 31.6(15) |
| C15 | 9089(8)  | 5176(4) | 3495(5) | 35.8(16) |
| C14 | 9409(9)  | 5778(4) | 3206(5) | 38.0(17) |
| C11 | 7914(8)  | 5706(3) | 4593(4) | 30.4(14) |
| C12 | 8239(9)  | 6320(4) | 4252(5) | 38.0(17) |
| C20 | 6123(10) | 723(4)  | 6191(6) | 44(2)    |
| C1S | 3325(13) | 6130(5) | 7820(6) | 61(2)    |
| 01S | 4765(9)  | 5086(3) | 8480(4) | 64.7(19) |
| C21 | 6212(12) | -6(4)   | 6148(7) | 58(2)    |
| C22 | 4758(13) | 3130(5) | 3565(6) | 58(3)    |
| C23 | 4134(11) | 1826(4) | 3606(6) | 54(2)    |
| C2S | 3900(15) | 5933(6) | 9491(6) | 77(4)    |
| C13 | 8940(9)  | 6351(4) | 3581(5) | 40.6(18) |

Table 3 Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for bam115bJN091119. The Anisotropic displacement factor exponent takes the form: -  $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | <b>U</b> <sub>11</sub> | <b>U</b> <sub>22</sub> | U <sub>33</sub> | <b>U</b> <sub>12</sub> | <b>U</b> <sub>13</sub> | <b>U</b> <sub>23</sub> |
|------|------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|
| U1   | 35.45(18)              | 25.03(15)              | 26.53(16)       | -0.96(10)              | 6.49(11)               | 0.39(9)                |
| S1S  | 50.8(13)               | 53.2(12)               | 44.3(12)        | -4.3(10)               | 13.7(10)               | -6.5(9)                |
| S1   | 36.3(10)               | 30.1(8)                | 34.9(9)         | 1.5(7)                 | 4.5(8)                 | -0.3(7)                |
| N1   | 44(4)                  | 28(3)                  | 27(3)           | 3(2)                   | 15(3)                  | -3(2)                  |
| 01   | 45(3)                  | 33(2)                  | 30(3)           | 5(2)                   | 8(2)                   | 1(2)                   |
| C1   | 35(4)                  | 34(3)                  | 26(3)           | -4(3)                  | 3(3)                   | -1(3)                  |
| N2   | 38(3)                  | 28(3)                  | 32(3)           | -2(2)                  | 4(3)                   | 0(2)                   |

| 02                                                                                                    | 51(3)                                                                                                                                   | 39(3)                                                                                                                                  | 25(3)                                                                                                                                  | 3(2)                                                                                                                       | -1(2)                                                                                                          | -1(2)                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C2                                                                                                    | 39(4)                                                                                                                                   | 42(4)                                                                                                                                  | 34(4)                                                                                                                                  | -5(3)                                                                                                                      | 8(3)                                                                                                           | 5(3)                                                                                                                                                              |
| N3                                                                                                    | 29(3)                                                                                                                                   | 30(3)                                                                                                                                  | 30(3)                                                                                                                                  | -2(2)                                                                                                                      | 4(2)                                                                                                           | 0(2)                                                                                                                                                              |
| 03                                                                                                    | 53(4)                                                                                                                                   | 37(3)                                                                                                                                  | 36(3)                                                                                                                                  | -6(2)                                                                                                                      | 7(3)                                                                                                           | 1(2)                                                                                                                                                              |
| C3                                                                                                    | 42(5)                                                                                                                                   | 52(5)                                                                                                                                  | 36(4)                                                                                                                                  | -6(4)                                                                                                                      | 14(4)                                                                                                          | 7(3)                                                                                                                                                              |
| 04                                                                                                    | 88(5)                                                                                                                                   | 30(3)                                                                                                                                  | 41(3)                                                                                                                                  | 4(3)                                                                                                                       | 15(3)                                                                                                          | 8(2)                                                                                                                                                              |
| N4                                                                                                    | 37(3)                                                                                                                                   | 27(3)                                                                                                                                  | 33(3)                                                                                                                                  | -1(2)                                                                                                                      | 6(3)                                                                                                           | -6(2)                                                                                                                                                             |
| C4                                                                                                    | 38(4)                                                                                                                                   | 59(5)                                                                                                                                  | 35(4)                                                                                                                                  | -7(4)                                                                                                                      | 18(3)                                                                                                          | -5(4)                                                                                                                                                             |
| C5                                                                                                    | 31(4)                                                                                                                                   | 39(4)                                                                                                                                  | 37(4)                                                                                                                                  | 0(3)                                                                                                                       | 10(3)                                                                                                          | -4(3)                                                                                                                                                             |
| 05                                                                                                    | 72(4)                                                                                                                                   | 28(2)                                                                                                                                  | 37(3)                                                                                                                                  | -2(2)                                                                                                                      | 6(3)                                                                                                           | -1(2)                                                                                                                                                             |
| C6                                                                                                    | 30(4)                                                                                                                                   | 38(4)                                                                                                                                  | 28(3)                                                                                                                                  | -1(3)                                                                                                                      | 5(3)                                                                                                           | 0(3)                                                                                                                                                              |
| 06                                                                                                    | 38(3)                                                                                                                                   | 31(2)                                                                                                                                  | 28(2)                                                                                                                                  | -1(2)                                                                                                                      | 5(2)                                                                                                           | 1.0(19)                                                                                                                                                           |
| C7                                                                                                    | 33(4)                                                                                                                                   | 34(3)                                                                                                                                  | 23(3)                                                                                                                                  | 0(3)                                                                                                                       | -2(3)                                                                                                          | -1(3)                                                                                                                                                             |
| C8                                                                                                    | 30(4)                                                                                                                                   | 32(3)                                                                                                                                  | 28(3)                                                                                                                                  | 2(3)                                                                                                                       | 2(3)                                                                                                           | -1(3)                                                                                                                                                             |
| С9                                                                                                    | 45(4)                                                                                                                                   | 24(3)                                                                                                                                  | 29(4)                                                                                                                                  | 0(3)                                                                                                                       | 10(3)                                                                                                          | -4(3)                                                                                                                                                             |
| C10                                                                                                   | 37(4)                                                                                                                                   | 24(3)                                                                                                                                  | 25(3)                                                                                                                                  | 1(3)                                                                                                                       | -1(3)                                                                                                          | 1(2)                                                                                                                                                              |
|                                                                                                       |                                                                                                                                         |                                                                                                                                        |                                                                                                                                        |                                                                                                                            |                                                                                                                |                                                                                                                                                                   |
| C19                                                                                                   | 24.4(15)                                                                                                                                | 23.7(15)                                                                                                                               | 24.1(15)                                                                                                                               | 2.5(9)                                                                                                                     | 2.4(10)                                                                                                        | -2.7(9)                                                                                                                                                           |
| C19<br>C18                                                                                            | 24.4(15)<br>40(4)                                                                                                                       | 23.7(15)<br>23(3)                                                                                                                      | 24.1(15)<br>30(3)                                                                                                                      | 2.5(9)<br>0(3)                                                                                                             | 2.4(10)<br>9(3)                                                                                                | -2.7(9)<br>-1(3)                                                                                                                                                  |
| C19<br>C18<br>C17                                                                                     | 24.4(15)<br>40(4)<br>30(4)                                                                                                              | 23.7(15)<br>23(3)<br>28(3)                                                                                                             | 24.1(15)<br>30(3)<br>22(3)                                                                                                             | 2.5(9)<br>0(3)<br>2(3)                                                                                                     | 2.4(10)<br>9(3)<br>0(3)                                                                                        | -2.7(9)<br>-1(3)<br>-3(2)                                                                                                                                         |
| C19<br>C18<br>C17<br>C16                                                                              | 24.4(15)<br>40(4)<br>30(4)<br>29(4)                                                                                                     | 23.7(15)<br>23(3)<br>28(3)<br>37(4)                                                                                                    | 24.1(15)<br>30(3)<br>22(3)<br>29(4)                                                                                                    | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)                                                                                            | 2.4(10)<br>9(3)<br>0(3)<br>5(3)                                                                                | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)                                                                                                                                 |
| C19<br>C18<br>C17<br>C16<br>C15                                                                       | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)                                                                                            | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)                                                                                           | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)                                                                                           | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)                                                                                   | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)                                                                        | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)                                                                                                                         |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14                                                                | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)                                                                                   | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)                                                                                  | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)                                                                                  | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)                                                                          | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)                                                                | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)                                                                                                                 |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11                                                         | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)                                                                          | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)                                                                         | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)                                                                         | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)<br>-4(3)                                                                 | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)                                                       | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)                                                                                                        |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12                                                  | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)                                                                 | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)                                                                | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)                                                                | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)<br>-4(3)<br>-5(3)                                                        | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)<br>0(3)                                               | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)                                                                                                |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20                                           | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)                                                        | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)                                                       | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)                                                       | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)<br>-4(3)<br>-5(3)<br>-7(3)                                               | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)<br>0(3)<br>16(4)                                      | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)<br>2(3)                                                                                        |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20<br>C1S                                    | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)<br>79(7)                                               | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)<br>57(5)                                              | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)<br>49(5)                                              | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)<br>-5(3)<br>-5(3)<br>-7(3)<br>2(5)                                       | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)<br>0(3)<br>16(4)<br>23(5)                             | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)<br>2(3)<br>-7(4)                                                                               |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20<br>C1S<br>O1S                             | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)<br>79(7)<br>77(5)                                      | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)<br>57(5)<br>55(4)                                     | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)<br>49(5)<br>64(4)                                     | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)<br>-5(3)<br>-7(3)<br>2(5)<br>17(3)                                       | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)<br>0(3)<br>16(4)<br>23(5)<br>20(4)                    | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)<br>2(3)<br>-7(4)<br>-20(3)                                                                     |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20<br>C1S<br>O1S<br>C21                      | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)<br>79(7)<br>77(5)<br>72(7)                             | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)<br>57(5)<br>55(4)<br>27(4)                            | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)<br>49(5)<br>64(4)<br>72(6)                            | 2.5(9)<br>0(3)<br>2(3)<br>-2(3)<br>-4(3)<br>-5(3)<br>-5(3)<br>-5(3)<br>-7(3)<br>2(5)<br>17(3)<br>-4(4)                     | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)<br>0(3)<br>16(4)<br>23(5)<br>20(4)<br>10(5)           | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)<br>2(3)<br>-7(4)<br>-20(3)<br>8(4)                                                             |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20<br>C1S<br>O1S<br>C21<br>C22               | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)<br>79(7)<br>77(5)<br>72(7)<br>71(6)                    | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)<br>57(5)<br>55(4)<br>27(4)<br>51(5)                   | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)<br>49(5)<br>64(4)<br>72(6)<br>42(5)                   | 2.5(9) 0(3) 2(3) -2(3) -4(3) -5(3) -4(3) -5(3) -7(3) 2(5) 17(3) -4(4) -20(5)                                               | 2.4(10)<br>9(3)<br>0(3)<br>5(3)<br>0(3)<br>8(3)<br>-2(3)<br>0(3)<br>16(4)<br>23(5)<br>20(4)<br>10(5)<br>-13(4) | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)<br>2(3)<br>-7(4)<br>-20(3)<br>8(4)<br>17(4)                                                    |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20<br>C1S<br>O1S<br>C21<br>C22<br>C23        | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)<br>79(7)<br>77(5)<br>72(7)<br>71(6)<br>57(6)           | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)<br>57(5)<br>55(4)<br>27(4)<br>51(5)<br>37(4)          | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)<br>49(5)<br>64(4)<br>72(6)<br>42(5)<br>58(6)          | $2.5(9) \\ 0(3) \\ 2(3) \\ -2(3) \\ -4(3) \\ -5(3) \\ -4(3) \\ -5(3) \\ -7(3) \\ 2(5) \\ 17(3) \\ -4(4) \\ -20(5) \\ 8(4)$ | 2.4(10) 9(3) 0(3) 5(3) 0(3) 8(3) -2(3) 0(3) 16(4) 23(5) 20(4) 10(5) -13(4) -14(5)                              | -2.7(9)<br>-1(3)<br>-3(2)<br>2(3)<br>1(3)<br>7(3)<br>-2(3)<br>8(3)<br>2(3)<br>-7(4)<br>-20(3)<br>8(4)<br>17(4)<br>-20(4)                                          |
| C19<br>C18<br>C17<br>C16<br>C15<br>C14<br>C11<br>C12<br>C20<br>C1S<br>O1S<br>C21<br>C22<br>C23<br>C2S | 24.4(15)<br>40(4)<br>30(4)<br>29(4)<br>31(4)<br>43(4)<br>28(4)<br>42(4)<br>55(5)<br>79(7)<br>77(5)<br>72(7)<br>71(6)<br>57(6)<br>108(9) | 23.7(15)<br>23(3)<br>28(3)<br>37(4)<br>38(4)<br>43(4)<br>30(3)<br>31(3)<br>23(3)<br>57(5)<br>55(4)<br>27(4)<br>51(5)<br>37(4)<br>75(7) | 24.1(15)<br>30(3)<br>22(3)<br>29(4)<br>36(4)<br>29(4)<br>30(4)<br>38(4)<br>55(5)<br>49(5)<br>64(4)<br>72(6)<br>42(5)<br>58(6)<br>44(5) | 2.5(9) 0(3) 2(3) -2(3) -4(3) -5(3) -4(3) -5(3) -7(3) 2(5) 17(3) -4(4) -20(5) 8(4) 37(6)                                    | 2.4(10) 9(3) 0(3) 5(3) 0(3) 8(3) -2(3) 0(3) 16(4) 23(5) 20(4) 10(5) -13(4) -14(5) 8(6)                         | $\begin{array}{c} -2.7(9) \\ -1(3) \\ -3(2) \\ 2(3) \\ 1(3) \\ 7(3) \\ -2(3) \\ 8(3) \\ 2(3) \\ -7(4) \\ -20(3) \\ 8(4) \\ 17(4) \\ -20(4) \\ -20(5) \end{array}$ |

### Table 4 Bond Lengths for bam115bJN091119.Atom AtomLength/ÅAtom AtomLength/Å

| ALOI | nAtom | Length/A | ALUI | nAtom | Length/A  |
|------|-------|----------|------|-------|-----------|
| U1   | 02    | 1.760(6) | N3   | C17   | 1.346(9)  |
| U1   | 03    | 1.772(6) | СЗ   | C4    | 1.380(12) |
| U1   | 01    | 2.213(5) | 04   | C20   | 1.259(10) |
| U1   | 06    | 2.333(5) | N4   | C7    | 1.308(9)  |

| U1  | 04  | 2.430(5)  | N4  | C19 | 1.356(9)  |
|-----|-----|-----------|-----|-----|-----------|
| U1  | 05  | 2.468(5)  | C4  | C5  | 1.385(11) |
| U1  | N4  | 2.562(6)  | C5  | C6  | 1.404(10) |
| U1  | C20 | 2.819(8)  | 05  | C20 | 1.248(10) |
| S1S | 01S | 1.495(7)  | C6  | C7  | 1.476(10) |
| S1S | C1S | 1.761(10) | C8  | С9  | 1.340(10) |
| S1S | C2S | 1.769(10) | C8  | C19 | 1.438(9)  |
| S1  | 06  | 1.534(5)  | С9  | C10 | 1.429(10) |
| S1  | C22 | 1.765(9)  | C10 | C17 | 1.439(9)  |
| S1  | C23 | 1.778(8)  | C19 | C18 | 1.393(9)  |
| N1  | C7  | 1.350(9)  | C18 | C17 | 1.419(9)  |
| N1  | C8  | 1.399(9)  | C16 | C11 | 1.422(10) |
| 01  | C1  | 1.323(9)  | C16 | C15 | 1.441(10) |
| C1  | C2  | 1.403(10) | C15 | C14 | 1.362(10) |
| C1  | C6  | 1.411(10) | C14 | C13 | 1.412(11) |
| N2  | C10 | 1.351(8)  | C11 | C12 | 1.420(9)  |
| N2  | C11 | 1.353(9)  | C12 | C13 | 1.340(11) |
| C2  | С3  | 1.366(11) | C20 | C21 | 1.491(11) |
| N3  | C16 | 1.345(9)  |     |     |           |

### Table 5 Bond Angles for bam115bJN091119.

| Atom Atom Atom |    | n Atom | Angle/°    | Atom Atom Atom |     | Angle/° |          |
|----------------|----|--------|------------|----------------|-----|---------|----------|
| 02             | U1 | 03     | 178.0(2)   | C7             | N4  | C19     | 106.3(6) |
| 02             | U1 | 01     | 90.8(2)    | C7             | N4  | U1      | 123.6(5) |
| 03             | U1 | 01     | 90.0(2)    | C19            | N4  | U1      | 130.1(4) |
| 02             | U1 | 06     | 90.4(2)    | C3             | C4  | C5      | 120.1(7) |
| 03             | U1 | 06     | 87.9(2)    | C4             | C5  | C6      | 119.9(7) |
| 01             | U1 | 06     | 151.37(17) | C20            | 05  | U1      | 92.8(5)  |
| 02             | U1 | 04     | 90.6(2)    | C5             | С6  | C1      | 119.5(6) |
| 03             | U1 | 04     | 91.5(2)    | C5             | С6  | C7      | 120.1(6) |
| 01             | U1 | 04     | 77.99(19)  | C1             | С6  | C7      | 120.1(6) |
| 06             | U1 | 04     | 130.60(18) | S1             | 06  | U1      | 135.0(3) |
| 02             | U1 | 05     | 90.9(2)    | N4             | C7  | N1      | 112.6(6) |
| 03             | U1 | 05     | 90.0(2)    | N4             | C7  | C6      | 127.1(6) |
| 01             | U1 | 05     | 130.64(17) | N1             | C7  | C6      | 120.4(6) |
| 06             | U1 | 05     | 77.93(17)  | С9             | C8  | N1      | 131.8(6) |
| 04             | U1 | 05     | 52.67(19)  | С9             | C8  | C19     | 126.0(7) |
| 02             | U1 | N4     | 90.1(2)    | N1             | C8  | C19     | 102.1(6) |
| 03             | U1 | N4     | 88.4(2)    | C8             | С9  | C10     | 116.9(6) |
| 01             | U1 | N4     | 70.34(19)  | N2             | C10 | С9      | 118.2(6) |
| 06             | U1 | N4     | 81.05(18)  | N2             | C10 | C17     | 121.7(6) |

| 04  | U1  | N4  | 148.3(2)   | С9  | C10 | C17 | 120.1(6) |
|-----|-----|-----|------------|-----|-----|-----|----------|
| 05  | U1  | N4  | 158.96(19) | N4  | C19 | C18 | 132.4(6) |
| 02  | U1  | C20 | 90.3(2)    | N4  | C19 | C8  | 110.6(6) |
| 03  | U1  | C20 | 91.3(2)    | C18 | C19 | C8  | 116.9(6) |
| 01  | U1  | C20 | 104.4(2)   | C19 | C18 | C17 | 120.2(6) |
| 06  | U1  | C20 | 104.2(2)   | N3  | C17 | C18 | 118.6(6) |
| 04  | U1  | C20 | 26.4(2)    | N3  | C17 | C10 | 121.6(6) |
| 05  | U1  | C20 | 26.2(2)    | C18 | C17 | C10 | 119.8(6) |
| N4  | U1  | C20 | 174.8(2)   | N3  | C16 | C11 | 122.8(6) |
| 01S | S1S | C1S | 104.7(5)   | N3  | C16 | C15 | 119.0(6) |
| 01S | S1S | C2S | 104.4(5)   | C11 | C16 | C15 | 118.2(6) |
| C1S | S1S | C2S | 98.1(5)    | C14 | C15 | C16 | 120.0(7) |
| 06  | S1  | C22 | 101.9(4)   | C15 | C14 | C13 | 120.5(7) |
| 06  | S1  | C23 | 103.4(3)   | N2  | C11 | C12 | 119.3(6) |
| C22 | S1  | C23 | 100.3(5)   | N2  | C11 | C16 | 121.3(6) |
| C7  | N1  | C8  | 108.5(6)   | C12 | C11 | C16 | 119.4(7) |
| C1  | 01  | U1  | 129.9(5)   | C13 | C12 | C11 | 120.6(7) |
| 01  | C1  | C2  | 120.0(7)   | 05  | C20 | 04  | 120.2(7) |
| 01  | C1  | C6  | 121.2(6)   | 05  | C20 | C21 | 121.2(8) |
| C2  | C1  | C6  | 118.8(7)   | 04  | C20 | C21 | 118.5(8) |
| C10 | N2  | C11 | 116.4(6)   | 05  | C20 | U1  | 61.0(4)  |
| СЗ  | C2  | C1  | 120.6(7)   | 04  | C20 | U1  | 59.2(4)  |
| C16 | N3  | C17 | 116.1(6)   | C21 | C20 | U1  | 177.8(7) |
| C2  | С3  | C4  | 121.0(7)   | C12 | C13 | C14 | 121.2(7) |
| C20 | 04  | U1  | 94.3(5)    |     |     |     |          |

### Table 6 Hydrogen Bonds for bam115bJN091119.

| D   | Η    | Α                 | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å  | D-H-A/° |
|-----|------|-------------------|----------|----------|-----------|---------|
| N1  | H1   | 01S               | 0.86     | 1.89     | 2.732(8)  | 167.2   |
| C18 | H18  | 06                | 0.93     | 2.53     | 3.179(8)  | 126.9   |
| C1S | H010 | C 03 <sup>1</sup> | 0.96     | 2.37     | 3.265(11) | 155.0   |
| C22 | H01F | F 01 <sup>2</sup> | 0.96     | 2.48     | 3.161(11) | 127.9   |
| C23 | HOOE | E 01 <sup>2</sup> | 0.96     | 2.52     | 3.191(10) | 127.0   |
| C2S | H01I | 03 <sup>1</sup>   | 0.96     | 2.55     | 3.356(12) | 141.3   |

<sup>1</sup>1/2-X,1/2+Y,3/2-Z; <sup>2</sup>-1/2+X,1/2-Y,-1/2+Z

#### Table 7 Torsion Angles for bam115bJN091119.

| Α   | В    | С   | D   | Angle/°   | Α   | В   | C   | D   | Angle/°   |
|-----|------|-----|-----|-----------|-----|-----|-----|-----|-----------|
| U1  | 01   | C1  | C2  | 128.9(6)  | С7  | N4  | C19 | C8  | -0.6(8)   |
| U1  | 01   | C1  | C6  | -54.1(9)  | U1  | N4  | C19 | C8  | 178.6(4)  |
| 01  | C1   | C2  | СЗ  | 174.7(7)  | С9  | C8  | C19 | N4  | 177.9(7)  |
| С6  | С1   | C2  | СЗ  | -2.3(12)  | N1  | C8  | C19 | N4  | 0.2(7)    |
| C1  | C2   | С3  | C4  | 3.4(13)   | С9  | C8  | C19 | C18 | -0.3(10)  |
| C2  | С3   | C4  | C5  | -2.2(13)  | N1  | C8  | C19 | C18 | -177.9(6) |
| С3  | C4   | C5  | C6  | -0.1(12)  | N4  | C19 | C18 | C17 | -178.9(7) |
| C4  | C5   | C6  | C1  | 1.1(11)   | C8  | C19 | C18 | C17 | -1.2(10)  |
| C4  | C5   | C6  | C7  | -173.0(7) | C16 | N3  | C17 | C18 | -179.2(6) |
| 01  | С1   | C6  | C5  | -176.9(7) | C16 | N3  | C17 | C10 | -0.4(9)   |
| C2  | С1   | C6  | C5  | 0.1(11)   | C19 | C18 | C17 | N3  | 179.3(6)  |
| 01  | С1   | C6  | C7  | -2.9(10)  | C19 | C18 | C17 | C10 | 0.5(10)   |
| C2  | С1   | C6  | C7  | 174.1(7)  | N2  | C10 | C17 | N3  | 2.0(10)   |
| C22 | S1   | 06  | U1  | 159.1(5)  | С9  | C10 | C17 | N3  | -177.1(6) |
| C23 | S1   | 06  | U1  | -97.1(5)  | N2  | C10 | C17 | C18 | -179.2(7) |
| C19 | N4   | C7  | N1  | 0.8(8)    | С9  | C10 | C17 | C18 | 1.7(10)   |
| U1  | N4   | C7  | N1  | -178.5(4) | C17 | N3  | C16 | C11 | -1.4(10)  |
| C19 | N4   | C7  | C6  | -177.7(7) | C17 | N3  | C16 | C15 | 178.7(6)  |
| U1  | N4   | C7  | C6  | 3.0(10)   | N3  | C16 | C15 | C14 | 179.5(7)  |
| C8  | N1   | C7  | N4  | -0.7(8)   | C11 | C16 | C15 | C14 | -0.4(10)  |
| C8  | N1   | C7  | C6  | 178.0(6)  | C16 | C15 | C14 | C13 | -2.1(11)  |
| C5  | C6   | C7  | N4  | -161.8(7) | C10 | N2  | C11 | C12 | 179.6(6)  |
| C1  | C6   | C7  | N4  | 24.2(11)  | C10 | N2  | C11 | C16 | -0.1(10)  |
| C5  | C6   | C7  | N1  | 19.7(10)  | N3  | C16 | C11 | N2  | 1.7(11)   |
| C1  | C6   | C7  | N1  | -154.3(7) | C15 | C16 | C11 | N2  | -178.3(6) |
| C7  | N1   | C8  | C9  | -177.2(8) | N3  | C16 | C11 | C12 | -178.0(6) |
| C7  | N1   | C8  | C19 | 0.3(7)    | C15 | C16 | C11 | C12 | 2.0(10)   |
| N1  | C8   | C9  | C10 | 179.3(7)  | N2  | C11 | C12 | C13 | 179.3(7)  |
| C19 | ) C8 | C9  | C10 | 2.4(11)   | C16 | C11 | C12 | C13 | -1.1(11)  |
| C11 | . N2 | C10 | C9  | 177.4(6)  | U1  | 05  | C20 | 04  | 2.2(9)    |
| C11 | .N2  | C10 | C17 | -1.7(10)  | U1  | 05  | C20 | C21 | 179.8(8)  |
| C8  | C9   | C10 | N2  | 177.8(7)  | U1  | 04  | C20 | 05  | -2.2(9)   |
| C8  | C9   | C10 | C17 | -3.1(10)  | U1  | 04  | C20 | C21 | -1/9.9(7) |
| C7  | N4   | C19 | C18 | 1//.1(7)  | C11 | C12 | C13 | C14 | -1.5(11)  |
| U1  | N4   | C19 | C18 | -3.7(11)  | C15 | C14 | C13 | C12 | 3.1(12)   |

# Table 8 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for bam115bJN091119.

| Atom | x | У | Z | U(eq) |
|------|---|---|---|-------|
|      |   |   |   |       |

| H1   | 4990.19 | 4485.27 | 7620.79 | 38  |
|------|---------|---------|---------|-----|
| H2   | 5161.41 | 1832.58 | 8975.49 | 45  |
| H3   | 3724.1  | 2382.12 | 9804.65 | 51  |
| H4   | 2762.6  | 3418.34 | 9442.7  | 51  |
| H5   | 3397.17 | 3948.18 | 8283.48 | 43  |
| H9   | 6060.75 | 5424.51 | 6601.02 | 39  |
| H18  | 7211.72 | 3500    | 5214.72 | 37  |
| H15  | 9371.13 | 4800.87 | 3232.18 | 43  |
| H14  | 9941.06 | 5812.17 | 2758    | 46  |
| H12  | 7962.93 | 6704.89 | 4496.45 | 46  |
| H01A | 2999.64 | 5969.75 | 7250.75 | 91  |
| H01B | 4376.08 | 6311.15 | 7892.9  | 91  |
| H01C | 2598.86 | 6463.54 | 7923.65 | 91  |
| H00A | 5193.99 | -177.18 | 5879.59 | 87  |
| H00B | 6507.82 | -180.55 | 6712.13 | 87  |
| H00D | 6993.51 | -128.49 | 5826.11 | 87  |
| H01D | 5734.2  | 2981.78 | 3424.69 | 87  |
| H01E | 4935.39 | 3540.96 | 3859.75 | 87  |
| H01F | 3970.43 | 3185.95 | 3054.55 | 87  |
| H00E | 3326.81 | 1852.38 | 3098.98 | 81  |
| H00F | 3942.45 | 1450.12 | 3930.13 | 81  |
| H00G | 5158.21 | 1786.21 | 3457.9  | 81  |
| H01G | 4825.36 | 6189.93 | 9463.74 | 115 |
| H01H | 4140.24 | 5637.04 | 9963.41 | 115 |
| H01I | 3047.22 | 6217.76 | 9563.15 | 115 |
| H13  | 9121.69 | 6758.04 | 3357.57 | 49  |

#### References

1. Sheldrick, G. M., Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.

2. Bruker Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.,

OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.