Supporting Information

Multi-stimuli-responsive Zn(II)-Schiff base complexes adjusted by rotatable aromatic rings

Han-Wen Zheng, Dong-Dong Yang, Qiong-Fang Liang, Xiang-Jun Zheng*

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of

Chemistry, Beijing Normal University, Beijing, 100875, China.

Corresponding author:

Tel.: +86-10-58805522; fax: +86-10-58802075.

E-mail address: xjzheng@bnu.edu.cn (X. -J. Zheng)

Contents

Figure S1. The packing mode and multiple intermolecular interactions in (a) ZnL ¹ ₂ , (b) ZnL ^{1a} ₂
and (c) ZnL_2^2 (C-H··· π interactions: green, π ··· π stacking: red)
Figure S2. The molecular structures of (a) ZnL_{2}^{1} , (b) ZnL_{2}^{1a} and (c) ZnL_{2}^{2}
Figure S3. Fluorescence decay curves and fit results of ZnL ¹ ₂ in different states4
Figure S4. DSC curves of ZnL ¹ ₂ original, ground, fumed samples
Figure S5. (a) Fluorescence emission spectra (excited at 365 nm) and (b) PXRD patterns of ZnL_{2}^{1}
Fumed, FG, FGF samples, and ZnL ^{1a} ₂ fumed, (c) photographs of ZnL ¹ ₂ Fumed, FG, and FGF
samples under ambient light and UV (365 nm) light
Figure S6. Fluorescence decay curves and fit results of ZnL ^{1a} ₂ in different states
Figure S7. DSC curves of ZnL ^{1a} ₂ original, ground, fumed samples
Figure S8. Fluorescence decay curves and fit results of ZnL_2^2 in different states
Figure S9. (a) Fluorescence emission spectra, and (b) emission switching characteristics of ZnL_2^2
upon repeating the grinding-fuming processes
Figure S10. DSC curves of ZnL ² ₂ original, ground, fumed samples
Figure S11. (a) Fluorescence emission spectra (excited at 365 nm), (b) PXRD patterns of the HL ¹
before and after grinding
Figure S12. (a) Fluorescence emission spectra (excited at 365 nm), (b) PXRD patterns of the HL ²
before and after grinding
Figure S13. PXRD patterns of Zn(II) complexes after HCl/NH ₃ simulation: (a) ZnL ¹ ₂ , (b) ZnL ^{1a} ₂
and (c) ZnL ² ₂
Figure S14. Fluorescence emission spectra of the original sample of (a) HL ¹ , (b)HL ² and the
samples exposed to HCl/NH3 vapor (excited at 365 nm), (c) photographs of the samples in
different states under ambient light and UV light10
Figure S15. UV–Vis absorption spectra of the ligands (HL ¹ and HL ²), original crystals of Zn (II)
complexes and the samples exposed to HCl/NH ₃ vapor on solid state, (a) ZnL ¹ ₂ , (b) ZnL ^{1a} ₂ and (c)
ZnL ² ₂
Figure S16. The normalized absorption spectra in ethanol of HL^2 and ZnL^2_2 and the leaching
solution after the fumigation of HCl/NH ₃ vapor11
Figure S17. XPS spectra of (a) O 1s, (b) HL ² , (c) ZnL ² ₂ -Original, (d) ZnL ² ₂ -HCl and (e) ZnL ² ₂ -
HCl-NH ₃ 12
Figure S18. Fluorescence emission spectra and photographs of ZnL ² ₂ exposed to HCl (different
concentration)/HAc vapor (excited at 365 nm)13
Figure S19. ¹ HNMR of (a) HL ¹ in DMSO- d_6 , (b) ZnL ¹ ₂ and ZnL ^{1a} ₂ in THF- d_8 14
Table S1. Crystal data and structure refinement parameters of ZnL ¹ ₂ , ZnL ^{1a} ₂ and ZnL ² ₂ 15
Table S2. Selected Bond Distances (Å) and Angles (deg) of ZnL ¹ ₂ , ZnL ^{1a} ₂ and ZnL ² ₂ 16
Table S3. Types of intermolecular interactions and corresponding bond distances and angles in
ZnL_2^1 , ZnL_2^{1a} and ZnL_2^2
Table S4. The dihedral angles between different planes in ZnL_2^1 , ZnL_2^{1a} and ZnL_2^2
Table S5. Detailed photophysical properties of Zn (II) complexes in different states
Table S6. Crystal data and structure refinement parameters of HL ¹ and HL ²
Table S7. The dihedral angles between different planes in HL ¹ and HL ² . 19

Figure S1. The packing mode and multiple intermolecular interactions in (a) ZnL_{2}^{1} , (b) ZnL_{2}^{1} and (c) ZnL_{2}^{2} (C-H··· π interactions: green, π ··· π stacking: red).

Figure S2. The molecular structures of (a) ZnL^{1}_{2} , (b) ZnL^{1a}_{2} and (c) ZnL^{2}_{2} .

Figure S3. Fluorescence decay curves and fit results of ZnL_2^1 in different states (excited at 371.8 nm): (a) Original sample monitored at 555 nm, (b) Ground sample monitored at 590 nm, (c) Fumed sample monitored at 555 nm.

Figure S4. DSC curves of ZnL¹₂ original, ground, fumed samples.

Figure S5. (a) Fluorescence emission spectra (excited at 365 nm) and (b) PXRD patterns of ZnL_2^1 Fumed, FG, FGF samples, and ZnL_2^{1a} fumed, (c) photographs of ZnL_2^1 Fumed, FG, and FGF samples under ambient light and UV (365 nm) light.

Figure S6. Fluorescence decay curves and fit results of ZnL^{1a_2} in different states (excited at 371.8 nm): (a) Original sample monitored at 585 nm, (b) Ground sample monitored at 590 nm, (c) Fumed sample monitored at 600 nm.

Figure S7. DSC curves of ZnL^{1a}₂ original, ground, fumed samples.

Figure S8. Fluorescence decay curves and fit results of ZnL_2^2 in different states (excited at 371.8 nm): (a) Original sample monitored at 480 nm, (b) Ground sample monitored at 520 nm, (c) Fumed sample monitored at 472 nm.

Figure S9. (a) Fluorescence emission spectra, and (b) emission switching characteristics of ZnL_2^2 upon repeating the grinding-fuming processes.

Figure S10. DSC curves of ZnL_2^2 original, high ground, fumed samples.

Figure S11. (a) Fluorescence emission spectra (excited at 365 nm), (b) PXRD patterns of the HL^1 before and after grinding. (Insert photographs: the HL^1 samples under ambient light and UV light).

Figure S12. (a) Fluorescence emission spectra (excited at 365 nm), (b) PXRD patterns of the HL^2 before and after grinding. (Insert photographs: the HL^2 samples under ambient light and UV light).

Figure S13. PXRD patterns of Zn(II) complexes after HCl/NH₃ simulation: (a) ZnL¹₂, (b) ZnL^{1a}₂ and (c) ZnL²₂.

Figure S14. Fluorescence emission spectra of the original sample of (a) HL^1 , (b) HL^2 and the samples exposed to HCl/NH_3 vapor (excited at 365 nm), (c) photographs of the samples in different states under ambient light and UV light.

Figure S15. UV–Vis absorption spectra of the ligands (HL¹ and HL²), original crystals of Zn (II) complexes and the samples exposed to HCl/NH₃ vapor on solid state, (a) ZnL_{2}^{1} , (b) ZnL_{2}^{1a} and (c) ZnL_{2}^{2} .

Figure S16. The normalized absorption spectra in ethanol of HL^2 and ZnL^2_2 and the leaching solution after the fumigation of HCl/NH_3 vapor.

Figure S17. XPS spectra of (a) O 1s, (b) HL^2 , (c) ZnL^2_2 -Original, (d) ZnL^2_2 -HCl and (e) ZnL^2_2 -HCl-NH₃.

Figure S18. Fluorescence emission spectra of the original crystals of ZnL_2^2 and the samples exposed to HCl (different concentration)/HAc vapor (excited at 365 nm), photographs of the under ambient light and UV (365 nm) light.

Figure S19. ¹HNMR of (a) HL¹ in DMSO- d_6 , (b) ZnL¹₂ and ZnL^{1a}₂ in THF- d_8 .

Compound	ZnL ¹ ₂	ZnL ^{1a} 2	ZnL ² ₂
Formula	$C_{40}H_{26}N_{4}O_{2}S_{2}Zn$	$C_{40}H_{26}N_4O_2S_2Zn$	$C_{42}H_{30}N_4O_2S_2Zn$
Fw	724.14	724.21	752.19
T (K)	100.00(10)	100.00(10)	99.99(10)
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	рl	$P2_1/c$	<i>P</i> 1
<i>a</i> (Å)	11.4929(5)	13.1878(3)	9.16130(17)
<i>b</i> (Å)	12.7136(5)	15.1875(3)	14.4849(3)
<i>c</i> (Å)	13.8590(4)	16.8527(4)	14.8515(3)
α (°)	66.694(4)	90	118.3611(19)
eta(°)	89.324(3)	108.139(2)	94.9008(16)
γ(°)	65.169(4)	90	96.0026(15)
V (Å ³)	1658.66(13)	3207.68(13)	1704.06(6)
Ζ	2	4	2
Calculated density (gcm ⁻³)	1.450	1.500	1.466
<i>F</i> (000)	744.0	1488.2	776.0
Reflections Collected/Unique	20225/6587	23215/6393	23231/6862
Goodness-of-fit on F^2	1.058	1.026	1.068
Final R indexes [I>=2 σ (I)]	R ₁ =0.0437,	R ₁ =0.0381,	R ₁ =0.0352,
	wR ₂ =0.1169	wR ₂ =0.1037	$wR_2 = 0.0944$
<i>R</i> indices	R ₁ =0.0499,	R ₁ =0.0423,	R ₁ =0.0372,
(all data)	$wR_2 = 0.1211$	wR ₂ =0.1086	wR ₂ =0.0963
CCDC number	2099170	2099171	2055758

Table S1. Crystal data and structure refinement parameters of ZnL_{2}^{1} , ZnL_{2}^{1a} and ZnL_{2}^{2} .

	ZnL ¹ ₂	ZnL ^{1a} 2	ZnL ² ₂
Zn1—O1	1.9173 (17)	1.9306 (15)	1.9308 (12)
Zn1—O2	1.9142 (17)	1.9045 (15)	1.9428 (12)
Zn1—N2	2.015 (2)	1.9845 (18)	2.0080 (14)
Zn1—N4	2.009 (2)	2.0187 (18)	2.0006 (14)
O2—Zn1—O1	120.67 (7)	119.62 (6)	124.30 (5)
N2—Zn1—O1	96.01 (8)	96.60 (7)	95.06 (5)
N2—Zn1—O2	116.80 (8)	126.20 (7)	108.65 (6)
N2—Zn1—N4	116.03 (8)	114.49 (7)	127.70 (6)
N4—Zn1—O1	113.46 (8)	103.45 (7)	109.97 (6)
N4—Zn1—O2	95.37 (8)	95.35 (7)	94.24 (5)
C1—O1—Zn1	126.15 (15)	122.85 (13)	124.38 (10)
C21—O2—Zn1	126.59 (15)	125.22 (13)	
C14—N2—Zn1	120.55 (17)	119.70 (15)	120.60 (12)
C15—N2—Zn1	122.68 (16)	119.61 (14)	121.62 (11)
C34—N4—Zn1	121.74 (16)	120.27 (15)	
C35—N4—Zn1	119.93 (16)	117.82 (14)	120.62 (12)
C36—N4—Zn1			120.61 (11)
C22—O2—Zn1			123.48 (11)

Table S2. Selected Bond Distances (Å) and Angles (deg) of ZnL_{2}^{1} , ZnL_{2}^{1a} and ZnL_{2}^{2} .

Table S3. Types of intermolecular interactions and corresponding bond distances andangles in ZnL_2^1 , ZnL_2^{1a} and ZnL_2^2 .

compound	interactions	bond distances	angles
ZnL ¹ ₂	$C_9-H_9\cdots\pi(C_{15}-C_{20})$	2.760 Å	141.47°
	C_{31} - H_{31} ···· π (S_1 , C_7 , N_1 , C_8 , C_{13})	2.745 Å	145.92°
	$C_{38}-H_{38}\cdots\pi(C_8-C_{13})$	2.914 Å	129.63°
	$\pi(C_{21}-C_{26})\cdots\pi(S_2,C_{27},N_3,C_{28},C_{33})$	3.593 Å	
	$\pi(C_1-C_6)\cdots\pi(C_1-C_6)$	3.571 Å	
	$\pi(C_{21}-C_{26})\cdots\pi(C_{28}-C_{33})$	3.826 Å	
ZnL ^{1a} 2	C_{23} - H_{23} ···· π (S_1 , C_7 , N_1 , C_8 , C_{13})	2.942 Å	154.85°
	C_{34} - H_{34} ···· $\pi(S_1, C_7, N_1, C_8, C_{13})$	2.894 Å	156.06°
	$C_{39}-H_{39}\cdots\pi(C_{21}-C_{26})$	2.828 Å	139.52°
	$\pi(C_{15}-C_{20})\cdots\pi(S_2,C_{27},N_3,C_{28},C_{33})$	3.616 Å	
ZnL ² ₂	C_3 - H_3 ··· π (S_2 , C_{28} , N_3 , C_{29} , C_{34})	2.936 Å	170.33°
	$C_{17}-H_{17}\cdots\pi(C_{22}-C_{27})$	2.931 Å	142.06°
	$C_{24}-H_{24}\cdots\pi(C_8-C_{13})$	2.824 Å	162.18°
	C_{38} - H_{38} ···· π (C_{16} - C_{21})	2.856 Å	131.00°

$\pi(C_{37}-C_{42})\cdots\pi(S_1,C_7,N_1,C_8,C_{13})$	3.880 Å
$\pi(C_{16}-C_{21})\cdots\pi(C_{16}-C_{21})$	3.925 Å

	ZnL ¹ 2	ZnL ^{1a} 2	ZnL ² ₂
A/B	7.10	8.06	2.69
B/C	55.98	27.83	74.22
A/C	59.37	35.49	71.76
A'/B'	3.91	10.44	12.09
В'/С'	50.23	61.02	84.88
A'/C'	50.09	57.56	78.48

Table S4. The dihedral angles between different planes in ZnL¹₂, ZnL^{1a}₂ and ZnL²₂.

Table S5. Detailed photophysical properties of Zn (II) complexes in different states.

	$\tau_1(ns)^a$	$A_1 \ ^b$	$\tau_2(ns)^{a}$	$A_2 {}^b$
ZnL ¹ ₂ -Original	0.85	0.33	3.78	0.67
ZnL ¹ ₂ -Ground	1.28	0.80	3.28	0.20
ZnL ¹ ₂ -Fumed	1.34	1.00	-	-
ZnL ^{1a} 2-Original	2.28	1.00	-	-
ZnL ^{1a} 2-Ground	1.75	1.00	-	-
ZnL ^{1a} ₂ -Fumed	2.58	1.00	-	-
ZnL ² ₂ -Original	0.86	0.87	2.75	0.13
ZnL ² ₂ -High ground	1.67	0.39	3.97	0.61
ZnL ² ₂ -Fumed	0.46	0.31	2.52	0.69

Compound	HL ¹	HL ²
Formula	$C_{20}H_{14}N_2OS$	C ₂₁ H ₁₆ N ₂ OS
Fw	330.39	344.42
T (K)	100.00(10)	150.00(10)
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{l}/c$	$P2_{1}/n$
<i>a</i> (Å)	10.8786(5)	4.81310(10)
<i>b</i> (Å)	14.3556(6)	22.3451(3)
<i>c</i> (Å)	11.6830(11)	15.3199(2)
α (°)	90	90
$eta(\circ)$	120.899(4)	93.7770(10)
γ(°)	90	90
V (Å ³)	1565.57(19)	1644.06(5)
Z	4	4
Calculated density (gcm ⁻³)	1.402	1.391
<i>F</i> (000)	688.0	720.0
Reflections Collected/Unique	9713/3132	15079/3385
Goodness-of-fit on F ²	1.091	1.049
Final R indexes [I>=2 σ (I)]	R ₁ =0.0671, wR ₂ =0.1696	R ₁ =0.0423, wR ₂ =0.1112
R indices (all data)	$R_1 = 0.0744, wR_2 = 0.1745$	$R_1 = 0.0452, wR_2 = 0.1145$
CCDC number	2099172	2046924

Table S6. Crystal data and structure refinement parameters of HL¹ and HL².

Table S7. The dihedral angles between different planes in HL¹ and HL².