Electronic Supplementary Information

Sulfur Doped FeO_x Nanosheet Arrays Supported on Nickel Foam

for Efficient Alkaline Seawater Splitting

Weiju Hao^a, jinli Fan^a, Xia Xu^{a*}, Yiran Zhang^a, Haiyang Lv^a, Shige Wang^a, Shengwei Deng^c, Shuo Weng^{a*}, Yanhui Guo^{b*}

^a University of Shanghai for Science and Technology, Shanghai, 200093, China.

^bFudan University, Shanghai 200433, P. R. China

^cCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou,

310014, China

* Corresponding authors.

E-mail: ecustwengs@163.com

gyh@fudan.edu.cn

Figure S1. The loading amount of FeO_x -Ni₃S₂ catalyst material on NF at 3 h, 6 h and 12 h, respectively.

Figure S2. FESEM images of the FeO_x -Ni₃S₂@NF composite with hydrothermal for (a) 3 h, (b) 6 h and (c) 12 h.

Figure S3. LSV curves of FeO_x -Ni₃S₂@NF for HER (a) and OER (b) in 1.0 M KOH+0.5 M KOH with different hydrothermal time.

Figure S4. The influence of the amount of thiourea doping on the morphology. (a) Without S; (b) Fe:S=1:1; (c)Fe:S=1:2.

Figure S5. The influence of the amount of thiourea doping on the composition of FeO_x -Ni₃S₂@NF. (a) Fe:S=1:1; (b) Fe:S=1:2.

Figure S6. Polarization curves of FeO_x -Ni@NF for HER (a) and OER (b) in 1.0 M KOH with different sulfur source doping amount.

Figure S7. FESEM (a-d) and EDS (e) mapping images of FeO_x -Ni@NF electrode.

Figure S8. Nitrogen isotherms of the FeO_x -Ni@NF and FeO_x -Ni₃S₂@NF electrodes in nitrogen.

Figure S9. The survey XPS spectrum of the FeO_x -Ni@NF and FeO_x -Ni₃S₂@NF composite.

Figure S10. Cyclic voltammograms of (a) FeO_x -Ni@NF and (b) FeO_x -Ni₃S₂@NF electrode in the non-Faradaic current range at scan rates of 10, 30, 50, 70 and 90 mV s⁻¹ for HER.

Figure S11. The LSV curves of FeO_x -Ni₃S₂@NF electrode before and after 1000 CV cycles for HER.

Figure S12. Cyclic voltammograms of (a) FeO_x -Ni@NF and (b) FeO_x -Ni_3S₂@NF electrode in the non-Faradaic current range at scan rates of 30, 50, 70, 90 and 110 mV s⁻¹ for OER.

FigureS13. The LSV curves of FeO_x-Ni₃S₂@NF electrode before and after 1000 CV cycles for OER.

Figure S14. Collection of hydrogen (H₂) and oxygen (O₂) in water splitting in 1.0 M KOH+0.5 M NaCl at the 100 mA cm⁻².

Figure S15. Amount of gas theoretically calculated and experimentally measured versus time for FeO_x -Ni₃S₂@NF || FeO_x -Ni₃S₂@NF.

Figure S16. Long-term stability test of FeO_x -Ni₃S₂@NF electrode at current densities of 500 mA cm⁻², 1000 mA cm⁻² and 500 mA cm⁻² for overall water splitting in 1.0 M KOH+0.5 M NaCl over 72 h.

Figure S17. The SEM of FeO_x-Ni₃S₂@NF electrode for HER (a, b) and OER (c, d) at 200 mA cm⁻² in 1.0 M KOH+0.5 M NaCl after 100 h.

Figure S18. The XRD of FeO_x-Ni₃S₂@NF electrode for HER and OER at 200 mA cm⁻² in 1.0 M KOH+0.5 M NaCl after 100 h.

Figure S19. High-resolution XPS of FeO_x -Ni₃S₂@NF electrodes for HER and OER at 200 mA cm⁻² in 1.0 M KOH+0.5 M NaCl after 100 h. (a) Fe2p; (b) Ni2p; (c) O1s and (d) S1s.

Catalyst	State	Atomic Ratio Fe : S
FeO _x -Ni ₃ S ₂ @NF		1:4.9
	Post-HER	1:4.1
	Post-OER	1:3.4

Table S1. ICP-AES analysis of the $FeO_x\text{-}Ni_3S_2@NF$ electrode

Catalysts	j (mA cm ⁻²)		Taf slope	References
	10	100	(mV dec ⁻¹⁾	
FeO _x -Ni ₃ S ₂ @NF	52	178	57	This Work
Ni Foam/P-CoMoO ₄ -	94	197	93	Adv. Sci. 2020, 7, 1903674
350				
H-MoS2/MoP	92	-	59.8	Small 2020 , 16, 2002482
NiO/Ru@PNS	39	-	75	J. Mater. chem. A, 2019, 7, 2344-
				2350
H-NiFe LDH	59	-	62.3	Energy Environ. Sci., 2019, 12, 572-
				581
Pt/np-Co _{0.85} Se	55	-	35	Nature Communications, 2019, 10,
				1743
MoS ₂ -MoP/NC	35	69	30	Nano Energy, 2020 ,78, 105253
Co, Mo ₂ C-CNF	128	-	60	Chemical Engineering Journal 2020,
				125481
MoP/0.5CM-CDs1100	70	-	77.49	Nano Energy 2020 , 72, 104730
CC@N-CoP	42	-	41.2	Adv. Mater. 2018, 1800140
Mo2N /CeO2@NF	26	-	37.8	ACS Appl. Mater. Interfaces 2020,
				12, 26, 29153-29161
b-S-Ni ₃ Se ₄ Se-Ni ₃ S ₂ /NF	89	-	61	Nano Energy 2020 , 74, 104787
Ni ₂ P-Ni ₁₂ P ₅ / NF	76	147	68	Small 2020 , 06770
VS ₂ -Mo-10	243	-	52.6	Chemical Engineering Journal 2020,
				396 125227
$Re_{1-x}Mo_xSe_2$	77	-	42	ACS Nano 2020, 14, 9, 11995–12005
$Mo_6Te_6/MoS_{2(1-x)} Te_{2x}$	320	-	55.7	Small 2020 , 2004296
N-LDH/2D-Pt	31	-	32.3	ACS Nano 2020, 14, 8, 10578–10588
Ru SAs–Ni ₂ P	57	-	75	Nano Energy 2020 ,105467
Fe-Ni ₃ S ₂ @FeNi ₃	105	-	69	Chemical Engineering Journal 2020,
				396, 125315
(Ni _{0.75} Fe _{0.25}) ₂ P@GCs	83	-	70.4	J. Mater. Chem. A, 2019,7, 20357-
				20368
CoNi/CoFe ₂ O ₄ /NF	82	189	45	J. Mater. Chem. A, 2018,6, 19221-
				19230
NiO/Ru@PNS	39	-	75	J. Mater. Chem. A, 2019,7, 2344-
				2350

Table S2. Comparison the HER performance of FeO_x -Ni₃S₂@NF electrode with otherelectrocatalysts in 1.0 M KOH.

Catalysts	OER (10 mA cm ⁻²)	Tafel Slope (mV dec ⁻¹)	References
FeO _x - Ni ₃ S ₂ @NF	196	62	This work
CoNi-OH	270	73.5	Chem. Eng. J. 2020 , 401,126092
Ru-HPC	310	60.7	Nano Energy 2019, 58, 1-10
FeNi ₃ S ₂ /NF	214	42	ACS Catal. 2018, 8, 5431-5441
NiFeMo	238	35	ACS Energy Lett. 2018 , 3, 546- 554
NiCoP@NC NA/NF	215	70.5	Adv. Funct. Mater. 2019 , 29, 1906316
δ-FeOOH NSs/NF	265	36	Adv. Mater. 2018, 30, 1803144
Ni ₂ P-VP ₂	220	49	Adv. Mater. 2019, 31, 1901174
Ni/Ni(OH) ₂ @N F	270	53	Adv. Mater. 2020, 32, 1906915
Ni-Fe-Mo/NF	255	35	Adv. Sci. 2020, 7, 1902034
Ni-ZIF/Ni- B@NF	234	76	Adv. Energy Mater. 2020 , 10, 1902714
Ni/FeOOH@N F	239	70.5	J. Mater. Chem. A, 2020 , 8, 12603–12612
YP-Co(OH)F	238	67	Small 2019, 15, 1904105
Co6W6C@NC	286	53.96	Small 2020, 16, 1907556
Ni-Ni3C/CC	299	43.8	Small 2020 , 16, 2001642
FexNi ₃₋ _x S2@NF	252	64	Adv. Energy Mater. 2020 , 10, 2001963
NiFe LDH	187	34.42	Energy Environ. Sci., 2019 , 12, 572-581
2D NiCoFe/NF	240	58	Nanoscale, 2018 , 10, 12975– 12980

Table S3. Comparison the OER performance of FeO_x -Ni₃S₂@NF electrode with otherelectrocatalysts in 1.0 M KOH.

Catalysts	Curre	nt Density	References
	(mA cm ⁻²)		
	10	100	
FeO _x -Ni ₃ S ₂ @NF	1.41	1.61	This Work
CoNi/CoFe ₂ O ₄ /Ni	1.57	1.75	J. Mater. Chem. A, 2018, 6,19221
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂ /Ni	1.54		J. Am. Chem. Soc. 2019 , 141, 10417–10430
NiFeMo/NF	1.45		ACS Energy Lett. 2018, 3, 546-554
FePO ₄ /NF	1.54	1.72	Adv. Mater. 2017, 29, 1704574
Ni-NiOH ₂ /NF	1.59		Adv. Mater. 2020, 32, 1906915
NiFeMoOOH/NF	1.5	1.63	Adv. Sci. 2020, 7, 1902034
Ni-ZIF/Ni-B@NF	1.54		Adv. Energy Mater. 2020, 10, 1902714
NiP ₂ /Ni ₂ P@Ni	1.54		J. Am. Chem. Soc. 2019 , 141, 10417–10430
YP-Co(OH)F	1.54		Small 2019 , 15, 1904105
Co ₆ W ₆ C@NC	1.585		Small 2020 , 16, 1907556
Ni–Ni ₃ C/CC	1.64		Small 2020 , 16, 2001642
Ni/Ni(OH) ₂ /NF	1.59		Adv. Mater. 2020, 32, 1906915
NiFe-Mo/OOH@NF	1.5	1.63	Adv. Sci. 2020, 7, 1902034
h-NiS _x /NF	1.54	1.72	Adv. Mater. 2017, 29, 1704574
δ-FeOOH NSs/NF	1.62		Adv. Mater. 2018, 30, 1803144
NixCo _{2-x} P@NC	1.56		Adv. Funct. Mater. 2019, 29, 1906316
Fe-Ni ₃ S ₂ /NF	1.54		ACS Catal. 2018, 8, 5431-5441
Ni3N-VN/NF	1.51		Adv. Mater. 2019, 31, 1901174
Ni/Mo ₂ C(1:2)-NCNFs	1.64		Adv. Energy Mater. 2019, 9, 1803185

Table S4. The overall-water splitting performance for FeO_x -Ni₃S₂@NF and other electrodes with NF-base electrocatalysts in 1.0 M KOH.