Supporting Information

Manifestation of Dissimilar Types of Magnetism in Iron and Chromium Substituted Mn₂SnS₄

Tuhin Subhra Dash^a, Subham Naik^a, Sheetal^d, Sachindra Nath Sarangi^b,Debakanta Samal^{b,c}, C. S. Yadav^d, S. D. Kaushik^e and Saroj L. Samal^{a,*}

 ^aSolid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, INDIA
 ^bInstitute of Physics, Bhubaneswar-751005, INDIA
 ^cHomi Bhabha National Institute, Anushakti Nagar, Mumbai 400085, INDIA
 ^dSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005 (H.P.), INDIA
 ^eUGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Maharastra-400085, INDIA

Fe	Weight of the elements				
content	Weight of Mn	Weight of Fe	Weight of Sn	Weight of S	
(%)	(g)	(g)	(g)	(g)	
3	0.0886	0.0028	0.0987	0.1099	
6	0.0859	0.0056	0.0987	0.1099	
9	0.0831	0.0084	0.0987	0.1098	

 $\label{eq:solution} \textbf{Table S1}: Weight of the elements used for synthesis of Fe substituted Mn_2SnS_4 compounds.$

Table S2: Weight of the elements used for synthesis of Cr substituted Mn₂SnS₄ compounds.

Cr	Weight of the elements				
content	Weight of Mn	Weight of Cr	Weight of Sn	Weight of S	
(%)	(g)	(g)	(g)	(g)	
4	0.0878	0.0035	0.0988	0.1100	
8	0.0842	0.0069	0.0989	0.1100	
10	0.0824	0.0087	0.0989	0.1100	
15	0.0779	0.0130	0.0990	0.1101	

 Table S3. PXRD Refinement Table for Fe and Cr substituted compounds

Fe content	3%	6%	9%
a (Å)	7.4191(9)	7.3935(9)	7.4110(7)
b (Å)	10.474(1)	10.464(1)	10.473(1)
c (Å)	3.6640(5)	3.6598(5)	3.6631(4)
χ^2	1.07	1.07	1.01
Rp	7.35	7.30	6.83
Rwp	9.61	9.27	8.75
Rexp	9.26	8.96	8.73

Cr content	4%	8%	10%	15%
a (Å)	7.400(2)	7.417(1)	7.326(1)	7.398(1)
b (Å)	10.461(2)	10.474(2)	10.426(2)	10.467(2)
c (Å)	3.6674(9)	3.6642(6)	3.6691(7)	3.6595(6)
χ^2	1.08	1.04	1.52	1.19
Rp	7.06	6.17	6.29	7.08
Rwp	9.15	7.97	8.37	9.02
Rexp	8.79	7.83	6.78	8.27

Table S4. Curie constant, Weiss constant and experimental average effective magnetic moment of Fe and Cr substituted compounds calculated from inverse susceptibility plot along with theoretical effective magnetic moment per magnetic ion.

Compound Formula	Weiss constant (θ) K	Curie constant (C)	Average effective magnetic moment (μ _B) per magnetic ion	Theoretical effective magnetic moment (μ _B) per magnetic ion
Mn1.94Fe0.06SnS4	-445	10.42	6.46	5.92
Mn1.88Fe0.12SnS4	-478	8.50	5.83	5.92
Mn1.82Fe0.18SnS4	-509	8.34	5.78	5.92
Mn1.92Cr0.08SnS4	-552	11.22	6.70	5.85
$Mn_{1.84}Cr_{0.16}SnS_4$	-592	13.35	7.31	5.78
$Mn_{1.80}Cr_{0.20}SnS_4$	-589	10.67	6.53	5.75
Mn1.70Cr0.30SnS4	-587	9.83	6.27	5.66

Figure S1: PXRD analysis of trial reaction of $Mn_{2-x}Fe_xSnS_4$ (x = 0.24) i.e., 12% Fe-doping and $Mn_{2-x}Cr_xSnS_4$ (x = 0.50) i.e., 25% Cr-doping. The reference pattern (Mn₂SnS₄) is 73-0829. Different symbols are used for denoting impurity phases.

Figure S2. Rietveld refinement of powder X-ray diffraction data of (a) 3% Fe-doped Mn₂SnS₄, (b) 6% Fe-doped Mn₂SnS₄, (c) 9% Fe-doped Mn₂SnS₄, (d) 4% Cr-doped Mn₂SnS₄, (e) 8% Cr-doped Mn₂SnS₄, (f) 10% Cr-doped Mn₂SnS₄, and (g) 15% Cr-doped Mn₂SnS₄.

Figure S3. XPS survey scans (a) $Mn_{1.82}Fe_{0.18}SnS_4$ and (b) $Mn_{1.80}Cr_{0.20}SnS_4$

Figure S4. Molar susceptibility vs temperature plot of $Mn_{2-x}Cr_xSnS_4$ (x = 0.08, 0.16, 0.20 and 0.30) at 5000 Oe.

Figure S5. Hysteresis loop in isothermal magnetization (M) versus applied magnetic field (H) data of $Mn_{2-x}Cr_xSnS_4$ at 5 K (a) for x = 0.08, (b) x = 0.16 and (c) for x = 0.20 and (d) for x = 0.30.

Figure S6. AC susceptibility (Real part) plot of Mn_{1.94}Fe_{0.06}SnS₄ measured at different frequencies.