Electronic Supplementary Information

Syntheses, Structural modulation and slow magnetic relaxation of three dysprosium(III) complexes with mononuclear, dinuclear and one-dimensional structures

Hua-Jian Ye,^a Tian Zhang,^a Shu-Yuan Huang,^a Xiao-Ling Liu,^a Wen-Bin Chen,^{*a} Yi-Quan zhang,^{*b} Jinkui Tang^{*c} and Wen Dong^{*a}

^aGuangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China

^bJiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China

°State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

Contents of the Electronic Supplementary Information

Scheme	S1. Sy	yntheses of	H ₄ ATB								3
Table S1	l. Con	tinuous Sha	pe Measu	res ca	lculations (C	CShM)	for 1-3.				3
Figure	S1.	Hydrogen	Bonds,	3D	Supramole	cular	structure	and	ORTEP	view	of
1.	•••••										4
Figure S	2. Hy	drogen Bon	ds, π-π	Stacki	ng interactio	n, 3D	Supramol	ecular s	structure a	nd ORT	ΓEP
view of 2	2										5
Figure	S3.	Hydrogen	Bonds,	3D	Supramole	cular	structure	and	ORTEP	view	of
3											6
Figure S	4. Po	wder X-ray	diffraction	n (PX	RD) patterns	for H	4ATB and	compl	exes 1-3		7
Figure S	5. Th	ermal gravin	metric An	alyses	(TGA) curv	es for	complexe	s 1-3			7
Table S2	2. Cry	stal data and	l structure	refine	ement for H ₄	ATB a	and compl	exes 1-	3 at 100 K	- L	8
Table S3	3. The	bond lengtl	ns [Å] and	l angle	es [°] for con	nplex 1	1				9
Table S4	1. The	bond lengtl	ns [Å] and	l angle	es [°] for con	nplex 2	2				10
Table St	5. The	bond lengtl	ns [Å] and	l angle	es [°] for con	nplex 3	3				11
Figure S	6. Th	e isotherma	l M vs. H	plots t	for 1-3	•••••					.12
Figure S	7. Tei	mperature d	ependenc	e of th	e in-phase χ _i	M' proc	duct and o	ut-of-p	hase χ _M " fe	or 1 in a	ı
zero dc f	ield										.12
Figure S	8. Ac	susceptib	ilities of	1 we	re measure	d at 1	.9 K und	er diff	erent fiel	ds to fi	nd
an optim	um do	e field for su	ppressing	the Q	ТМ						12
Table S6	6 Rela	xation fittin	g paramet	ers fro	om Least-Sq	uares l	Fitting of y	(ω) da	ta for 1 un	der 600)
Oe dc fie	eld.										
									1	3	
Table S7	7 Rela	xation fittin	g paramet	ers fro	om Least-Sq	uares l	Fitting of y	(ω) da	ta for 2 un	der 0 O	e
dc field.											.13
Table S8	8 Rela	xation fittin	g paramet	ers fro	om Least-Sq	uares l	Fitting of y	(ω) da	ta for 3 un	der 0 O	e
dc field.											.14
Comput	ation	al details									.14
Figure S	9. Ca	lculated mo	del structu	ires of	f 1 - 3						.15
Table S9). Calo	culated ener	gy levels	(cm ⁻¹)), $g(g_{\rm x}, g_{\rm y}, g_{\rm y})$	z) tens	ors and pr	edomir	ant m_J val	ues of t	he
lowest ei	ght K	ramers doul	olets (KDs	s) of c	omplex 1 an	d indiv	vidual Dy ^{II}	^{II} fragn	nents for co	omplex	es 2
and 3 usi	ing CA	ASSCF/RAS	SSI-SO w	ith MO	DLCAS 8.4.						16
Table S1	1 0. Wa	ave functior	s with de	finite	projection of	the to	tal momer	nt m _J >	> for the lo	owest ei	ght
KDs of c	omple	ex 1 and ind	ividual D	y ^{III} fra	gments for c	comple	exes 2 and	3 using	g CASSCF	/RASS	I-
SO with	MOL	CAS 8.4						1	17		
Table S1	1 1. Ex	change ener	rgies E (ci	n ⁻¹), t	he energy di	fferen	ce betweei	n each	exchange o	doublets	s Δ_t
(cm^{-1}) and	nd the	main value	s of the g_z	for th	e lowest two	excha	ange doub	lets of 2	2 and 3		18
REFER	ENCI	E S									29

Scheme S1 Syntheses of H₄ATB: (a) HCl, 0–5 °C, NaNO₂, stirring; (b) 2,6-dihydroxybenzoic acid, stirring at room temperature.

	0 , .		1 1	5		_
	CSAPR-9 (C _{4v})	TCTPR-9 (D _{3h})	JCSAPR-9 (C _{4v})	JTCTPR-9 (D _{3h})	MFF-9 (C _S)	
1	2.12956	2.30852	2.81009	1.95785	2.40949	
2	0.26965	1.33393	0.83299	2.69822	0.88793	
3	0.31048	1.30690	0.78641	2.40376	0.97232	

Table S1. 1-3 geometry analysis by using SHAPE 2.0 program.*

*CSAPR-9=Spherical capped square antiprism; TCTPR-9=Spherical tricapped trigonal prism; JCSAPR-9=Capped square antiprism J10; JTCTPR-9=Tricapped trigonal prism J51; MFF-9=Muffin

Fig. S1 For 1, (a)hydrogen bonds along the b axis, (b) hydrogen bonds along the b axis and c axis, (c) 3D supramolecular structure (the blue lines between the dysprosium are just for observation, without any interaction), (d) ORTEP view (30% thermal ellipsoids).

Fig. S2 For 2, (a) hydrogen bonds along the *a* axis and *b* axis, (b) the π - π stacking interaction along the c-axis, (c) 3D supramolecular structure (the blue lines between the dysprosium are just for observation, without any interaction), (d) ORTEP view (30% thermal ellipsoids).

Fig. S3 For **3**, (a) hydrogen bonds along the *a* axis and *c* axis, (b) One-dimensional structure along the *b* axis, (c) 3D supramolecular structure (the blue lines between the dysprosium are just for observation, without any interaction), (d) ORTEP view (30% thermal ellipsoids).

	1	2	3	
Empirical formula	$C_{27}H_{24}DyN_{15}O_{15}$	$C_{36}H_{44}Dy_2N_{12}O_{25}$	$C_{22}H_{30}DyN_8O_{10}$	
Formula weight	961.11	1369.83	729.04	
Crystal system	monoclinic	triclinic	triclinic	
Space group	$P2_1/c$	Pī	Pī	
a/Å	13.96209(10)	9.6507(3)	10.56300(10)	
b/Å	16.44139(8)	11.3380(2)	11.32340(10)	
c/Å	17.20872(11)	11.8034(4)	12.71470(10)	
α/°	90	103.705(2)	112.6490(10)	
β/°	110.0249(7)	90.636(2)	100.3860(10)	
$\gamma/^{\circ}$	90	106.159(2)	98.7410(10)	
Volume/Å ³	3711.54(4)	1201.07(6)	1338.83(2)	
Z	4	1	2	
$\rho_{calc}g/cm^3$	1.720	1.894	1.808	
μ/mm^{-1}	11.564	17.346	15.554	
F(000)	1908.0	676.0	728.0	
Reflections collected	50442	14773	17175	
Independent reflections	7632	4814	5387	
R(int)	0.0355	0.0604	0.0413	
Goodness-of-fit on F ²	1.100	1.077	1.101	
Final R indexes [I>=2sigma (I)] ^{a,b}	$\begin{array}{ll} R_1 = & 0.0308, \\ wR_2 = 0.0787 \end{array}$	$R_1 = 0.0419,$ w $R_2 = 0.1138$	$R_1 = 0.0288,$ w $R_2 = 0.0769$	
R indexes [all data]	$R_1 = 0.0322,$ w $R_2 = 0.0795$	$R_1 = 0.0438,$ w $R_2 = 0.1150$	$R_1 = 0.0295,$ w $R_2 = 0.0774$	
Largest diff. peak/hole / e Å ⁻³	0.95/-1.04	2.65/-1.28	1.13/-1.26	
CCDC	2098134	2098135	2098136	

Table S2 Crystal data and structure refinement complexes 1-3.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ {}^{b}wR_{2} = [\sum w(F_{o}{}^{2} - F_{c}{}^{2})^{2} / \sum w(F_{o}{}^{2})^{2}]^{1/2}$

Atom	Atom	[Å]		Atom	Atom	Atom	[°]
Dy1	01	2.3375(19)		01	Dy1	09	85.51(7)
Dy1	05	2.3049(19)		01	Dy1	N1	125.25(7)
Dy1	09	2.3413(19)		01	Dy1	N5	64.82(7)
Dy1	N1	2.484(2)		01	Dy1	N6	150.76(7)
Dy1	N5	2.586(2)		01	Dy1	N10	138.50(7)
Dy1	N6	2.436(2)		01	Dy1	N11	89.77(7)
Dy1	N10	2.589(2)		01	Dy1	N15	70.99(7)
Dy1	N11	2.507(2)		05	Dy1	01	77.84(7)
Dy1	N15	2.585(3)		05	Dy1	09	147.69(7)
Atom	Atom	Atom	[°]	05	Dy1	N1	83.29(7)
N1	Dy1	N11	138.79(8)	05	Dy1	N5	79.59(7)
N1	Dy1	N15	144.21(8)	05	Dy1	N6	126.67(7)
N5	Dy1	N10	121.25(7)	05	Dy1	N10	64.70(7)
N5	Dy1	N15	77.88(8)	05	Dy1	N11	84.15(7)
N6	Dy1	N1	129.10(8)	05	Dy1	N15	132.44(7)
N6	Dy1	N5	61.98(7)	09	Dy1	N1	84.09(7)
N6	Dy1	N10	78.70(8)	09	Dy1	N5	68.25(7)
N6	Dy1	N11	79.94(8)	O9	Dy1	N6	79.01(7)
N6	Dy1	N15	152.13(8)	O9	Dy1	N10	135.94(7)
N11	Dy1	N5	70.02(7)	O9	Dy1	N11	123.66(7)
N11	Dy1	N10	61.24(8)	09	Dy1	N15	64.26(7)
N11	Dy1	N15	115.97(8)	N1	Dy1	N5	61.39(8)
N15	Dy1	N10	122.65(8)	N1	Dy1	N10	69.11(7)

Table S3 The bond lengths [Å] and angles [°] for complex 1.

Atom	Atom	[Å]		Atom	Atom	Atom	[°]
Dy1	Dy1 ¹	3.7652(4))	O3	Dy1	Dy1 ¹	107.29(7)
Dy1	03	2.300(3))	O3	Dy1	O41	141.57(10)
Dy1	O41	2.384(3))	O3	Dy1	04	72.04(10)
Dy1	O4	2.367(3))	O3	Dy1	O61	110.94(10)
Dy1	O6 ¹	2.396(3))	O3	Dy1	07	75.17(11)
Dy1	07	2.394(3))	03	Dy1	09	138.16(10)
Dy1	09	2.446(3))	03	Dy1	O10	71.61(11)
Dy1	O10	2.435(3))	03	Dy1	$N1^1$	125.68(11)
Dy1	$N1^1$	2.602(4))	03	Dy1	N31	73.47(11)
Dy1	N3 ¹	2.484(3))	O4 ¹	Dy1	$Dy1^1$	37.73(7)
Atom	Atom	Atom	[°]	04	Dy1	$Dy1^1$	37.42(7)
O61	Dy1	N1 ¹	123.12(11)	O41	Dy1	04	75.15(11)
O6 ¹	Dy1	N3 ¹	142.03(11)	O4	Dy1	O6 ¹	76.15(10)
07	Dy1	$Dy1^1$	72.88(7)	O41	Dy1	O61	76.15(10)
07	Dy1	O9	132.68(10)	O4 ¹	Dy1	07	77.67(10)
07	Dy1	O10	141.71(11)	O4	Dy1	07	75.34(10)
07	Dy1	N1 ¹	66.21(11)	O41	Dy1	09	75.34(10)
07	Dy1	N3 ¹	75.98(11)	O4	Dy1	09	110.93(10)
09	Dy1	Dy1 ¹	110.72(7)	O41	Dy1	O10	140.54(10)
09	Dy1	N1 ¹	66.52(10)	O4	Dy1	O10	128.01(10)
09	Dy1	N3 ¹	83.60(11)	O4	Dy1	$N1^1$	63.77(10)
O10	Dy1	Dy1 ¹	135.36(8)	O41	Dy1	$N1^1$	63.77(10)
O10	Dy1	09	69.30(10)	O4	Dy1	N3 ¹	139.56(11)
O10	Dy1	N1 ¹	120.99(11)	O41	Dy1	N31	124.91(11)
O10	Dy1	N3 ¹	76.78(11)	O61	Dy1	Dy1 ¹	69.50(7)
N1 ¹	Dy1	$Dy1^1$	96.43(7)	O6 ¹	Dy1	07	141.97(10)
N31	Dy1	$Dy1^1$	147.31(8)	O61	Dy1	09	68.32(10)
N3 ¹	Dy1	$N1^1$	61.44(11)	O6 ¹	Dy1	O10	69.79(11)

Table S4 The bond lengths [Å] and angles $[\circ]$ for complex **2**.

¹1-X,1-Y,1-Z

Atom	Atom	[Å]or[°]		Atom	Atom	Atom	[Å]or[°]
Dy1	Dy1 ¹	3.7943(3)		O31	Dy1	Dy1 ¹	37.63(5)
Dy1	O31	2.3938(18)		O3	Dy1	Dy1 ¹	37.59(4)
Dy1	O3	2.3959(19)		O31	Dy1	03	75.22(7)
Dy1	O4	2.3480(19)		O3	Dy1	O6	113.31(7)
Dy1	O5 ¹	2.3816(18)		O3 ¹	Dy1	O6	144.39(7)
Dy1	O6	2.464(2)		O3 ¹	Dy1	07	80.92(7)
Dy1	01	2.344(2)		O3	Dy1	07	140.23(7)
Dy1	O7	2.406(2)		O3	Dy1	$N1^1$	126.64(7)
Dy1	$N1^1$	2.596(2)		O3 ¹	Dy1	$N1^1$	63.99(7)
Dy1	N3 ¹	2.513(2)		O3	Dy1	N3 ¹	136.92(7)
Atom	Atom	Atom	[Å]or[°]	O3 ¹	Dy1	N3 ¹	124.80(7)
O6	Dy1	N3 ¹	73.92(7)	O4	Dy1	$Dy1^1$	70.26(5)
01	Dy1	$Dy1^1$	106.19(5)	O4	Dy1	O3	73.41(7)
01	Dy1	03	70.96(6)	O4	Dy1	O3 ¹	75.55(6)
01	Dy1	O31	140.22(7)	O4	Dy1	O51	140.56(6)
01	Dy1	O4	75.23(7)	O4	Dy1	O6	139.80(7)
01	Dy1	O5 ¹	108.93(7)	O4	Dy1	07	130.24(7)
01	Dy1	06	70.65(7)	O4	Dy1	$N1^1$	64.48(7)
01	Dy1	07	138.86(7)	O4	Dy1	N3 ¹	76.03(7)
01	Dy1	N1 ¹	123.66(7)	O51	Dy1	$Dy1^1$	71.05(5)
01	Dy1	N3 ¹	72.39(7)	O5 ¹	Dy1	O3	71.47(7)
O7	Dy1	$Dy1^1$	112.69(5)	O5 ¹	Dy1	O3 ¹	78.66(6)
07	Dy1	O6	71.19(7)	O51	Dy1	O6	72.40(7)
O7	Dy1	$N1^1$	65.83(7)	O5 ¹	Dy1	07	72.97(7)
O7	Dy1	N31	82.85(7)	O51	Dy1	$N1^1$	127.30(7)
$N1^1$	Dy1	Dy1 ¹	95.75(5)	O51	Dy1	N3 ¹	143.33(7)
N3 ¹	Dy1	Dy1 ¹	145.20(5)	O6	Dy1	$Dy1^1$	139.71(5)
N31	Dy1	N1 ¹	61.18(7)	06	Dy1	N1 ¹	119.95(7)

Table S5 The bond lengths [Å] and angles [°] for complex **3**.

¹1-X,1-Y,1-Z; ²1-X,-Y,1-Z

Fig. S6 The isothermal M vs. H plots for 1-3 (a-c), respectively.

Fig. S7 Temperature dependence of the in-phase $\chi M'$ product and out-of-phase χ_M'' for 1 in a zero dc field with an ac frequency of 3.0 Oe.

Fig. S8 Ac susceptibilities of **1** were measured at 1.9 K under different fields to find an optimum dc field for suppressing the QTM.

<i>T /</i> K	τ	τ	α	α	χo	χ0	χ∞	χ_{∞}
	Value	Standard Error	Value	Standard Error	Value	Standard Error	Value	Standard Error
2	0.00336	7.30368E-5	0.27104	0.00923	5.30749	0.02575	1.02005	0.02869
2.5	0.0013	2.23455E-5	0.21796	0.00773	4.42126	0.01341	0.8828	0.02434
3	5.54124E-4	9.96266E-6	0.19264	0.00766	3.79593	0.0088	0.7912	0.02611
3.5	2.66291E-4	3.94232E-6	0.16664	0.00554	3.30826	0.00414	0.76952	0.02076
4	1.27819E-4	1.58288E-6	0.16514	0.00331	2.93126	0.00154	0.69645	0.01592
4.5	5.28665E-5	2.24833E-6	0.21147	0.00608	2.63475	0.00164	0.49396	0.05009
5	0.00336	3.35116E-6	0.26868	0.00938	2.39407	0.00124	0.51274	0.14594

Table S6 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for 1 at 600 Oe dc field.

Table S7 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for 2 at 0 Oe dc field.

<i>T /</i> K	τ	τ	α	α	χo	χ0	χ∞	χ_{∞}
	Value	Standard Error	Value	Standard Error	Value	Standard Error	Value	Standard Error
9	4.89537E-5	2.84144E-6	0.11883	0.00927	2.96581	0.00112	1.85205	0.04212
8	1.38889E-4	4.99503E-6	0.16349	0.01011	3.24829	0.00321	1.78567	0.03027
7	2.481E-4	1.83229E-5	0.28244	0.01914	3.59171	0.01262	1.35758	0.07417
6	3.01702E-4	2.04796E-5	0.36673	0.01451	4.00342	0.01884	0.20649	0.09857
5.5	5.71723E-4	1.39014E-5	0.31729	0.00745	4.20031	0.01234	0.14471	0.03963
5	0.00114	1.3009E-5	0.27391	0.00448	4.4083	0.00929	0.16692	0.01875
4.5	0.00223	2.10839E-5	0.25373	0.0041	4.64605	0.01049	0.20611	0.01448
4	0.00398	4.93017E-5	0.25969	0.00537	4.9078	0.01688	0.23615	0.0172
3.5	0.00601	8.78741E-5	0.28817	0.00599	5.17077	0.02294	0.21666	0.01877
3	0.00765	1.0765E-4	0.30809	0.00548	5.34603	0.02388	0.2024	0.01704
2.5	0.00885	1.24442E-4	0.31718	0.00532	5.35255	0.02448	0.19667	0.01606
2	0.01006	1.46495E-4	0.32653	0.00533	5.05001	0.02431	0.19316	0.01478

τ	τ	α	α	χo	χo	χ∞	χ∞
Valua	Standard	Value	Standard	Valua	Standard	Value	Standard
value	Error	value	Error	value	Error	value	Error
3.65489E-4	9.3868E-6	0.20189	0.00966	2.60338	0.00663	0.54128	0.02669
3.37087E-4	8.8007E-6	0.19943	0.00965	2.6456	0.00645	0.575	0.02758
2.79968E-4	8.13193E-6	0.20345	0.00997	2.63286	0.00611	0.59754	0.03044
2.14292E-4	6.32298E-6	0.20433	0.00909	2.58403	0.00475	0.64451	0.02994
1.57409E-4	6.13492E-6	0.21512	0.01012	2.51841	0.00431	0.70017	0.03682
1.29624E-4	6.20224E-6	0.22258	0.01105	2.44343	0.00384	0.81732	0.04015
1.19673E-4	4.34051E-6	0.21043	0.0091	2.31485	0.00306	1.05256	0.02458
9.45254E-5	2.7406E-6	0.18555	0.0067	2.17963	0.00153	1.1791	0.01634
3.80414E-5	3.71468E-6	0.21272	0.01138	2.0564	0.00116	1.04542	0.05554
2.46888E-5	8.70605E-6	0.21779	0.0261	1.83649	5.64746E-4	1.55209	0.05959
	τ Value 3.65489E-4 3.37087E-4 2.79968E-4 2.14292E-4 1.57409E-4 1.29624E-4 1.19673E-4 9.45254E-5 3.80414E-5 2.46888E-5	τ τ Value Standard Error 3.65489E-4 9.3868E-6 3.37087E-4 8.8007E-6 2.79968E-4 8.13193E-6 2.14292E-4 6.32298E-6 1.57409E-4 6.13492E-6 1.29624E-4 6.20224E-6 1.19673E-4 4.34051E-6 9.45254E-5 2.7406E-6 3.80414E-5 3.71468E-6 2.46888E-5 8.70605E-6	ττα $τ$ $τ$ αValueStandard ErrorValue3.65489E-49.3868E-60.201893.37087E-48.8007E-60.199432.79968E-48.13193E-60.203452.14292E-46.32298E-60.204331.57409E-46.13492E-60.215121.29624E-46.20224E-60.222581.19673E-44.34051E-60.210439.45254E-52.7406E-60.185553.80414E-53.71468E-60.212722.46888E-58.70605E-60.21779	ττ $α$ $α$ ValueStandard ErrorValueStandard Error3.65489E-49.3868E-60.201890.009663.37087E-48.8007E-60.199430.009652.79968E-48.13193E-60.203450.009972.14292E-46.32298E-60.204330.009091.57409E-46.13492E-60.215120.011021.29624E-46.20224E-60.222580.011051.19673E-44.34051E-60.210430.00919.45254E-52.7406E-60.185550.00673.80414E-53.71468E-60.217790.0261	τταα χ_0 ValueStandard ErrorValueStandard ErrorValueValue3.65489E-49.3868E-60.201890.009662.603383.37087E-48.8007E-60.199430.009652.64562.79968E-48.13193E-60.203450.009972.632862.14292E-46.32298E-60.204330.009092.584031.57409E-46.13492E-60.215120.010122.518411.29624E-46.20224E-60.222580.011052.443431.19673E-44.34051E-60.210430.00912.314859.45254E-52.7406E-60.185550.00672.179633.80414E-53.71468E-60.212720.011382.05642.46888E-58.70605E-60.217790.02611.83649	ττταα χ_0 χ_0 ValueStandard ErrorValueStandard ErrorValueStandard ErrorValueStandard Error3.65489E-49.3868E-60.201890.009662.603380.006633.37087E-48.8007E-60.199430.009652.64560.006452.79968E-48.13193E-60.203450.009972.632860.006112.14292E-46.32298E-60.204330.009092.584030.004751.57409E-46.13492E-60.215120.010122.518410.004311.29624E-46.20224E-60.222580.011052.443430.003841.19673E-44.34051E-60.210430.00912.314850.003069.45254E-52.7406E-60.185550.00672.179630.001533.80414E-53.71468E-60.212720.011382.05640.001162.46888E-58.70605E-60.217790.02611.836495.64746E-4	τττ α α χ_0 χ_0 χ_∞ ValueStandard ErrorValueStandard ValueStandard ValueStandard Value3.65489E-49.3868E-60.201890.009662.603380.006630.541283.37087E-48.8007E-60.199430.009652.64560.006450.5752.79968E-48.13193E-60.203450.009972.632860.006110.597542.14292E-46.32298E-60.204330.009092.584030.004750.644511.57409E-46.13492E-60.215120.010122.518410.004310.700171.29624E-46.20224E-60.222580.011052.443430.003840.817321.19673E-44.34051E-60.210430.00912.314850.003061.052569.45254E-52.7406E-60.185550.00672.179630.001531.17913.80414E-53.71468E-60.212720.011382.05640.001161.045422.46888E-58.70605E-60.217790.02611.836495.64746E-41.55209

Table S8 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for **3** at 0 Oe dc field.

Computational details

Mononuclear complex **1** has one type of molecular structure, and binuclear complexes **2** and **3** with central symmetrical structure also have only one type of magnetic center Dy^{III} ion indicated as **2_Dy1** and **3_Dy1**. Complete-active-space self-consistent field (CASSCF) calculations on complex **1** and individual Dy^{III} fragments of **2** and **3** (see Figure S9 for the calculated complete structures of **1–3**) on the basis of single-crystal X-ray determined geometries have been carried out with MOLCAS 8.4^{S1} program package. Each individual Dy^{III} fragment in **2** and **3** was calculated keeping the experimentally determined structure of the corresponding compound while replacing the neighboring Dy^{III} ion by diamagnetic Lu^{III}.

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III}; VTZ for close N and O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure.^{S2–S3} For individual Dy^{III} fragment, active electrons in 7 active orbitals include all f electrons (CAS (9 in 7)) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets). SINGLE_ANISO^{S4-S6} program was used to obtain the energy levels, g tensors, m_J values, magnetic axes, *et al.* based on the above CASSCF/RASSI-SO calculations.

To fit the exchange interactions between Dy^{III} ions in complexes **2** and **3**, we took two steps to obtain them. Firstly, we calculated individual Dy^{III} fragments using CASSCF/RASSI-SO to obtain the corresponding magnetic properties. Then, the exchange interaction between the magnetic centers was considered within the Lines model,^{S7} while the account of the dipole-dipole magnetic coupling is treated exactly. The Lines model is effective and has been successfully used widely in the research field of d and f-elements single-molecule magnets.^{S8–S9}

The Ising exchange Hamiltonian for 2 and 3 is: $H_{exch} = -JS_{Dy1}S_{Dy2}$

The $J=25 \cos \varphi J$, where φ is the angle between the anisotropy axes on two Dy^{III} sites, and J is the Lines exchange coupling parameter. $S_{Dy} = 1/2$ is the ground pseudospin on the Dy^{III} site. J_{total} is the parameter of the total magnetic interaction ($J_{total}=J_{dip}+J_{exch}$) between magnetic center ions. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constants were fitted through comparison of the computed and measured magnetic susceptibilities using POLY ANISO program.^{S4–S6}

Figure S9. Calculated complete structures of 1-3; H atoms are omitted for clarify.

KDs		1		2_Dy1			3_Dy1		
	<i>E</i> /cm ⁻¹	g	m_J	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
1	0.0	0.003 0.003 19.740	±15/2	0.0	0.030 0.068 19.525	±15/2	0.0	0.079 0.206 19.118	±15/2
2	110.1	0.905 1.957 13.450	±13/2	48.8	0.177 0.225 16.714	±13/2	29.3	1.848 2.823 15.955	±11/2
3	153.4	0.730 3.180 12.073	±5/2	133.5	1.625 2.229 11.765	±11/2	54.7	3.703 5.098 9.118	±13/2
4	245.6	0.065 4.764 9.729	±11/2	171.5	2.113 4.747 11.167	±5/2	90.4	0.895 4.104 10.091	±9/2
5	299.2	4.005 4.819 11.503	±9/2	213.1	3.109 4.711 11.389	±7/2	147.6	1.248 2.141 13.250	±7/2
6	372.8	0.196 1.485 16.669	±7/2	296.4	0.719 2.492 15.309	±3/2	214.0	0.371 0.627 16.808	±5/2
7	413.4	1.223 2.092 15.275	±3/2	335.4	1.148 1.643 17.625	±1/2	324.0	0.075 0.127 16.606	±3/2
8	506.3	0.316 0.435 17.922	±1/2	399.0	0.125 0.362 19.038	±9/2	364.2	0.053 0.202 17.862	±1/2

Table S9. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of complex 1 and individual Dy^{III} fragments for complexes 2 and 3 using CASSCF/RASSI-SO with MOLCAS 8.4.

Table S10. Wave functions with definite projection of the total moment $|m_J\rangle$ for the lowest eight KDs of complex 1 and individual Dy^{III} fragments for complexes 2 and 3 using CASSCF/RASSI-SO with MOLCAS 8.4.

	E/cm ⁻	wave functions
	1	
	0.0	95.00 % ±15/2>
	110.1	65.60% ±13/2>+8.5% ±1/2>+7.3% ±3/2>+5.9% ±11/2>+5.9% ±7/2>
	153.4	33.1% ±1/2>+23.1% ±3/2>+13.2% ±5/2>+12.6% ±13/2>+9.9% ±11/2>
1	245.6	28.6% ±11/2>+18.7% ±9/2>+14.1% ±13/2>+12.6% ±3/2>+11.6% ±7/2 >
1	299.2	33.5% ±11/2>+22.7% ±5/2>+19.2% ±7/2>+13.9% ±9/2>+4.0% ±3/2>
	372.8	30.0% ±9/2>+24.6% ±7/2>+12.7% ±11/2>+12.3% ±3/2>+9.9% ±5/2>
	413.4	28.7% ±1/2>+20.1% ±9/2>+18.7% ±3/2>+13.6% ±7/2>+13.2% ±5/2>
	506.3	27.0% ±5/2>+22.1% ±7/2>+21.8% ±3/2>+15.1% ±1/2>+9.7% ±9/2>
	0.0	96.2% ±15/2>
	48.8	93.4% ±13/2>
	133.5	71.2% ±11/2>+10.1% ±3/2>+8.3% ±1/2>+4.5% ±9/2>
2_Dy1	171.5	26.3% ±9/2>+22.9% ±1/2>+18.7% ±3/2>+12.3% ±5/2>+11.9% ±7/2>
	213.1	29.4% ±7/2>+28.3% ±5/2>+19.3% ±3/2>+6.9% ±1/2>+6.8% ±9/2>
	296.4	22.0% ±1/2>+21.5% ±5/2>+19.3% ±3/2>+19.0% ±9/2>+14.6% ±7/2>
	335.4	37.1% ±1/2>+33.9% ±3/2>+12.3% ±7/2>+10.9% ±5/2>
	399.0	30.3% ±5/2>+30.1% ±7/2>+15.9% ±9/2>+10.7% ±3/2>+7.5% ±11/2>
	0.0	91.0% ±15/2>
	20.3	25.4% ±9/2>+19.8% ±13/2>+15.6% ±7/2>+14.3% ±11/2>+11.3% ±5/2
	27.5	>+7% ±5/2>
	54.7	50.8% ±13/2>+21.0% ±11/2>+14.9% ±7/2>+3.9% ±9/2>
3_Dy1	90.4	34.4% ±11/2>+20.6% ±13/2>+20.3% ±9/2>+11.3% ±5/2>+6.9% ±3/2>
	147.6	33.7% ±9/2>+22.2% ±7/2>+19.5% ±11/2>+7.0% ±1/2>+6.4% ±3/2>
	214.0	32.8% \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	324.0	38.7% ±3/2>+35.2% ±5/2>+12.2% ±1/2>+10.7% ±7/2>
	364.2	61.4% ±1/2>+26.4% ±3/2>+4.1% ±5/2>

		2		3				
	Ε	Δ_t	g_z	Ε	Δ_t	g_z		
1	0.000000000000	1.055 × 10.5	0.000	0.0000000000000	2 20 4 × 10 4	0.000		
1	0.000019550866	1.955 × 10 ⁻⁵	0.000	0.000220394298	2.204 × 10 ⁻⁴	0.000		
2	2.753181132228	2 427 × 10 5	20.051	1.987569597334	2 220 × 10 4	29 106		
2	2.753215506500	$5.43 / \times 10^{-3}$	39.031	1.987903364877	5.538×10-4	38.196		

Table S11. Exchange energies E (cm⁻¹), the energy difference between each exchange doublets Δ_t (cm⁻¹) and the main values of the g_z for the lowest two exchange doublets of **2** and **3**.

References:

- S1 Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Galván, I. F.; Ferré, N.; Frutos, L. M.; Gagliardi, L.; Garavelli, M.; Giussani, A.; Hoyer, C. E.; Li Manni, G.; Lischka, H.; Ma, D.; Malmqvist, P. Å.; Müller, T.; Nenov, A.; Olivucci, M.; Pedersen, T. B.; Peng, D.; Plasser, F.; Pritchard, B.; Reiher, M.; Rivalta, I.; Schapiro, I.; Segarra-Martí, J.; Stenrup, M.; Truhlar, D. G.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Vysotskiy, V. P.; Weingart, O.; Zapata, F.; Lindh, R. J. Comput. Chem. 2016, 37, 506–541.
- S2 Malmqvist, P. Å.; Roos, B. O.; Schimmelpfennig, B. Chem. Phys. Lett., 2002, 357, 230-240.
- S3 Heß, B. A.; Marian, C. M.; Wahlgren, U.; Gropen, O. Chem. Phys. Lett., 1996, 251, 365–371.
- S4 Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem., Int. Ed. 2008, 47, 4126–4129.
- S5 Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. New J. Chem. 2009, 33, 1224–1230.
- S6 Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. J. Am. Chem. Soc. 2008, 130, 12445–12455.
- S7 Lines, M. E. J. Chem. Phys. 1971, 55, 2977–2984.
- S8 Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2012, 51, 7550–7554.
- S9 Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. Angew. Chem., Int. Ed. 2013, 52, 12014–12019.